1. (2 points) State the Divergence Theorem. (Include all supposition needed to use the theorem)

Solution: If the surface \(S \) is the boundary of the region \(D \) then
\[
\iint_S \mathbf{F} \cdot \mathbf{n}_{\text{out}} \, d\sigma = \iiint_D \nabla \cdot \mathbf{F} \, dx \, dy \, dz
\]
where \(\mathbf{n}_{\text{out}} \) is the outward unit normal to \(S \).

2. (8 points) Use the Divergence Theorem to calculate the flux of the vector field \(\mathbf{F} = (x + \sin y)i + (xy + xz)j + (y^2 - 2x)k \) outward across the surface \(S \), where \(S \) is the boundary of the region \(D \) bounded above by the plane \(y + z = 1 \) and below by the plane \(z = 0 \) with \(0 \leq x \leq 1 \) and \(0 \leq y \leq 1 \).

Solution: Since \(S \) is the boundary of \(D \) we can apply the Divergence Theorem. To use the theorem, we need to calculate the divergence of \(\mathbf{F} \).
\[
\nabla \cdot \mathbf{F} = \frac{\partial}{\partial x} (x + \sin y) + \frac{\partial}{\partial y} (xy + xz) + \frac{\partial}{\partial z} (y^2 - 2x) = 1 + x
\]
So we have that \(\iint_S \mathbf{F} \cdot \mathbf{n}_{\text{out}} \, d\sigma = \iiint_D (x + 1) \, dx \, dy \, dz \).

If we integrate in the order \(dz \, dy \, dx \), then our integral will become
\[
\int_{x=0}^1 \int_{y=0}^1 \int_{z=0}^{1-y} (x + 1) \, dz \, dy \, dx
\]
We can obtain similar expressions if we integrate in other orders such as \(dz \, dx \, dy \). To find the flux, we then compute this integral.

\[
\iint_S \mathbf{F} \cdot \mathbf{n}_{\text{out}} \, d\sigma = \iiint_D \nabla \cdot \mathbf{F} \, dy \, dx = \int_{x=0}^1 \int_{y=0}^1 \int_{z=0}^{1-y} (x + 1) \, dz \, dy \, dx
\]
\[
= \int_{x=0}^1 \int_{y=0}^1 [\,(x + 1)z]_{z=0}^{1-y} \, dy \, dx = \int_{x=0}^1 \int_{y=0}^1 (x + 1)(1 - y) \, dy \, dx
\]
\[
= \int_{x=0}^1 \int_{y=0}^1 (-xy - y + x + 1) \, dy \, dx
\]
\[
= \int_{x=0}^1 \left[-\frac{1}{2}xy^2 - \frac{1}{2}y^2 + xy + y \right]_{y=0}^1 \, dx = \int_{x=0}^1 \left(\frac{1}{2}x + \frac{1}{2} \right) \, dx
\]
\[
= \left[\frac{1}{4}x^2 + \frac{1}{2}x \right]_{x=0}^1 = 3/4
\]