Math 234 Review Problems for Exam 2

Marc Conrad

November 8, 2007

Directions: Answer each of the following questions. Solutions are on the pages 3 and 4.

Problem 1. Find the volume of the solid in the first octant bounded by the coordinate planes and the plane passing through the points $(1, 0, 0), (0, 2, 0)$ and $(0, 0, 1)$.

Problem 2a. Give an example of a (non-constant) vector field $\mathbf{F} = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}$ which is conservative. Justify why the field is conservative.

Problem 2b. Give an example of a vector field $\mathbf{F} = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}$ which is not conservative. Justify why the field is not conservative.

Note: Try to come with with your vector fields without looking at any examples in the book. The idea is that if you are asked to give an example of a vector field that is (or isn’t) conservative, you should know how to come up with one on the spot.

Problem 3a. State Green’s Theorem (both forms).

Problem 3b. Let $\mathbf{F} = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ be a conservative vector field and suppose C is a curve for which Green’s Theorem applies. What happens when we apply Green’s Theorem to find the counterclockwise circulation $\oint_C \mathbf{F} \cdot d\mathbf{r}$?
Hint: For problems 4 and 5, try to find a relatively fast way to come up with the answer (i.e. one that doesn’t require you to parametrize a bunch of curves). For Problem 4 drawing a picture of the curve may be helpful.

Problem 4. Let \(\mathbf{F} = \left(\cos(x^5) - \frac{1}{3}y^3 \right) \mathbf{i} + \frac{1}{3}x^3 \mathbf{j} \). Find the counterclockwise circulation \(\oint_C \mathbf{F} \cdot \mathbf{dr} \) where \(C \) is the curve consisting of the line segment joining \((-2,0)\) and \((-1,0)\), the half circle \(y = \sqrt{1 - x^2} \), the line segment joining \((1,0)\) and \((2,0)\) and the half circle \(y = \sqrt{4 - x^2} \).

Problem 5. Let \(\mathbf{F} = y \mathbf{i} + x \mathbf{j} + 2z \mathbf{k} \). Find the work \(\int_C \mathbf{F} \cdot \mathbf{dr} \) where \(C \) is the curve consisting of the line segment joining \((1,0,0)\) and \((0,0,0)\), followed by the parabola \(z = x^2, y = 0 \) joining \((0,0,0)\) and \((1,0,1)\), followed by the line segment joining \((1,0,1)\) and \((1,1,1)\), followed by the line segment joining \((1,1,1)\) and \((1,1,2)\).
Solutions

1. \(\frac{11}{6} \).

2a. Many solutions are possible, but one example would be the following:

The vector field \(F = 2x \mathbf{i} + 2y \mathbf{j} + 2z \mathbf{k} \) is conservative because it is the gradient of the potential function \(f(x, y, z) = x^2 + y^2 + z^2 \).

Note that a good way to come up with a conservative vector field is to start with a function of three variables (or two variables if we want a 2 dimensional vector field) and then to calculate its gradient, which will be a conservative vector field.

2b. Again, many solutions are possible. One example would be the following:

The vector field \(F = y \mathbf{i} + 2 \mathbf{j} + z \mathbf{k} \) is not conservative because it fails the component test. \(\frac{\partial M}{\partial y} = 1 \) but \(\frac{\partial N}{\partial x} = 0 \neq 1 \).

Note that a good way to come up with a vector field that is not conservative is to choose \(M \), \(N \) and \(P \) that will fail the component test.
3a. (Tangential Form) If C is a “nice” simple closed curve that encloses a region R and $\mathbf{F} = M(x,y)\mathbf{i} + N(x,y)\mathbf{j}$ is a “nice” vector field, then the counterclockwise circulation $\oint_C \mathbf{F} \cdot d\mathbf{r}$ is equal to the double integral

$$\iint_R \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \, dx \, dy$$

(Normal Form) Under the same hypotheses as above, the outward flux across C, $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \oint_C M \, dy - N \, dx$ is equal to the double integral

$$\iint_R \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \, dx \, dy$$

3b. Since \mathbf{F} is conservative we have that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. Therefore applying Green’s Theorem tells us that the counterclockwise circulation will be equal to

$$\iint_R \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \, dx \, dy = \iint_R 0 \, dx \, dy = 0.$$

This result shouldn’t surprise us because \mathbf{F} is a conservative vector field and therefore its work done around any closed curve (which is equal to the circulation) is always zero.

4. The answer is $\frac{15\pi}{4}$. The best way to do this problem is to use Green’s Theorem to turn the problem into a double integral and then to change to polar coordinates to evaluate the double integral.

5. The answer is 5. The trick here is that \mathbf{F} is a conservative vector field and therefore the integral does not depend on the path we take from $(1,0,0)$ to $(1,1,2)$. Once we know that we can find the work by first finding a potential function and then evaluating that potential at the given points.