2.1

DIFFERENTIATION

DERIVATIVES

We are now ready to explain what is meant by the slope of a curve or the velocity of
a moving point. Consider a real function f and a real number a in the domain of f.
When x has value g, f(x) has value f(a). Now suppose the value of x is changed
from a to a hyperreal number a + Ax which is infinitely close to but not equal to a.
Then the new value of f(x) will be f(a + Ax). In this process the value of x will be
changed by a nonzero infinitesimal amount Ax, while the value of f(x) will be changed
by the amount

fla + Ax) — fla).

The ratio of the change in the value of f(x) to the change in the value of x is

fla + Ax) — f(a)
Ax )

This ratio is used in the definition of the slope of f which we now give.

DEFINITION

S is said to be the slope of f at a if

fla + Ax) — f(a)
Ax

S =st
for every nonzero infinitesimal Ax.
The slope, when it exists, is infinitely close to the ratio of the change in f(x)

to an infinitely small change in x. Given a curve y = f(x), the slope of f at a is also
called the slope of the curve y = f(x)at x = a. Figure 2.1.1 shows a nonzero infinitesi-
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44 2 DIFFERENTIATION

mal Ax and a hyperreal straight line through the two points on the curve at ¢ and
a + Ax. The quantity

fla + Ax) — fla)
Ax

is the slope of this line, and its standard part is the slope of the curve.

fla+ Ax) - fl@)

Figure 2.1.1

The slope of f at a does not always exist. Here is a list of all the possibilities.

(1) The slope of f at a exists if the ratio

fla + Ax) = f(a)
Ax

is finite and has the same standard part for all infinitesimal Ax # 0. It
has the value

fla + Ax) — [fla)
= st .

S Ax

(2) The slope of f at a can fail to exist in any of four ways:

(a) f(a)is undefined.

(b) f(a + Ax)is undefined for some infinitesimal Ax # 0.
fla+ 4% - /@

The t
(c) e term Av

is infinite for some infinitesimal
Ax # 0.

fla + Ax) — f(@)
Ax
different infinitesimals Ax # 0.

(d) The term has different standard parts for

We can consider the slope of fat any point x, which gives us a new function
of x.
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DEFINITION

Let f be a real function of one variable. The derivative of | is the new function
f' whose value at x is the slope of f at x. In symbols,

flx + Ax) — f(x)

J'(x) = st Ax

whenever the slope exists.

The derivative f’(x) is undefined if the slope of f does not exist at x.

For a given point a, the slope of f at a and the derivative of f at a are the
same thing. We usually use the word “slope” to emphasize the geometric picture and
“derivative” to emphasize the fact that f* is a function.

The process of finding the derivative of f is called differentiation. We say that
f is differentiable at a if f'(a) is defined; i.e., the slope of f at a exists.

Independent and dependent variables are useful in the study of derivatives.
Let us briefly review what they are. A system of formulas is a finite set of equations and
inequalities. If we are given a system of formulas which has the same graph as a simple
equation y = f(x), we say that y is a function of x, or that y depends on x, and we call
x the independent variable and y the dependent variable.

When y = f(x), we introduce a new independent variable Ax and a new
dependent variable Ay, with the equation

o Ay = f(x + Ax) — f(x).

This equation determines Ay as a real function of the two variables x and Ax, when
x and Ax vary over the real numbers. We shall usually want to use the Equation 1
for Ay when x is a real number and Ax is a nonzero infinitesimal. The Transfer
Principle implies that Equation 1 also determines Ay as a hyperreal function of two
variables when x and Ax are allowed to vary over the hyperreal numbers.

Ay is called the increment of y. Geometrically, the increment Ay is the change
in y along the curve corresponding to the change Ax in x. The symbol )’ is sometimes
used for the derivative, y' = f’(x). Thus the hyperreal equation

e = St(f(x ZLE f(X))
now takes the short form
' = st ﬂ
V=S A

The infinitesimal Ax may be either positive or negative, but not zero. The
various possibilities are illustrated in Figure 2.1.2 using an infinitesimal microscope.
The signs of Ax and Ay are indicated in the captions.

Our rules for standard parts can be used in many cases to find the derivative
of a function. There are two parts to the problem of finding the derivative f* of a
function f:

(1) Find the domain of .
(2) Find the value of f'(x) when it is defined.
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Figure 2.1.2

Ax>0, Ay=0 Ax <0, Ay=0

EXAMPLE 1 Find the derivative of the function

flx) = x3

In this and the following examples we let x vary over the real numbers and
Ax vary over the nonzero infinitesimals. Let us introduce the new variable y
with the equation y = x* We first find Ay/Ax.
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y=x>
y + Ay = (x + Ax)?,
Ay = (x + Ax)3 — x3,
Ay (x + Ax)P® - X3
Ax Ax ’

Next we simplify the expression for Ay/Ax.

Ay  (x* + 3x? Ax + 3x(Ax)® + (Ax)®) — x3
Ax Ax
3x? Ax + 3x(Ax)? + (Ax)?
- Ax
=3x2 4+ 3xAx + (Ax)%

Then we take the standard part,

A
st l) = st(3x? + 3x Ax + (Ax)?)
Ax

= st(3x?) + st(3x Ax) + st((Ax)?)
=3x2 40+ 0=3x2%

Therefore, f(x) = st(%}:) = 3x2.

We have shown that the derivative of the function
fx) = x*

is the function f(x) = 3x2

with the whole real line as domain. f(x) and f'(x) are shown in Figure 2.1.3.

Figure 2.1.3

EXAMPLE 2 Find f’(x) given f(x) = /x.

Case 7 x < 0. Since /x is not defined, f'(x) does not exist.
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48 2 DIFFERENTIATION

Case 2 x = 0. When Ax is a negative infinitesimal, the term

,/\+A\—f \/0+A\— /6

Ax

is not defined because . /Ax is undefined. When Ax is a positive infinitesimal,

the term
\/\ + Ax - f «/ 1
Ax A\ \/K

is defined but its value is infinite. Thus for two reasons, f'(x) does not exist.

Case 3 x> 0.Lety = \/: Then
¥+ Ay = /x + Ax,
Ay = x4 Ay — JN,
E X+ Ax - \ﬂ

Ax Ax
We then make the computation
Ay v Ax = ) (Sx A+ )
Ax Ax (Jx + Ax + \/;‘)

(x + Ax) — x

Ax(/x + Ax + \/;)
Ax 1
a Ax(/x + Ax + \/,\_') - VX + Ax + \ﬂ

Ay

1
K) - S[(Q/.\' + Ax + \ﬂ)
[
stiv/x + Ax + \/§)
1
st/ x + Ax) + Sl‘(\/;)
|

Taking standard parts, st

1
VRN RN
Therefore, when x > 0, fx) = lﬁ.
2 /X
So the derivative of fx) = \/;
is the function f(x) = L

and the set of all x > 0 is its domain (see Figure 2.1.4).
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Figure 2.1.4 T 2VE

EXAMPLE 3 Find the derivative of f(x) = 1/x.

Case 7 x = 0. Then 1/x is undefined so f"(x) is undefined.

Case2 x # 0.
y=1/x,
1
)+ Ay = s
y+ay x + Ax
1 1
Ay = - =,
Y x+ Ax  x
ﬂ _Hix + Ax) — 1/x
Ax Ax '
Simplifying,
Hix + Ax) = 1/x  x —(x + Ax) _ —Ax
Ax T ox(x + Ax)Ax  x(x + Ax) Ax
. -1
T ox(x + Ax)
Taking the standard part,
P . Y R S, [
Ax| x(x + Ax)] — st(x(x + Ax))
_ v __1__1
st(x)st(x + Ax)  x+x  x*
Thus f(x) = —1/x2
The derivative of the function f(x) = 1/x is the function f’(x) = —1/x?

whose domain is the set of all x # 0. Both functions are graphed in Figure
2.1.5.
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Figure 2.1.56

EXAMPLE 4 Find the derivative of f(x) = |x[.

Case 7 x > 0. In this case |x| = x, and we have

y = x.
y+ Ay = x + Ax,
Ay = Ax,
Yot rwet
Ax 7 )=
Case 2 x < 0. Now |x| = —x, and
y: — X,

y+ Ay = —(x + Ax),
Ay = —(x + Ax) — (—x) = —Ax,
él_ Ax

=% - b x) = -1
6356’3 X = O Then
y=0,
y + Ay =10 + Ax| = |Ax|,
Ay = |Ax],
and Q—@il_ 1 1fAX>0,
Ax  Ax  |-1 ifAx <O

The standard part of Ay/Ax is then 1 for some values of Ax and —1 for
others. Therefore f*(x) does not exist when x = 0.

In summary,
1 if x>0,
S(x)=9 -1 ifx <0,
undefined if x = 0.

Figure 2.1.6 shows f(x) and f'(x).
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x x
—_—

The derivative
Figure 2.1.6 y=|x| of y =| x|

The derivative has a variety of applications to the physical, life, and social
sciences. It may come up in one of the following contexts.

Velocity: If an object moves according to the equation s = f(t) where ¢ is
time and s is distance, the derivative » = f'(z} is called the velocity of the object at
time ¢.

Growth rates: A population y (of people, bacteria, molecules, etc.) grows
according to the equation y = f(f) where ¢ is time. Then the derivative y' = f7(¢) is
the rate of growth of the population y at time ¢.

Marginal values (economics): Suppose the total cost {or profit, etc.) of
producing x items is y = f(x) dollars. Then the cost of making one additional item
is approximately the derivative y' = f’(x) because ' is the change in y per unit change
in x. This derivative is called the marginal cost.

EXAMPLE 5 A ball thrown upward with initial velocity b ft per sec will be at a height

y = bt — 162
feet after ¢ seconds. Find the velocity at time ¢. Let ¢ be real and At # 0,
infinitesimal.
y + Ay = b(t + At) — 16(t + Ar)?,
Ay = [b(t + Af) — 16(t + Ar)*] — [bt — 16t7],
Ay  [b(t + At) — 16(t + Ar)*] — [bt — 16¢%]
At At
b At — 32t At — 16(Ar)?
- At
= b — 32t — 16 At.
st(&) = st(b — 32t — 16 At)
At
= st(b — 32t) — st(16 Ar)
=b—-32%t—-0=5b— 32t
At time ¢ sec, v=y =b— 32 ft/sec.

Both functions are graphed in Figure 2.1.7.
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! !

Figure 2.1.7 y=>bt —161* v=>5b—32

EXAMPLE 6 Suppose a bacterial culture grows in such a way that at time ¢ there are
t* bacteria. Find the rate of growth at time t = 1000 sec.

y=1t> y =3 byExample I.
At ¢t = 1000, ¥ = 3,000,000 bacteria/sec.

EXAMPLE 7 Suppose the cost of making x needles is \ﬂ dollars. What is the
marginal cost after 10,000 needles have been made?

y=yx y= 2—\1/;; by Example 2.

1 1
At x = 10,000, ) = ———=— = —— dollars per needle.
: g 2./10,000 200

Thus the marginal cost is one half of a cent per needle.

PROBLEMS FOR SECTION 2.1

Find the derivative of the given function in Problems 1-21.

1 f(x) = x? 2 fO=2+3

3 f(x) =1 - 2x? 4 fx)=3x% +2
5 J) =4 6 f(x) =2~ 5x

7 1) = 43 8 fiy= -2

9 f) =5 /u 10 fw = Ju+2
11 gx) = x/x 12 glx) = 1//x

13 g(t) =172 14 gy =13
15 f0)=3""+4y 16 ) =2 + 4
17 fx)=ax+5b 18 f(x) = ax?

19 f(x) = Jax + b 20 fx) = 1(x +2)

21 F) = 1/(3 - 2x)
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22 Find the derivative of f(x) = 2x? at the point x = 3.

23 Find the slope of the curve f(x) = \/x — 1 at the point x = 5.

24 An object moves according to the equation y = 1/(t + 2),¢ > 0. Find the velocity as a
function of ¢.

25 A particle moves according to the equation y = t*. Find the velocity as a function of t.

26 Suppose the population of a town grows according to the equation y = 100t + ¢2. Find
the rate of growth at time ¢t = 100 years.

27 Suppose a company makes a total profit of 1000x — x? dollars on x items. Find the
marginal profit in dollars per item when x = 200, x = 500, and x = 1000,

28 Find the derivative of the function f(x) = |x + 1].

29 Find the derivative of the function f(x) = |x3|.

30 Find the slope of the parabola y = ax* + bx + ¢ where a, b, ¢ are constants.

2.2 DIFFERENTIALS AND TANGENT LINES

Suppose we are given a curve y = f(x) and at a point (a, b) on the curve the slope
['(a) is defined. Then the tangent line to the curve at the point (g, b), illustrated in
Figure 2.2.1, is defined to be the straight line which passes through the point (a, b)
and has the same slope as the curve at x = a. Thus the tangent line is given by the
equation

Ix) = b =f(a)x — a),
or I(x) =f(a)(x — a) + b.

I(x)
{a, b)

y
7 (a, b) 10

Figure 2.2.1 Tangent lines.

EXAMPLE 1 For the curve y = x>, find the tangent lines at the points (0, 0), (1, 1),
and (—3%, —1) (Figure 2.2.2).

The slope is given by f’(x) = 3x2. At x = 0, f(0) = 3+0? = 0. The tangent
line has the equation

y=0x—-0)+0, or y=0.
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Ln

_ 3 |
Y=5*T1q y=3x-2

Figure 2.2.2

At x =1, f'(1) = 3, whence the tangent line is
y=3x-1)+1, or y=3x-—2
Atx = =5, [(=9 =3 (=
y=3x - (=) + (=%, or y=3x+1

)? = 2, so the tangent line is

b

Given a curve y = f(x), suppose that x starts out with the value a and then
changes by an infinitesimal amount Ax. What happens to y? Along the curve, y will
change by the amount

fla + Ax) — f(a) = Ay.
But along the tangent line y will change by the amount
lla + Ax)y — lla) = [f'(@)(@a + Ax — a) + b] — [f"(a)(a — a) + b]
= f"(a) Ax.
When x changes from a to a + Ax, we see that:

change in y along curve = f(a + Ax) — f{a),
change in y along tangent line = f’(a) Ax.

In the last section we introduced the dependent variable Ay, the increment
of y, with the equation

Ay = f(x + Ax) — f(x).

Ay is equal to the change in y along the curve as x changes to x + Ax.
The following theorem gives a simple but useful formula for the increment Ay,

INCREMENT THEOREM

Let y = f(x). Suppose f'(x) exists at a certain point x, and Ax is infinitesimal.
Then Ay is infinitesimal, and
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Ay = f'(x) Ax + s Ax

for some infinitesimal &, which depends on x and Ax.

PROOF
Case 1 Ax = 0. In this case, Ay = f'(x) Ax = 0, and we put ¢ = Q.
Case 2 Ax # 0. Then
Ay ,
Ax ~ f'(x);
so for some infinitesimal ¢,

Ay
-A—x—f(x)+a.

Multiplying both sides by Ax,
Ay = f'(x) Ax + ¢ Ax.

EXAMPLE 2 Let y = x3, so that y' = 3x2. According to the Increment Theorem,
Ay = 3x? Ax + e Ax

for some infinitesimal ¢. Find ¢ in terms of x and Ax when Ax # 0. We have
Ay = 3x? Ax + e Ax,

Ay

= 3x2
Ax x“ + e,
Ay
g =— — 3x2
Ax 3x

We must still eliminate Ay. From Example 1 in Section 2.1,
Ay = (x + Ax)® — x3,

A
3y 3xAx 4 (Ax)>.
Ax

Substituting, g = (3x? + 3x Ax + (Ax)?) — 3x2%.
Since 3x? cancels,

g = 3x Ax + (Ax)2

We shall now introduce a new dependent variable dy, called the differential
of y, with the equation

dy = f'(x) Ax.

dy is equal to the change in y along the tangent line as x changes to x + Ax. In Figure
2.2.3 we see dy and Ay under the microscope.

55



56

2 DIFFERENTIATION

Ay
dy

change in y along curve

Il

change in y along tangent line

Figure 2.2.3

To keep our notation uniform we also introduce the symbol dx as another
name for Ax. For an independent variable x, Ax and dx are the same, but for a
dependent variable y, Ay and dy are different.

DEFINITION

Suppose y depends on x,y = f(x).

(i) The differential of x is the independent variable dx = Ax.
(i) The differential of y is the dependent variable dy given by

dy = f'(x)dx.

When dx # 0, the equation above may be rewritten as

dy _

=S,

Compare this equation with

Ay
o (%)

The quotient dy/dx is a very convenient alternative symbol for the derivative f'(x).
In fact we shall write the derivative in the form dy/dx most of the time.

The differential dy depends on two independent variables x and dx. In
functional notation,

dy = df (x, dx)
where df'is the real function of two variables defined by

Af (x, dx) = f'(x) dx.
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When dx is substituted for Ax and dy for f'(x) dx, the Increment Theorem takes the
short form

Ay = dy + gdx.

The Increment Theorem can be explained graphically using an infinitesimal micro-
scope. Under an infinitesimal microscope, a line of length Ax is magnified to a line
of unit length, but a line of length ¢ Ax is only magnified to an infinitesimal length e.
Thus the Increment Theorem shows that when f'(x) exists:

(1) The differential dy and the increment Ay = dy + ¢dx are so close to
each other that they cannot be distinguished under an infinitesimal
microscope.

(2) The curve y = f(x) and the tangent line at (x, y) are so close to each
other that they cannot be distinguished under an infinitesimal micro-
scope; both look like a straight line of slope f'(x).

Figure 2.2.3 is not really accurate. The curvature had to be exaggerated
in order to distinguish the curve and tangent line under the microscope. To give an
accurate picture, we need a more complicated figure like Figure 2.2.4, which has a
second infinitesimal microscope trained on the point (a + Ax, b + Ay) in the field
of view of the original microscope. This second microscope magnifies ¢dx to a
unit length and magnifies Ax to an infinite length.

(a+Ax,b+Ay)

Figure 2.2.4
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EXAMPLE 3 Whenever a derivative f'(x) is known, we can find the differential
dy at once by simply multiplying the derivative by dx, using the formula
dy = f'(x) dx. The examples in the last section give the following differentials.

(a) y=x? dy = 3x?dx.
(b) y=1x dy = Ec: where x > 0.
2/ x
() y = 1/x, dy = —dx/x* when x # 0.
dx when x > 0,

(d) y = x|, dy ={ —dx when x < 0,

undefined when x = 0.
(e) y=bt — 16¢2, dy=(b— 32)dt

The differential notation may also be used when we are given a system of
formulas in which two or more dependent variables depend on an independent
variable. For example if y and z are functions of x,

y=Jx), z=gx),
then Ay, Az, dy, dz are determined by
Ay = fx + Ax) — f(x), Az = g(x + Ax) — g(x),
dy = f'(x)dx, dz = g'(x) dx.

EXAMPLE 4 Given y = 4x,z = x?, with x as the independent variable, then
Ay =3(x + Ax) —ix = L Ax,
Az = 3x? Ax + 3x(Ax)? + (Ax)?,
dy =31dx, dz=3x%dx.
The meaning of the symbols for increment and differential in this example

will be different if we take y as the independent variable. Then x and z are
functions of y.

X = 2y, z = 8y3.
Now Ay = dy is just an independent variable, while
Ax =2y + Ay) — 2y = 2 Ay,
Az = 8(y + Ay)* — 8y?
= 8[3y% Ay + 3y(Ay)* + (Ay)]
= 24y* Ay + 24y(Ay)® + 8(Ay)*.
Moreover, dx =2dy, dz =24y dy.

We may also apply the differential notation to terms. If 7(x) is a term with the
variable x, then 7(x) determines a function f,

(%) = f(x).
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and the differential d(z(x)) has the meaning

d(t(x)) = f'(x) dx.

EXAMPLE 5
(a) d(x3) = 3x? dx.
dx
(b d(./x) = s x> 0.
) /) NG,
d
© d(1/x) = —x—f, x # 0.
dx when x > 0,
(d) d(|x) =< —dx when x < 0,

undefined when x = 0.
(¢) Letu = btand w = —16t% Then
u+w=bt — 162, du + w) = (b — 32t)dt.

PROBLEMS FOR SECTION 2.2

In Problems 1-8, express Ay and dy as functions of x and Ax, and for Ax infinitesimal find an
infinitesimal & such that Ay = dy + ¢ Ax.

1 y=x? 2 y = —5x?

3 y=2/x 4 y=x*

5 y=1/x 6 y=x?

7 y=x—1/x 8 y = dx + x°

9 If y = 2x? and z = x?, find Ay, Az, dy, and dz.

10 Ify = 1/(x + 1) and z = 1/(x + 2), find Ay, Az, dy, and dz.
11 Find d(2x + 1) 12 Find d(x? — 3x)
13 Find d(,/x + 1) 14 Find d(,/2x + 1)
15 Find d(ax + b) 16 Find d(ax?)
17 Find d3 + 2/x) 18 Find d(x,/x)
19 Find d(1/,/x) 20 Find d(x* — x?)
21 Let y = \/x,z = 3x. Find d(y + 2) and d(y/z).
22 Let y = x~ ! and z = x3. Find d(y + z) and d(yz).

In Problems 23-30 below, find the equation of the line tangent to the given curve at the given
point.

23 y=x% (2,9 24 y=2x?; (—12)

25 y=—x2; (0,0) 26 y=+/x (L1
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27 y=3x—4 (1,-1) 28 y=Jt—1; (52

29 y=x* (=2,16) 30 y=x3—x; (0,0

31 Find the equation of the line tangent to the parabola y = x? at the point (x,, x2).

32 Find all points P(x,, x3) on the parabola y = x? such that the tangent line at P passes

through the point (0, —4).

33 Prove that the line tangent to the parabola y = x* at P(x,,x5) does not meet the
parabola at any point except P.

DERIVATIVES OF RATIONAL FUNCTIONS
A term of the form
a1X + Qg

where a,, a, are real numbers, is called a linear term in x; if a; # 0, it is also called
polynomial of degree one in x. A term of the form

a)x* + ax +ag, a; #0
is called a polynomial of degree two in x, and, in general, a term of the form
ax" + a,_ X"+ 4 ax + ag, a, # 0

is called a polynomial of degree n in x.

A rational term in x is any term which is built up from the variable x and real
numbers using the operations of addition, multiplication, subtraction, and division.
For example every polynomial is a rational term and so are the terms

(3x* — 5)(x +2)° (1 4 1/x)°
5x — 11 ’ 312 - x)

A linear function, polynomial function, or rational function is a function which
is given by a linear term, polynomial, or rational term, respectively. In this section we
shall establish a set of rules which enable us to quickly differentiate any rational
function. The rules will also be useful later on in differentiating other functions.

THEOREM 1

The derivative of a linear function is equal to the coefficient of x. That is,

d(bx + ¢)

= b, dbx + ¢) = bdx.
dx

PROOF Let y = bx + ¢, and let Ax # 0 be infinitesimal. Then

y+Ay=b(X +AX) + ¢,
Ay = (b(x + Ax) + ¢) — (bx + ¢) = b Ax,

Ay bAx b
Ax T Ax
dv

Therefore Y — sub) = b.

dx
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Multiplying through by dx, we obtain at once

dy = bdx.

If in Theorem 1 we put b = 1, ¢ = 0, we see that the derivative of the identity
function f(x) = xis f'(x) = 1; i.e,

dx
—— = = d .
ix 1, dx X

On the other hand, if we put b = 0 in Theorem 1 then the term bx + ¢ is just
the constant ¢, and we find that the derivative of the constant function f(x) = ¢ is
f(x) =0;ie,

dc
— = =0,
I 0, dc

THEOREM 2 (Sum Rule)

Suppose u and v depend on the independent variable x. Then for any value of x
where du/dx and dv/dx exist,

du +v) du dv _
I N A du + v) = du + do.

In other words, the derivative of the sum is the sum of the derivatives.

PROOF Let y = u + v, and let Ax # 0 be infinitesimal. Then
y+ Ay = (u + Au) + (v 4+ Av),

Ay = [(u + Au) + (v + Av)] — [u + v] = Au + A,
Ay Au+Av  Au A

Ax Ax  Ax + Ax’
Taking standard parts,
Stﬂ—StAu-l—Av t&+tAv
Ax) ~ Tax T ax) T Yax] T\ ax)
dy du dv
Thus E ——(z; +¢§

By using the Sum Rule n — 1 times, we see that
duy, + - +u,)  duy du

n

ix ix A Of dluy + - +u,) =duy + -+ du,.

THEOREM 3 (Constant Rule)

Suppose u depends on x, and ¢ is a real number. Then for any value of x where
du/dx exists,

d(cu)  du _
ke CE’ d(cu) = ¢ du.
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PROOF Let y = cu, and let Ax # 0 be infinitesimal. Then
Yy + Ay = c(u + Au),
Ay =clu + Au) — cu = c Au,
Ay cAu CAu
Ax  Ax Ax’

‘Taking standard parts,
t Ay = st cAu =cst Au
ax] = Ax| Ax
whence —=cC

The Constant Rule shows that in computing derivatives, a constant factor
may be moved “outside” the derivative. It can only be used when ¢ is a constant. For
products of two functions of x, we have:

THEOREM 4 (Product Rule)

Suppose u and v depend on x. Then for any value of x where dufdx and dv/dx
exist,

d(uv) dv du
——— =u— 4

x t T e duv) = udv + vdu.

PROOF Let y = uv, and let Ax # 0 be infinitesimal.

y+ Ay = + Aw)(v + Av),
Ay =+ Aw)(v + Av) — uv = uAv + v Au + Au Av,
Ay  ulv +vAu + Au v Av Au Av
Ax Ax T A T Ax Ax’

Au is infinitesimal by the Increment Theorem, whence

st ﬂ = st g+ u&+A &
Ax] T VA T VA T MM Ax
= t + vest Au + OQ-st Av
= U3l A UseS AX Ax .
dy dv du

So T =u—+ .

The Constant Rule is really the special case of the Product Rule where v is
a constant function of x, v = ¢. To check this we let v be the constant ¢ and see what
the Product Rule gives us:
du+c)  dc du du du

dx llzg—}-C(E:u'Oﬁ—CE:Cz;.

This is the Constant Rule.
The Product Rule can also be used to find the derivative of a power of u.
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THEOREM 5 (Power Rule)
Let u depend on x and let n be a positive integer. For any value of x where
dufdx exists,
(") a1 du
dx dx’

dw™ = nu"" ! du.

PROOF To see what is going on we first prove the Power Ruleforn = 1,2,3, 4.
n=1: Wehaveu" = uand u® = 1, whence

dw”) du o du
dx  dx Leu Tdx
n =2: We use the Product Rule,
dw?)  du-u)  du du 5oy du
ax  dx  Max M T Y ax

n=23: Wewrite 4> = u+u? use the Product Rule again, and then use the
result for n = 2.

dw®)  dw-v?)  dw?) ,du
ix  dx Yix +u3§
du ,du ,du
—u-2ua+ua—3ua.

n = 4: Using the Product Rule and then the result for n = 3,
d(u®) _ d(u - u?) d(u?) N u3@

dx dx “ dx dx
du du du

= . 2— 3—: 3———
=u 3udx+udx 4udx.

We can continue this process indefinitely and prove the theorem for every
positive integer n. To see this, assume that we have proved the theorem for m.
That is, assume that

d(u™) _,du
1 — m 1_'
M dx i dx
We then show that it is also true for m + 1. Using the Product Rule and the
Equation 1,
dw™ Yy du-u™ dw™ | du
dx dx ’ dx T dx
=u mu"‘_lg + u"'@ = (m l)u”'du
- dx dx dx’
dw™* ) du
= Du™—.
Thus ol (m + Du I

This shows that the theorem holds for m + 1.
We have shown the theorem is true for 1, 2, 3, 4. Set m = 4; then the theorem
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holds for m + 1 = 5. Set m = 5; then it holds for m + 1 = 6. And so on.
Hence the theorem is true for all positive integers n.

In the proof of the Power Rule, we used the following principle:

PRINCIPLE OF INDUCTION

Suppose a statement P(n) about an arbitrary integer n is true when n = 1.
Suppose further that for any positive integer m such that P(m) is true, P(m + 1)
is also true. Then the statement P(n) is true of every positive integer n,

In the previous proof, P(n) was the Power Rule,

d(u") L
nut "l —

dx dx’

The Principle of Induction can be made plausible in the following way. Let
a positive integer n be given. Set m = 1;since P(1) is true, P(2) is true. Now set m = 2;
since P(2) is true, P(3) is true. We continue reasoning in this way for n steps and con-
clude that P(n) is true.

The Power Rule also holds for n = 0 because when v # 0,u° =1 and
dljdx = Q.

Using the Sum, Constant, and Power rules, we can compute the derivative
of a polynomial function very easily. We have

d(X") — \,n—l
dx . ’
dlex") ey
o chx" "1,
and thus
d(anx" + an—l-x”_1 + o + alx + aO) n—1 -2
dx =yt hx +a,_(n—=Dx""" 4+ -+ ay.
1.5
EXAMPLE 1 A=3x7) = —3.5x% = — 15x%,
dx
6x* —2x3 + x — 1
EXAMPLE 2 d(6x XX ) = 24x3 — 6x% 4+ 1.

dx

Two useful facts can be stated as corollaries.
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COROLLARY 1

The derivative of a polynomial of degree n > O is a polynomial of degree n — 1.
(A nonzero constant is counted as a polynomial of degree zero.)

COROLLARY 2
du +c) du

If u depends on x, then o o

whenever du/dx exists. That is, adding a constant to a function does not change
its derivative.

In Figure 2.3.1 we see that the effect of adding a constant is to move the curve
up or down the y-axis without changing the slope.
For the last two rules in this section we need the formula for the derivative

of 1/v.
u
|
| u+c
|
N\ I
]
1
u
!
N\
x
du _ d(u+tc)
Figure 2.3.1 dx dx
LEMMA

Suppose v depends on x. Then for any value of x where v # 0 and dv/dx exists,

dilfp) 1 dv ) 1
ix T rd d(")-‘ﬁ"”-

v

PROOF Let y = 1/v and let Ax # 0 be infinitesimal.

y+ Ay = v+ AV

1 1
Ay = v+ Av v

Ay  1f(v + Av) — 1/jv

Ax Ax
v— (v + Av)
- Axv(v + Av)
1 Av

T (v + Av) Ax
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Taking standard parts,

st ) —g oL A
Ax| v(v + Av) Ax

1 Av
Fst Kx- .
Therefore Q = —i éﬁ
dx v? dx

THEOREM 6 (Quotient Rule)

Suppose u, v depend on x. Then for any value of x where dujdx, dv/dx exist and
v #0,

d(u/v)  vdufdx — udvjdx d(g) _vdu—udp

dx v? D) 2

PROOF We combine the Product Rule and the formula for d(1/v). Let y = u/v. We
write y in the form

y=—u
v

1 1
Then dy = d(—u) = —du + ud(l)
v v v

= la!u + u(—v %) dv
D
_vdu—udv

02

THEOREM 7 (Power Rule for Negative Exponents)

Suppose u depends on x and n is a negative integer. Then for any value of x
where duf/dx exists and u # 0, d(u")/dx exists and

d(u™ _ du

T nu"'la, A"y = nu"~ ! du.
PROOF Since n is negative, n = —m where m is positive. Let y = v = u~™ Then
y = 1/u™. By the Lemma and the Power Rule,
dy 1 du™)
dx — (u™? dx

l
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du
_ (_ —2m, m—1
= (—mu™""u I
du du
— ( _ —m—1 — n—1
= (—mu i I

The Quotient Rule together with the Constant, Sum, Product, and Power
Rules make it easy to differentiate any rational function.

EXAMPLE 3 Find dy when

1

y=x2—3x+1'

Introduce the new variable u with the equation
u=x%-3x+1.

Then y = 1/u, and du = (2x — 3)dx, so

1 —2x-3)
dy=—5du=———-——"—dx
Y w2 (x2—3x+1)2d/\
4 3
EXAMPLE 4 Lety = u and find dy.
Sx — 1
Let u=(x*—-2° v=5x — 1.
Th _u P du — udv
cn y - l), y - Dz
Also, du=3+(x* — 22 dx3dx = 12(x* — 2)? - x3 dx,
dv = 5dx.
_(5x — DI2(x* — 2’x dx — (x* — 2)*5dx
Therefore  dy = Gx 1)
B (x* — 2)*[12(5x — x> — 5(x* — 2)] ix
h (5x — 1)? ’
EXAMPLE 5 Lety = 1/x3 + 3/x% + 4/x + 5.
3 6 4
Then dy = _?_F_?)dx

EXAMPLE § Find dy where

1 2
y= ( 3 + 1) .
This problem can be worked by means of a double substitution. Let

1
u=x%+x, v=;+1.
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Then y = v2

We find dy, dv, and du,
dy = 2vdv,
dv = —u~?du,
du = (2x + 1)dx.
Substituting, we get dy in terms of x and dx,
dy = 20(—u~"?du)
= —2ou"2(2x + 1)dx

-2

u ?(2x + 1) dx

1
—+1
u

1 _
—2(m + 1)(3{2 + x)7%2x + 1)dx.

EXAMPLE 7 Assume that ¥ and v depend on x. Given y = (uv)”2, find dy/dx in
terms of du/dx and dv/dx.

Let s = uv, whence y = s~2, We have

dy = —2s 3 ds,

ds = udv + vdu.
Substituting, dy = —2(uv) (udv + vdu),

dy _af dv du
and T — 2(uv) (ME + vdx)'

The six rules for differentiation which we have proved in this section are so
useful that they should be memorized. We list them all together.

Table 2.3.1 Rules for Differentiation

ay Wxra_, d(bx + ¢) = b dx.
dx
du +v) du  dv _
2) T ik + I du + v) = du + dv.
d(cu)  du _
(3) e ca. d(cu) = ¢ du.
dluv)  dv du B
4) pak ua + va. duv) = udv + vdu.
(5 dw) = nu”_‘@. dw") = nu" ' du (nis any integer).
dx dx
d(u/v vduldx — udv/dx vdu — udv
©) (ufv) _ vduf /  d) = L ud

dx v? v?
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An easy way to remember the way the signs are in the Quotient Rule 6 is to
put u = 1 and use the Power Rule S5 withn = —1,
—1dv

d1fo) = d™) = —1-0 2 do = .

PROBLEMS FOR SECTION 2.3

In Problems 1-42 below, find the derivative.

1 fX)=3x2+5x—4 2 s=33+32 +1
3 y=(x+ 8> 4 z=2+ 3x)*
5 Sy =4 -1 6 g(x) = 32 — 5x)°
7 y=(x2+5)>3 8 u=(6+ 2x%H?3
9 u=(6—2x?3 10 w=(1+ 4x3)72
11 w=(l—-4x%"? 12 y=1+x"1+x"24 x3
13 fx)=5x+1-1/x) 14 =2+ 3x+ 1)
15 p=42x —x+3)? 16 y=—02x+ 3+ 4x !
1 1
17 YSi1x 18 Ve A
=3
19 S= o] 20 s= 2+ )3t - 2)
21 h(x) = Hx* + DS - 2x) 22 y=02x3+ 42 —-3x+1)
23 v= 32+ )2t — 4° 24 z=(=2x+44+3x" Hx+1-5"1Y
x+1 2 — 3x
25 y_x—l 26 w—1+2x
x2 -1 x
27 e 28 U= 2
_-DE-2 ot
» R 30 Y= 11
2x7 P —x7?
33 y= 6 34 y= 2X(3_\' — 1)(4 - 2X)
35 p =302 + )2x2 — )(2x + 3) 36 y=(x + 3 4 (x — 472
_ 1 (2 -t -2
37 Z_(2x+1)(x—3) 38 y=x*+1)""3x - 1)
39 y=[2x+ 1)1+ 317! 40 s=[2 + 1P+
2 4
41 y = (2x + 132 + 1)? 42 y = (x 1~ x‘3)

In Problems 43-48, assume u and v depend on x and find dy/dx in terms of du/dx and dv/dx.

43 y=u—v 44 y:uzp
45 y =4du + v? 46 y=1/u + v)
47 y = 1ljup 48 y=(u+ v)2u —v)

49 Find the line tangent to the curve y = 1 + x 4+ x? + x? at the point (1, 4).
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50 Find the line tangent to the curve y = 9x~% at the point (3, 1).
0 st Consider the parabola y = x* + bx + c. Find values of b and ¢ such that the line y = 2x
is tangent to the parabola at the point x = 2,y = 4.

O s2 Show that if u, v, and w are differentiable functions of x and y = uww, then
dy 1 dw + drv N du
o= up— + uw— + tW——.
ax iy Yae T Mk

O s3 Use the principle of induction to show that if n is a positive integer, uy,...,u, are

differentiable functions of x, and y = u; + - - + u,, then

Q_dul R du,
dx  dx dx’
0O 54 Use the principle of induction to prove that for every positive integer »,
1
1+2+-"+n:”(”+ ).
2
0 55 Every rational function can be written as a quotient of two polynomials, p(x)/g(x).

Using this fact, show that the derivative of every rational function is a rational function.

2.4 INVERSE FUNCTIONS
Two real functions f and g are called inverse functions if the two equations

y=f(x), x=g0)

have the same graphs in the (x, y) plane. That is, a point (x, y) is on the curve y = f(x)
if, and only if, it is on the curve x = g(y). (In general, the graph of the equation
x = g(y) is different from the graph of y = g(x), but is the same as the graph of
y = f(x); see Figure 2.4.1.)

y y
Y1 [+—fy)
Yo e g(¥o0)
g(xy)
Sxo)
/ l
Xo X / J;’l pd
y=f(x) y=g(x)
x =g(y) x=f(»)

Figure 2.4.1 Inverse Functions

For example, the function y = x%, x > 0, has the inverse function x = /y;
| % y

the function y = x> has the inverse function x = V).
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If we think of f as a black box operating on an input x to produce an output

f(x), the inverse function g is a black box operating on the output f(x) to undo the
work of f and produce the original input x (see Figure 2.4.2).

x x = g(f(x))

) £

Figure 2.4.2

Many functions, such as y = x?, do not have inverse functions. In Figure
2.4.3, we see that x is not a function of y because at y = 1, x has the two values x = 1
and x = — L

Often one can tell whether a function f has an inverse by looking at its
graph. If there is a horizontal line y = ¢ which cuts the graph at more than one point,
the function f has no inverse. (See Figure 2.4.3.) If no horizontal line cuts the graph
at more than one point, then f has an inverse function g. Using this rule, we can see
in Figure 2.4.4 that the functions y = |x| and y = /1 — x? do not have inverses.

Figure 2.4.3

AN

y=|x|

No inverse functions
Figure 2.4.4

Table 2.4.1 shows some familiar functions which do have inverses. Note

that 1 chcased—x——l—
at in ea ' dy ~ Ay

71
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Table 2.4.1
inverse
function dy function de 1
y=flx) dx x =gy dy dy/dx
y=x+c¢ 1 x=y-c L
y = kx k x = y/k Lk
1 1
2
y=x* x>0 2x x=./y = —
\/ 2\/; 2x
r=x%4 x<0 2x x= —/y _ oL
) ’ - y 2 y - 2x
1 1
y=1/x - x =1y = —x?

Suppose the (x, y) plane is flipped over about the diagonal line y = x. This
will make the x- and y-axes change places, forming the (y, x) plane. If / has an inverse
function g, the graph of the function y = f(x) will become the graph of the inverse
function x = g(y) in the (y, x) plane, as shown in Figure 2.4.5.

The following rule shows that the derivatives of inverse functions are always
reciprocals of each other.

INVERSE FUNCTION RULE

Suppose f and g are inverse functions, so that the two equations
y=f(x) and  x=gQy)

have the same graphs. If both derivatives ['(x) and g'(y) exist and are nonzero,

then
, 1
X)) = —;
J'(x) 70
that is,
Q 1
dx — dx/dy’

PROOF Let Ax be a nonzero infinitesimal and let Ay be the corresponding change
in y. Then Ay is also infinitesimal because f'(x) exists and is nonzero because
f(x) has an inverse function. By the rules for standard parts,

, Ay Ax
S8 = sz( Ax) - st(z\;
Ay A
= S[(Ai . A;) =st{l) = L
Therefore f'(x) = L

g’
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(1, k)
(k. 1)

y=kx X =

y x
%l+c)
(I+e 1)

/ ©, o)

/ " o
(b) y=x+tc / x=y—c

e

(a)

i
[ L
-
~—

X y
© y=x%x20 x=y
y X
11
(—2’4)
X
<
4 2
@ y=x%,x20 x—/y
Figure 2.4.5

The formula
d_y 1
dx  dx/dy

in the Inverse Function Rule is not as trivial as it looks. A more complete statement is

d . . .
dl computed with x the independent variable
X

1
= computed with y the independent variable.
dx/dy
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Sometimes it is easier to compute dx/dy than dy/dx, and in such cases the
Inverse Function Rule is a useful method.

EXAMPLE 1 Find dy/dx where x = 1 + y~3.
Before solving the problem we note that

1
y: ,
¥x —1

so x and y are inverse functions of each other. We want to find

d_y _ a1/ Yx — 1)
B dx

dx
with x the independent variable. This looks hard, but it is easy to compute
dx d(1+y?
dy a dy

with y the independent variable.

soLution ¥ - -3y74
dy
dy 1 L,

RS T L

We can write dy/dx in terms of x by substituting,

dy 1
A T 1)
ax = T
EXAMPLE 2 Find dy/dx where x = y* + y® + y, Compute dy/dx at the point (3, 1).

Although we cannot solve the equation explicitly for y as a function of x, we
can see from the graph in Figure 2.4.6 that there is an inverse function

y = f(x).

(1, 3)

3,1

©,0) y ©, 0) X
(_3, —1)

(-1, =3)

xX=y> 44y
Figure 2.4.6


hjkeisler
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(3, 1).


2.4 INVERSE FUNCTIONS 75

By the Inverse Function Rule,
dx
dy
dy 1

dx Syt 432+ 1

S5p* + 3y? + 1,
This time we must leave the answer in terms of y. At the point (3,1), we

substitute 1 for y and get dy/dx = 1/9.

For y = 0, the function x = y" has the inverse function y = x'/ In the next
theorem, we use the Inverse Function Rule to find a new derivative, that of y = x!/".

THEOREM 1
If nis a positive integer and
y = XI/",
then &y = 1x(“”’_‘.
dx n

Remember that y = x*/" is defined for all x if n is odd and for x > 0 if n is
even. The derivative Ex‘”"" !is defined for x # 0if nis odd and for x > Qif nis even.

If we are willing to assume that dy/dx exists, then we can quickly find dy/dx
by the Inverse Function Rule.

x =y,
dx — n—1
oy~
dy_ 111,
dx dx/dy ny"! n
— l(xl/n)l—n — lx(l—n)/n — lx(lln)—l
R R n '

Here is a longer but complete proof which shows that dy/dx exists and com-
putes its value.
PROOF OF THEOREM 1 Let x # 0 and let Ax be nonzero infinitesimal. We first

show that ,

Ay = (x + Ax)tm — Xt
is a nonzero infinitesimal. Ay # 0 because x + Ax # x. The standard part of
Ay is
sHAY) = st{(x + Ax)1") — st(x1/m)
= x1n — xln = @,


hjkeisler
Text Box
(3,1),

hjkeisler
Text Box
1

hjkeisler
Text Box
1/9.
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Therefore Ay is nonzero infinitesimal.

NOW X = yn,
dx .
— =",
dy )
Ax
-~ n)’,n 1
Ay
Ay 1 [
Therefore AN S
Ax  ny n
Q — lx(l/n)—l'
dx n
Y y

=
B x

y=x/3 y=xli

Figure 2.4.7

Figure 2.4.7 shows the graphs of y = x'/3 and y = x¥/*. At x = 0, the curves
are vertical and have no slope.

EXAMPLE 3 Find the derivatives of y = x!/"for n = 2, 3, 4.

dxy 1,

Fa ix , x > 0.
dx'?) 1 _,,

Froae gx , x # 0.
d(x4 1

(Zx ) = Zx_m, x > 0.

Using Theorem 1 we can show that the Power Rule holds when the exponent
is any rational number.

POWER RULE FOR RATIONAL EXPONENTS
Let y = x" where 1 is a rational number. Then whenever x > 0,

dy i
= yxt1
dx x
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PROOF Let ¥ = m/n where m and n are integers, n > 0. Let

u = xtm, y = u™
Then du = lx(”""1
dx n
dy du
and Z =gyl
dx m dx

EXAMPLE 4 Find dy/dx where

— m(xlln)m—l (lx(lln)— 1)
n

— mx(m/n)’—l — rxr—l.
n

3/7

y=x"
d_y= _Ex(—3/7)—1 = _§X—10/7‘
dx 7 7
EXAMPLE 5 Find dy/dx where
_ 1
V=
Let u=2+ x3¥?, y=u"l
du 3
Then — = _x1/?,
dx 2
dy _ 2
dx dx
= —-u—2 §x1/2 = — 3———x”2
2 22 + X3
PROBLEMS FOR SECTION 2.4
In Problems 1-16, find dy/dx.
1 x =3y* + 2y 2 x=y2+1, y>0
3 x=1-27% y>0 4 x=20"+p+4
5 x=02+2", y>0 6 y=1//x
7 y = x*3 8 y = \/i;
9 ¥ =G x+ DASx = 1) 10 y=(2x7 4+ 1)
11 y=1+42x13 4 4x?3 4 6x 12 y=xTU4 4 374
13 y=x—~x"2 14 x=y+ 2y

15 x=3"+2y, y>0

16 x =11+ /%

77
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In Problems 17-25, find the inverse function y and its derivative dy/dx as functions of x.

17 x=ky+c k#0 18 x=y+1

19 x=2"+1, y=0 20 x=2%+1 y<0

21 x=y"=3 y20 2 x=p2+3y—1, y> -3

B x=ytr4l p20 # x=1y -1 y>0

25 x=ﬁ+2y, y >0

26 Show that no second degree polynomial x = ay? + by + ¢ has an inverse function.

27 Show that x = ay® + by + ¢, y > —b/2a, has an inverse function. What does its

graph look like?
28 Prove that a function y = f(x) has an inverse function if and only if whenever x; # x,,

Jx) # fx,).

TRANSCENDENTAL FUNCTIONS

The transcendental functions include the trigonometric functions sin x, cos x, tan x,
the exponential function e*, and the natural logarithm function In x. These functions
are developed in detail in Chapters 7 and 8. This section contains a brief discussion.

1 TRIGONOMETRIC FUNCTIONS

The Greek letters 0 (theta) and ¢ (phi) are often used for angles. In the calculus it is
convenient to measure angles in radians instead of degrees. An angle 8 in radians is
defined as the length of the arc of the angle on a circle of radius one (Figure 2.5.1).
Since a circle of radius one has circumference 27,

360 degrees = 2n radians.

Figure 2.5.1

Thus a right angle is
00 degrees = n/2 radians.

To define the sine and cosine functions, we consider a point P(x, y) on the
unit circle x> + y?> = 1. Let § be the angle measured counterclockwise in radians
from the point (1, 0) to the point P(x, y) as shown in Figure 2.5.2. Both coordinates
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x and y depend on 6. The value of x is called the cosine of 8, and the value of y is the
sine of 6. In symbols,

x = cos 6, y=sin8.

P(x, y)

>

(1,0

Figure 2.5.2

The tangent of 0 is defined by

tan 8 = sin &/cos 8.

Negative angles and angles greater than 2z radians are also allowed.

The trigonometric functions can also be defined using the sides of a right
triangle, but this method only works for # between 0 and /2. Let 0 be one of the
acute angles of a right triangle as shown in Figure 2.5.3.

Figure 2.5.3 b

opposite side a

Then sinf=_—"+"—"_"""—",
hypotenuse ¢
adjacent side b

cosf=—-—— =—,
hypotenuse ¢

tan 0 — opposite side _a.

adjacent side

The two definitions, with circles and right triangles, can be seen to be equivalent
using similar triangles.

79
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Table 2.5.1 gives the values of sin 8 and cos 8 for some important values of 6.

Table 2.5.1

8 in degrees 0° 30° 45° 60° 90" 180° 270° 360°
0 in radians 0 /6 n/4 /3 /2 7 3n/2 2n
sin 0 0 1/2 V22 NEY 1 0 -1 0
cos § 1 NEZ NG 172 0 -1 0 1

A useful identity which follows from the unit circle equation x? + y? = 1 is
sin?§ + cos? 0 = 1.

Here sin®  means (sin 6)2.

Figure 2.5.4 shows the graphs of sin 6 and cos 8, which look like waves that
oscillate between | and — 1 and repeat every 2n radians.

The derivatives of the sine and cosine functions are:

d(sin )
= cos 0.
do
d(cos 8) _ in o
= sin 0.
sin #

yd .
N o NN N

Figure 2.5.4

In both formulas 8 is measured in radians. We can see intuitively why these
are the derivatives in Figure 2.5.5.

In the triangle under the infinitesimal microscope,
A(sin 0) _ adjacent side
A8 7 hypotenuse
A(cos 6) o opposite side
A8 " hypotenuse

= cos 8;

= —sin 6.
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A(cos 8)_

A(sin 8)

Figure 2.5.5

Notice that cos @ decreases, and A(cos 6) is negative in the figure, so the derivative

of cos B is —sin 0 instead of just sin 8.
Using the rules of differentiation we can find other derivatives.

EXAMPLE 1 Differentiate y = sin? 0. Let u = sin 6, y = u?. Then
dy du

d_9=2uﬁ=2sm90059.

EXAMPLE 2 Differentiate y = sin (1 — cos ). Let u = sin 8, v = 1 — cos 0. Then
y=u-+v, and

Q = u@ + vd—u = sin B(—(—sin A)) + (1 — cos G) cos 0

do do de
= sin* 6 + cos § — cos? 6.

The other trigonometric functions (the secant, cosecant, and cotangent
functions) and the inverse trigonometric functions are discussed in Chapter 7.

2 EXPONENTIAL FUNCTIONS

Given a positive real number b and a rational number m/n, the rational power b™"

is defined as
bin = /b,
the positive nth root of b™. The negative power b™™" is

1
bm/n'

b—m/n —

As an example consider b = 10. Several values of 10™" are shown in Table
2.5.2.
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Table 2.5.2
1073 | 107** | 107! | 1072 | 10742 | 10° | 10 | 102 | 10' | 10%* | 10°
1 1 1 1 1
e | = | = = = | 1| Y10 | Y100 | 10 | 10/10 | 1000
1000 | 10/10 | 10 | Y100 | Y10

If we plot all the rational powers 10™" we get a dotted line, with one value
for each rational number m/n, as in Figure 2.5.6.

x

10

4+

34

241

Lot y = 10%, x rational

': .............. |

R ° | X
Figure 2.5.6

By connecting the dots with a smooth curve, we obtain a function y = 10%,
where x varies over all real numbers instead of just the rationals. 10% is called the
exponential function with base 10. It is positive for all x and follows the rules

1077t = 10°. 10°, 1097 = (107,
The derivative of 10* is a constant times 10%, approximately

d(10®)
dx

~ (2.303)10%,

To see this let Ax be a nonzero infinitesimal. Then

d(10%) [0¥F4% — 107 (10% — D10 10%% — 1
dx ’ [ Ax ) Ax ’ Ax

The number st[(10** — 1)/Ax] is a constant which does not depend on x and can be
shown to be approximately 2.303.

If we start with a given positive real number b instead of 10, we obtain the
exponential function with base b, y = b*. The derivative of b* is equal to the constant
st[(b** — 1)/Ax] times b*. This constant depends on b. The derivative is computed as

follows:
d(b¥) prHAN (bA.\- — 1 |:bA~" — 1] ]
= = —_ = st b'\.
dx gt[ Ax St Ax Ax

The most useful base for the calculus is the number e. ¢ is defined as the real
number such that the derivative of e is ¢ itself,
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dle™)
dx

In other words, ¢ is the real number such that the constant

e — 1]
st[ Ax J =1
(where Ax is a nonzero infinitesimal). It will be shown in Section 8.3 that there is
such a number ¢ and that e has the approximate value
e ~ 2.71828.

The function y = e* is called the exponential function. e* is always positive and follows
the rules

X

€a+b = ¢%. eb’ ea-b — (ea)b’ eO = 1.

Figure 2.5.7 shows the graph of y = ¢*,

Figure 2.5.7

EXAMPLE 3 Find the derivative of y = x?¢*. By the Product Rule,

Ay _ @) )

= = x%¢* + 2xe~.
dx dx dx

3 THE NATURAL LOGARITHM

The inverse of the exponential function x = ¢ is the natural logarithm function,
written

y=Inx.
Verbally, In x is the number y such that ¢ = x. Since y = In x is the inverse function
of x = ¢%, we have
et = g, In(e”) = a.
The simplest values of y = In x are
In(l/e) = —1, In(l) =0, Ine=1.

Figure 2.5.8 shows the graph of y = In x. It is defined only for x > 0.
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y
2
T /
} ——
0 1 2 3 X
—17
=27 y=Inx
Figure 2.5.8

The most important rules for logarithms are

In(ab) =Ina + Inb,
In(a®) = b+Ina.

The natural logarithm function is important in calculus because its derivative
is simply 1/x,
dilnx) 1

dx = ;, (X > 0)

This can be derived from the Inverse Function Rule.

If y=lnx,
then x =é,
ax _
dy
dy 11

l
dx dxjdy & x

The natural logarithm is also called the logarithm to the base e and is some-
times written log, x. Logarithms to other bases are discussed in Chapter 8.

. . 1
EXAMPLE 4 Differentiate y = Ty
x

dy  —1 d(nx) 1

dx  (Inx)? dx T x(ln x)?

4 SUMMARY
Here is a list of the new derivatives given in this section.

d(sin x)
dx

= COS X.



2.6

2.6 CHAIN RULE

d(cos x) .
= —sin X,

dx
G
dx

dinxy) _ 120
dx x

X

Tables of values for sin x, cos x, e, and In x can be found at the end of the
book.

PROBLEMS FOR SECTION 2.5

In Problems 1-20, find the derivative.

1 y = cos? 0 2 s =tan®¢
3 y=2sinx + 3cosx 4 y = sin x+cos x
1 1
5 W= 6 W= —
coS z sin z
7 y =sin" 8 8 y = tan" @
9 s=tsint 10 s = cost
t—1
11 y = xe* 12 y=1/1 + &%
13 y = (In x)? 14 y=xlnx
15 y=¢e*elnx 16 y=¢e"ssinx
17 u=/o(l — ¢ 18 u=(1+ el — e
19 y=x"Inx 20 y=(nx)"
In Problems 21-24, find the equation of the tangent line at the given point.
21 y = sin x at (n/6, 1) 22 y = cos x at (w/4, /2/2)
23 y=x—Inxat(e,e — 1) 24 y=e *at(0,1)
CHAIN RULE

The Chain Rule is more general than the Inverse Function Rule and deals with the
case where x and y are both functions of a third variable t.

Suppose x = f(1), y = G(x).
Thus x depends on ¢, and y depends on x. But y is also a function of ¢,
y = gl),
where g is defined by the rule
8(e) = G(f (1))

The function g is sometimes called the composition of G and f (sometimes written
g=GoJf)
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The composition of G and f may be described in terms of black boxes.
The function g = Go fis a large black box operating on the input ¢ to produce
g(t) = G(f(1). If we look inside this black box (pictured in Figure 2.6.1), we see two
smaller black boxes, fand G. First foperates on the input ¢ to produce f(t), and then
G operates on f(t) to produce the final output g(t) = G(f(t)).

The Chain Rule expresses the derivative of g in terms of the derivatives of f/
and G. It leads to the powerful method of “change of variables” in computing deriva-
tives and, later on, integrals.

O
! - f G
&) = G(f(1))
g
Figure 2.6.1 Composition g = Gof

CHAIN RULE

Let f, G be two real functions and define the new function g by the rule

g(t) = G(f (1))

At any value of t where the derivatives f'(t) and G'(f (1)) exist, g'(t) also exists
and has the value

PROOF Let x = f(1), y = g0, y = G(x).
Take t as the independent variable, and let At # 0 be infinitesimal. Form the
corresponding increments Ax and Ay. By the Increment Theorem for
x = f(t), Ax is infinitesimal. Using the Increment Theorem again but this
time for y = G(x), we have

Ay = G'(x) Ax + g Ax
for some infinitesimal e, Dividing by At,
Ay ., Ax Ax
Then taking standard parts,
Ay Ax
H==| = Gx)st|—
5 (At) G(x)st(m) + 0,
or g =G0 =GOS

EXAMPLE 1 Find the derivative of g(¢) = In (sin ¢). g(t) is the natural logarithm
of the sine of ¢. It can be written in the form
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9(t) = G(f (1))
f(@) =sint, G(x) = Inx.

where
1
We have f(®) = cos t, G'(x) = o
By the Chain Rule,
g =GO '®
1 cost
= — o C = —.
sin ¢ sin ¢

Find the derivative of g(t) = /3t + 1. g(¢) has the form

EXAMPLE 2
g() = G(f (1)
where fO=3t+1 Gx = x
We have =3 Gkx = %x‘ 1z,
Then g =GO

3

1
=_Bt+ 1) V3=
2( ) 2./3 + 1

In practice it is more convenient to use the Chain Rule with dependent

variables x and y instead of functions f and g.

CHAIN RULE WITH DEPENDENT VARIABLES

Let
x=f@), y=gl=_GKx).

Assume g'(t) and G'(x) exist. Then

L dy dydx . _dy
@ dt  dxdt () dy = dx dx

where dx/dt, dy/dt are computed with t as the independent variable, and dy/dx
is computed with x as the independent variable.

Let us work Examples 1 and 2 again with dependent variables.

EXAMPLE 1 (Continued) Letx =sint, y=Inx.
Find dy/dt using Chain Rule (i) and dy by using Chain Rule (ii).

dy 1

. X
') E—cost, X
d dy d 1 t
dy _dy dx 1 ., cost

dt  dx dt  x T sint’
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dy 1
(i) dx = cos t dt, I
1 t
dy = labc = —costdt = C.idt.
X x sin ¢
EXAMPLE 2 (Continued) Let x =3t 4+ 1, y=./x.
. dx dy 1 :
‘:3 ‘:*'_—-IVZ’
W dt 7 dx 2
dy dydx 3 —y2 3 —1z
at “dxdr 2Y 0 0D
. dy 1
dx = 3di, 2 =_x"'2
(11) X t . 2\

1 1 , 3
dy = Ex_l'zdx = 5(3t + 1)7123dt = §(3t + )72 4r

The equation
dy _ dy d
dt — dx dt

with r as the independent variable is trivial. We simply cancel the dx’s. But when
dy/dx is computed with x as the independent variable while dx/dt is computed with ¢
as the independent variable, the two dx’s have different meanings, and the equation
is not trivial.

Similarly, the equation

dv
dy = d-idx

is trivial with x as the independent variable but not when ¢ is the independent variable
in dy and dx, while x is independent in dy/dx.

The Chain Rule shows that when we change independent variables the
equations

dy dydx dy
i S avd YT L™
remain true.

The Inverse Function Rule can be proved from the Chain Rule as follows.
Let

y=/x), x=gQy

be inverse functions whose derivatives exist. Then

dydx _dy _
dxdy —dy
dy 1 . 1
whence = x) ==~
dx  dx/dy / g0

Using the Chain Rule we may write the Power Rule in a general form.



26 CHAIN RULE
POWER RULE

Let r be a rational number, and let u depend on x. If u > 0 and du/dx exists
then
d(un ., du
=ru " —.
dx dx

This is proved by letting y = 4" and computing dy/dx by the Chain Rule,

dy dy du e ﬂ
dx  dudx dx’
The Chain Rule has two types of applications.
. L _ dy dy dy dx
(1) Given x = f(t)and y = G(x), ﬁndd— Use i dedr
dy dy _dy/dt
2 = dy= find — .
(2) Givenx = f(t) and y = g(t), ndd . Use ix = dxjdi

Applications of type (1) often arise when a new dependent variable x is
. d L . .
introduced to help compute f . Applications of type (2) arise when two variables

x and y both depend on a third variable ¢, for example, when x and y are the co-
ordinates of a moving particle and ¢ is time.
We give three examples of type (1) and thenthree of type (2).

EXAMPLE 3 Suppose that by investing ¢ dollars a company can produce

t
x = — — 100, t > 1000
*=10 = 05

items, and that it can sell x items for a total profit of
2

y = 5x — E(S
Find % , which is the marginal profit with respect to the amount invested.
dx 1 dy X
We have =10 x50

By the Chain Rule,

dy_dydx_( x) 1

dt — dx dt 50/ 10
f
Z 1
_L 10 %%
N 50 /10
— 07— —
T 50000

Thus after ¢ dollars have been invested, an additional dollar invested will
bring 0.7 — /5000 dollars of additional profit.

El
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EXAMPLE 4 Find dy/dt where y = (5¢t* — 2)!/4,

Let x=52-2 y=x'4
dx dy 1 _,
Z = L= Tx T4
Then h 0Ot, Ix 4x
dy dydx _

LY
it T d Lx Wm

= 14—0(5t2. — 2y,

EXAMPLE 5 Find dy/dx where y = \/sin (4x + 1) + cos (4x — 1). This problem
requires three uses of the Chain Rule.

Let u=sin(dx + 1) + cos(dx — 1), y=./u.
Then by the Chain Rule,
dy dy du R
xd o dx
Now let v = sin (4x + 1), w = cos (4x — 1), u=0ov+w

Then du dv  dw

axdx T a
We use the Chain Rule twice more to find dv/dx and dw/dx.
v = sin (4x + 1).

dv d(dx + 1)
i cos (4x + I)T = 4cos (4x + 1),
w = cos (4x — 1).
W X ddx — 1) _ .
i sin (4x I)T = —4sin (4x — 1).
Finally, we combine everything to get

dy_ 1 du_ 1 (v dv

dx 2. /u dx_.z\/; dx ' dx
_4cos(dx + 1) — dsin(4x — 1)
2/sin(4x + 1) + cos (4x — 1)’

If a particle is moving in the plane, its position (x, y) at time ¢ will be given by
a pair of equations

x=f@), y=2g

These are called parametric equations. The slope of the curve traced out by this particle
can be found by the Chain Rule,

dy _ dyjdt _ g0

dx  dx/dt "ty
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whenever the derivatives exist and f’(¢) # 0. This is a Chain Rule application of
type (2).

EXAMPLE 6 A ball thrown horizontally from a 100 ft cliff at a velocity of 50 ft/sec
will follow the parametric equations

x = 50¢, y = 100 — 1612, in feet.
Find the slope of its path at time ¢t (Figure 2.6.2).

dx

50 C AN

i 50, 7 321,
@ _ dy/dt _ 32t

dy_

S0 = = = =
dx  dx/dt 50
¥y
x
x = 50¢
Figure 2.6.2 y =100 — 162

EXAMPLE 7 A particle moves according to the parametric equations
x=—t y=t.

Find the slope of its path.

dx 2 dy
T3z = =2t
dt 3 L dt ’
“ dy _dyja 2 L i

dx  dx/dt 3> -1

We see from Figure 2.6.3 that the path of this particle is not the graph of a
function, and in fact contains a loop and crosses the point (0, 1) twice, at

t = —land ¢ = 1. The path is vertical at the points t = +./1/3, where there
is no slope. At the point (0, 1), the two slopes of the path are dy/dx = —1
whent = —1,and dy/dx = 1 whent = 1.

EXAMPLE 8 A particle moving according to the parametric equations
X = Cos i, y =sint

will move counterclockwise around the unit circle at one radian per second
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X ¥
t t
x=1t—1 y=1t?
Y
t=—3/2 t=3/2
t= %l
t=+/1/3 t=—+/1/3
t=0 x

Figure 2.6.3

beginning at the point (1, 0), as shown in Figure 2.6.4. Find the slope of its
path at time ¢,
dx _ sin ¢ dy—cost
dt — Codt '
The slope is
dy dy/dt  cost
dx dx/dt  sint’

In terms of x and y the slope is
dy
dx

X
y.

X =cosf, y=sinf

Figure 2.6.4
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PROBLEMS FOR SECTION 2.6

In Problems 1-44, find dy/dx.

1 y=Jx+2 2 y=+/7+ 4x
y

3 y=.,/5—x 4 =./1 —10x
1 1
Y- R A .
7 y=JeTl 8§  y= i 5%
y=./x*+1 10 y=+1—x*
11 y = sin (3x) 12 y = cos (4 — 2x)
13 y = sin (x~ %) 14 y = cos \/;
15 y =e** 16 y=e ¥
17 y = €% * 18 y = In(nx)
19 y=cosu, u=ée 20 y=tanuy,u=Inx
21 y=u® u=1-—4x 22 y=uu=1-x*
23 y=sinu+siny, u=1—-x% ov=2x-1
24 y=e“+¢, u=1-3x, v=3—4x
25 y=e" u=ﬁ, v =sinx
26 y=Ilnu, wu=tany, v=1/x
27 y=u"3 u=1+\/1;, p=x>—1
28 y=u', u=3v+4 v=1/x+1)
29 y=uY, u=1+4+1p v=x>+1
30 y=ut+1, u=0v*+1, v=x2+1
31 y=(J/x* -1+ /x*+1)» 32 y=(x+ /3 - 4x)" 12
33 y=3xsin(2x — 1) 34 ¥y = sin (2x) cos (3x)
35 x =cos(3t), y=sin(31) 36 x=¢, y=Int
37 x=sint, y=sin(2f) 38 x = sin(ef), y = cos(e’)
39 x=In@+1), y=1 40 X = ey =i
41 x=\ﬂ7:7, y=\/m 42 x=1+\3/f, y=2+\3ﬁ
3 x=Ji¥l, y=Ji+2 44 x=3t‘—++—21, y=2tt:23
45 A particle moves in the plane according to the parametric equations

x=12+1, y=3
Find the slope of its path.
46 An ant moves in the plane according to the equations

x=(1-)Y y=r

Find the slope of its path.
a 47 Let y depend on u, u depend on v, and v depend on x. Assume the derivatives dy/du,
du/dv, and dv/dx exist. Prove that
dy _dydudo
dx dudvdx’
[ 48 Let the function f(x) be differentiable for all x, and let g(x) = f(/(x)). Show that g'(x) =

S UGS x)-
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2.7 HIGHER DERIVATIVES

DEFINITION

The second derivative of a real function f is the derivative of the derivative of
J,and is denoted by f". The third derivative of f is the derivative of the second
derivative, and is denoted by ", or f®. In general, the nth derivative of f is
denoted by ™.

If y depends on x, y = f(x), then the second differential of y is defined ro be
d?y = f"(x)dx>.

In general the nth differential of y is defined by
d"y = fU(x)dx".

Here dx? means (dx)? and dx" means (dx)".

We thus have the alternative notations

d’y 'y
W_f(x)’ W—f (x)

for the second and nth derivatives. The notation

Y= P = S

is also used.
The definition of the second differential can be remembered in the following
way. By definition,

dy = f'(x)dx.
Now hold dx constant and formally apply the Constant Rule for differentiation,
obtaining
d(dy) = f"(x)dx dx,
or d?y = f"(x)dx>

(This is not a correct use of the Constant Rule because the rule applies to a real
constant ¢, and dx is not a real number. It is only a mnemonic device to remember the
definition of d?y, not a proof.)

The third and higher differentials can be motivated in the same way. If we
hold dx constant and formally use the Constant Rule again and again, we obtain

dy = f'(x)dx,

d?y = f"(x)dx dx = f"(x)dx?,

Py = f"(x)dx?dx = f"(x)dx3,

d*y = fO(x) dx3 dx = f9(x) dx*,
and so on.

The acceleration of a moving particle is defined to be the derivative of the
velocity with respect to time,

a = dv/dt.
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Thus the velocity is the first derivative of the distance and the acceleration is the
second derivative of the distance. If s is distance, we have

s
dt’ =

EXAMPLE 1 A ball thrown up with initial velocity b moves according to the equation
y = bt — 161>
with y in feet, ¢ in seconds. Then the velocity is
v =>b — 32t ft/sec,
and the acceleration (due to gravity) is a constant,
a = —32 ft/sec?.

EXAMPLE 2 Find the second derivative of y = sin (28).

First derivative Put u = 20. Then

. dy du
y = sin u, a—cosu, @—2.
By the Chain Rule,
dy dy du
d—ﬁ_ E.E_ 008(26)'2,
dy
0= 2 cos (26).
Second derivative Let v = 2 cos (20). We must find dv/df. Put u = 20. Then
dv du
= —_—— - i _— = 2.
v=2cosu, T 2 sin u, 70

Using the Chain Rule again,

d*y dv  dv du .
= = —t—— = { — 9 . 2.
2" a auap - (7250
This simplifies to
d?y ,
Yo ~4sin (20).

EXAMPLE 3 A particle moves so that at time ¢ it has gone a distance s along a
straight line, its velocity is v, and its acceleration is a. Show that

a = Ud—s.
By definition we have
é _dv
a T ar
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so by the Chain Rule,

_dvds _ dv
“Ena Vas

EXAMPLE 4 Ifa polynomial of degree n is repeatedly differentiated, the kth deriva-
tive will be a polynomial of degree n — k for k < n, and the (n + 1)st deriva-
tive will be zero. For example,

y = 3x> — 10x* + x? — 7x + 4.
dyjdx = 15x* — 40x3 + 2x — 7.
d*y/dx? = 60x> — 120x? + 2.
d*yjdx? = 180x? — 240x,
d*y/dx* = 360x — 240.
d3y/dx® = 360,  d®p/dx® = 0.

Geometrically, the second derivative f”(x) is the slope of the curve y = f7(x)
and is also the rate of change of the slope of the curve y = f(x).

PROBLEMS FOR SECTION 2.7

In Problems 1-23, find the second derivative.

-5
1 y=1/x 2 y=x3 3 V=0
4 flx)=3x"2 5 Sx)=x"2 4+ x"12 ¢ f@) =12 — a2
7 [0 =1/t 8 y =@t —1° 9 y=sinx
10 y =cosx 11 y = A sin (Bx)
12 y = A cos (Bx) 13 y=e™
14 y=e 15 y=Inx
1
16 y=xlnx 17 y= P
x—35 2x — 1
18 y=./3t+2 19 z=x_|_2 20 Z=3x—2
r+ 1\? t
21 z=x/x+1 22 s=(t+—2> 23 s= i3
24 Find the third derivative of y = x* — 2/x,
25 A particle moves according to the equation s = 1 — 1/t2, t > 0. Find its acceleration.
26 An object moves in such a way that when it has moved a distance s its velocity is v = \/;
Find its acceleration. (Use Example 3.)
27 Suppose u depends on x and d?u/dx? exists. If y = 3u, find d*y/dx2.
28 If d*ujdx? and d?v/dx* exist and y = u + v, find d*y/dx2.
29 If d2u/dx? exists and y = 42, find d2y/dx>.
30 If d%u/dx? and d?v/dx? exist and y = uv, find d?y/dx>.
31 Let y = ax? 4+ bx + ¢ be a polynomial of degree two. Show that dy/dx is a linear
function and d%y/dx? is a constant function.
32 Prove that the nth derivative of a polynomial of degree n is constant. (Use the fact that

the derivative of a polynomial of degree k is a polynomial of degree k — 1.)
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2.8 IMPLICIT FUNCTIONS

We now turn to the topic of implicit differentiation. We say that y is an implicit
function of x if we are given an equation

o(x,y) = tx,y)

which determines y as a function of x. An example is x + xy = 2y. Implicit differentia-
tion is a way of finding the derivative of y without actually solving for y as a function
of x. Assume that dy/dx exists. The method has two steps:

Step 7 Differentiate both sides of the equation a(x, y) = 1(x, y) to get a new equation

dlo(x, ) _ d(z(x, y))
(M) dx ~  dx

The Chain Rule is often used in this step.

Step 2 Solve the new Equation 1 for dy/dx. The answer will usually involve both x
and y.

In each of the examples below, we assume that dy/dx exists and use implicit

differentiation to find the value of dy/dx.

EXAMPLE 1 Given the equation x + xy = 2y, find dy/dx.

d(x + xy) _ d(2y)

Step 1 . We find each side by the Sum and Product Rules,

dx dx
dix + xy) _dx +dxy) dx+ xdy+ ydx
dx B dx - dx
dy
=1 — .
+ X +y
ay) _ dy
dx dx’
Thus our new equation is
dy dy
1+ X +y= 23)—(.
Step 2 Solve for dy/dx.
dy  dy
dy 14y
dx 2 —x

We can check our answer by solving the original equation for y and using
ordinary differentiation:

X+ xy=2y.
2y —xy = x.
X

y:
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By the Quotient Rule,

dy_(2—x)-1~—x(——1)_ 2
dx 2 -x)? Q-0

A third way to find dy/dx is to solve the original equation for x, find dx/dy,
and then use the Inverse Function Rule.

X + xy =2y.
2y
T 1ty
dx (+)2—2y1 2
P (U R (Gt
Yol

To see that our three answers

dy 14y dy 2 dy 1
T = P A— 1
dx 2-x’ dx (2 -x?  dx 2( el

are all the same we substitute for y:
X
1
dy 1+y " 3-x 2
dx 2-x  2—x (2-x?%

dy 1. 1 x |2 2
ix =Y _5(1+2—x) S

In Example 1, we found dy/dx by three different methods.

(a) Implicit differentiation. We get dy/dx in terms of both x and y.

(b) Solve for y as a function of x and differentiate directly. This gives dy/dx
in terms of x only.

(c) Solve for x as a function of y, find dx/dy directly, and use the Inverse
Function Rule. This method gives dy/dx in terms of y only.

EXAMPLE 2 Given y + ./y = x?, find dy/dx.

dly + /y) _ d(x?
dx -

dx -’
dy 1 _,,dy
&z CAN
ax 20 T
dy 2x
dx 14 Ly~

This answer can be used to find the slope at any point on the curve. For ex-
ample, at the point (\f 1) the slope is
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1+4.17127 32 = 3

while at the point (— \/i, 1) the slope is

2A-/2  -4)2
i

T30 "

To get dy/dx in terms of x, we solve the original equation for y using the

quadratic formula:
y+ .y —x*=0,

fz—li«/1+4x2.

2

Since /vy = 0, only one solution may occur,

\/’=—1+«/1+4X2.

2
—1+ /1 + 4x%\?
Then y= ( 5 )
The graph of this function is shown in Figure 2.8.1. By substitution we get
dy 2x _ 2x
dx 14+ 141+ 1T+ &)Y
y

(=2, 1) (2, 1)

0, 0) X

. — y2
Figure 2.8.1 ytVy=x

Often one side of an implicit function equation is constant and has derivative
Zero.
EXAMPLE 3 Given x2 — 2y* = 4,y < 0, find dy/dx.
dx* —2y*)  d@d)

dx dx
d(—le;Tz@=2x—4y%.
d4
Moo
2x—4y%=0.
dy —2x «x

dx ~ —4y 2y

99
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Figure 2.8.2

2 DIFFERENTIATION

Solving the original equation for y, we get
-2yt =4 — 2 y < 0:
2 ﬁ —4 .
) 5 )
x2 -4
2

(A
o

"—

Thus dy/dx in terms of x is

dy

X X X
dx 2y , P _4 A4
_ /_2__

The graph of this function is shown in Figure 2.8.2.

x2—2pt=4,y<0

Implicit differentiation can even be applied to an equation that does not

by itself determine y as a function x. Sometimes extra inequalities must be assumed
in order to make y a function of x.

EXAMPLE 4 Given

2)

©))

x4 y2 =1,

find dy/dx. This equation does not determine y as a function of x; its graph
is the unit circle. Nevertheless we differentiate both sides with respect to x
and solve for dy/dx.

d

¥
2x + 2y— =0,
S dx

dy X

dx )

We can conclude that for any system of formulas S which contains the
Equation 2 and also determines y as a function of x, it is true that

dy  x
dx  y’

We can use Equation 3 to find the slope of the line tangent to the unit circle

at any point on the circle. The following examples are illustrated in Figure 2.8.3.
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Y
K /2, /312)
/
(-1,0 p
(v/813,--1/3)
Figure 2.8.3 xP4yr=1 ©, -
4y dy 1 13
—~ =0at(0, —1), ay_ 13
"R ﬁat(z z)
d—y—\/gaté—l 4 s undefined at (= 1,0
dx 3 T30 g, s undefined at (= 1,0).

The system of formulas

ives us : =./1 — x% = =
g y X I

On the other hand the system
x2 4+ 2 =1, y<0
@ X X

1 — x2, = ——,
ix~ 3T /i

gives us y= -
EXAMPLE 5 Find the slope of the line tangent to the curve
@ Xy P+ xyt =y + 1

at the points (1, 1), (1, — 1), and (0, —1).

The three points are all on the curve, and the first two points have the same
x coordinate, so Equation 4 does not by itself determine y as a function of x.

We differentiate with respect to x,

dx*y* + xy°) _dly + 1)
dx T odx

dy dy _dy
5xHy3 5,2,2%Y 6 L fxpio2 =
xTy? 4+ x 3ydx+y+xydx Iy
and then solve for dy/dx,
d
5x*y3 + y® + (3x%y? + 6xy° — 1)% =0,

dy 5x%y® + y°
&) =TI 1
dx Ix’y* + 6xy° — 1
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dv
Substituting, d)\' = —g at (1. 1.
dy
dx
dy
dx

= —1 at(l,—=1)

+1 at(0, —1).

Equation 5 for dy/dx is true of any system S of formulas which contains
Equation 4 and determines y as a function of x.

Here is what generally happens in the method of implicit differentiation.
Given an equation

(6) (x,y) = olx, y)

between two terms which may involve the variables x and y, we differentiate both
sides of the equation and obtain

d(xlx, y) _ dlo(x, y)

0 dx dx

We then solve Equation 7 to get dy/dx equal to a term which typically involves both
x and y. We can conclude that for any system of formulas which contains Equation 6
and determines y as a function of x, Equation 7 is true. Also, Equation 7 can be used
to find the slope of the tangent line at any point on the curve ©(x, y) = o(x, y).

PROBLEMS FOR SECTION 2.8

In Problems 1-26, find dy/dx by implicit differentiation. The answer may involve both x and y.

1 xy =1 2 2x2 -3y =4, y<0
3 32+ =2 4 X3 =)°
5 y=1/(x +y) 6 yi4+3y—5=x
7 XTTpyti=1 8 xy'=y+x
9 X2 +3xy+ P =0 10 x/y+3y=2
1 X =y -yt 1 12 i+ Sy=x+y
13 y=1Jxy+1 14 x*+yt=5
15 xyp? —3xy +x=1 16 2yt x"i=y
17 y = sin (xy) 18 y=cos(x +y)
19 x = cos? y 20 x =siny+ cosy
21 y ="ty 22 & =x24y
23 ef=Iny 24 Iny=sinx
25 y2 =1In(2x + 3y) 26 In(cosy) =2x + 5
In Problems 27-33, find the slope of the line tangent to the given curve at the given point or points.
27 x2+xy+y*=7at(l,2)and (—1,3)
28 x + y* =yat(0,0),(0,1), (0, —1),(—6,2)

29 XP -yt =3ar2, 1), 2 ~1),(/3,0)
30 tan X = y? at (n/4, 1)



31
32
33
34
35
36
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2sin® x = 3 cos y at (n/3, /3)

y+e=1+Inxat(l,0)

0% = Tn yat (0, €)

Given the equation x2 + y? = 1, find dy/dx and d?y/dx?.
Given the equation 2x? — y* = 1, find dy/dx and d*y/dx?.

Differentiating the equation x2 = y* implicitly, we get dy/dx = x/y. This is undefined
at the point (0, 0). Sketch the graph of the equation to see what happens at the point (0, 0).

EXTRA PROBLEMS FOR CHAPTER 2
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10
11
12
13
14
15
16
17
18
19
20
21
22
23

25

27

29

30
31

2

Find the derivative of f(x) = 4x® — 2x + 1.
Find the derivative of f(¢) = 1/,/2t — 3.
Find the slope of the curve y = x(2x + 4) at the point (1, 6).

A particle moves according to the equation y = 1/(t> — 4). Find the velocity as a
function of 1.

Given y = 1/x3, express Ay and dy as functions of x and Ax.

Given y = 1/\/;, express Ay and dy as functions of x and Ax.

Find d(x? + 1/x?).

Find d(x — 1/x).

Find the equation of the line tangent to the curve y = 1/(x — 2) at the point (1, —1).
Find the equation of the line tangent to the curve y = 1 + x\/; at the point (1, 2).
Find dy/dx where y = —3x3 — 5x + 2.

Find dy/dx where y = 2x — 5)7 2.

Find ds/dt where s = (3t + 4)(t2 — 5).

Find ds/dt where s = (412 — 6)"1 + (1 — 20)™ 2.

Find du/dv where u = (2v? — 50 + 1)/(v® — 4).

Find du/dv where u = (v + (1/v))/(v — (1/v)).

Find dy/dx where y = x'/2 4+ 4x3/2,

Find dy/dx where y = (1 + /x)*.

Find dy/dx where y = x'/3 — x~ 14,

Find dy/dx where y = e* cos? x.

Find dy/dx where x = \/; + 3%y >0

Find dy/dx where x = y~ V2 + =1y > 0.

Find dy/dx where y = /1 — 3x.

Find dy/dx where y = sin (2 + /%).

Find dy/dx where y = u™ Y%, u = 5x + 4.

Find dy/dx where y = u®,u = 2 — x>

Find the slope dy/dx of the path of a particle moving so that y = 3t -+ \/? x = (1/) — 2.
Find the slope dy/dx of the path of a particle moving so that y = /4t — 5,x = /3t + 6.
Find d?y/dx? where y = \/4x — 1.

Find d?y/dx? where y = x/(x* + 2).

An object moves so that s = £/t + 3. Find the velocity v = ds/dt and the acceleration
a = d?s/dt>.

Find dy/dx by implicit differentiation when x + y + 2x* + 3y* = 2.
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33
34
35
36

37
38

39

40

41
42

2 DIFFERENTIATION

Find dy/dx by implicit differentiation when 3xy3 + 2x3y = 1.
Find the slope of the line tangent to the curve 2xﬁ -y = \/;c at (1, 1).
Find the derivative of f(x) = [x* — 1}.
Find the derivative of the function
1 if x is an integer,
S = {0 otherwise.
Let f(x) = (x — ¢)*3. Show that f(x) exists for all real x but that f“(c) does not exist.

Let n be a positive integer and ¢ a real number. Show that there is a function g(x) which
has an nth derivative at x = ¢ but does not have an (n + 1)st derivative at x = ¢. That
is, g%(c) exists but g®* (c) does not.

(a) Letu = x|,y = u® Show that at x = 0, dy/dx exists even though du/dx does not.
(b) Letu = x* y = |u|l. Show that at x = 0, dy/dx exists even though dy/du does not.
Suppose g(x) is differentiable at x = ¢ and f(x) = |g(x)}. Show that

@ fe)=g'c)ifglc) >0,

(b) fe)=-g)ifglc) <0,

(€) f(c)=0ifg(e) =0andg'(c) =0,

(d) f'(c) does not exist if g(¢) = 0 and g'(c) # 0.

Prove by induction that for every positive integer n, n < 2"

Prove by induction that the sum of the first n odd positive integers is equal to n?,

1+34+5+--4+02n—1)=n’



