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EPILOGUE

How does the infinitesimal calculus as developed in this book relate to the traditional
(or ¢, d) calculus? To get the proper perspective we shall sketch the history of the
calculus.

Many problems involving slopes, areas, and volumes, which we would today
call calculus problems, were solved by the ancient Greek mathematicians. The
greatest of them was Archimedes (287-212 B.C.). Archimedes anticipated both the
infinitesimal and the ¢, ¢ approach to calculus. He sometimes discovered his results
by reasoning with infinitesimals, but always published his proofs using the “method of
exhaustion,” which is similar to the ¢, § approach.

Calculus problems became important in the early 1600’s with the develop-
ment of physics and astronomy. The basic rules for differentiation and integration
were discovered in that period by informal reasoning with infinitesimals. Kepler,
Galileo, Fermat, and Barrow were among the contributors.

In the 1660’s and 1670’s Sir Isaac Newton and Gottfried Wilhelm Leibniz
independently “invented” the calculus. They took the major step of recognizing the
importance of a collection of isolated results and organizing them into a whole.

Newton, at different times, described the derivative of y (which he called the
“fluxion” of y) in three different ways, roughly

{1) The ratio of an infinitesimal change in y to an infinitesimal change in x.
(The infinitesimal method.)

(2) The limit of the ratio of the change in y to the change in x, Ay/Ax, as Ax
approaches zero. (The limit method.)

(3) The velocity of y where x denotes time. (The velocity method.)

In his later writings Newton sought to avoid infinitesimais and emphasized the
methods (2) and (3).

Leibniz rather consistently favored the infinitesimal method but believed
{correctly) that the same results could be obtained using only real numbers. He
regarded the infinitesimals as “ideal” numbers like the imaginary numbers. To justify
them he proposed his law of continuity: “In any supposed transition, ending in any
terminus, it is permissible to institute a general reasoning, in which the terminus may
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also be included.”! This “law” is far too imprecise by present standards. But it was a
remarkable forerunner of the Transfer Principle on which modern infinitesimal
calculus is based. Leibniz was on the right track, but 300 years too soon!

The notation developed by Leibniz is still in general use today, even though
it was meant to suggest the infinitesimal method: dy/dx for the derivative (to suggest
an infinitesimal change in y divided by an infinitesimal change in x), and jg f(x)dx
for the integral (to suggest the sum of infinitely many infinitesimal quantities f(x) dx).

All three approaches had serious inconsistencies which were criticized most
effectively by Bishop Berkeley in 1734. However, a precise treatment of the calculus
was beyond the state of the art at the time, and the three intuitive descriptions (1)}+3)
of the derivative competed with each other for the next two hundred years. Until
sometime after 1820, the infinitesimal method (1) of Leibniz was dominant on the
European continent, because of its intuitive appeal and the convenience of the
Leibniz notation. In England the velocity method (3) predominated; it also has in-
tuitive appeal but cannot be made rigorous.

In 1821 A. L. Cauchy published a forerunner of the modern treatment of
the calculus based on the limit method (2). He defined the integral as well as the deriva-
tive in terms of limits, namely

[ re9ax = jim 3 seax

He still used infinitesimals, regarding them as variables which approach zero. From
that time on, the limit method gradually became the dominant approach to calculus,
while infinitesimals and appeals to velocity survived only as a manner of speaking,
There were two important points which still had to be cleared up in Cauchy’s work,
however. First, Cauchy’s definition of limit was not sufficiently clear; it still relied on
the intuitive use of infinitesimals. Second, a precise definition of the real number system
was not yet available. Such a definition required a better understanding of the
concepts of set and function which were then evolving.

A completely rigorous treatment of the calculus was finally formulated by
Karl Weierstrass in the 1870’s. He introduced the ¢,  condition as the definition of
limit. At about the same time a number of mathematicians, including Weierstrass,
succeeded in constructing the real number system from the positive integers. The
problem of constructing the real number system also led to development of set theory
by Georg Cantor in the 1870’s. Weierstrass’ approach has become the traditional or
“standard” treatment of calculus as it is usually presented today. It begins with the
g, 6 condition as the definition of limit and goes on to develop the calculus entirely in
terms of the real number system (with no mention of infinitesimals). However, even
when calculus is presented in the standard way, it is customary to argue informally in
terms of infinitesimals, and to use the Leibniz notation which suggests infinitesimals.

From the time of Weierstrass until very recently, it appeared that the limit
method (2) had finally won out and the history of elementary calculus was closed.
But in 1934, Thoralf Skolem constructed what we here call the hyperintegers and
proved that the analogue of the Transfer Principle holds for them. Skolem’s construc-
tion (now called the ultraproduct construction) was later extended to a wide class of
structures, including the construction of the hyperreal numbers from the real numbers.

! See Kline, p. 385. Boyer, p. 217.
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The name “hyperreal” was first used by E. Hewitt in a paper in 1948. The hyperreal
numbers were kiiown for over a decade before they were applied to the calculus.

Finally in 1961 Abraham Robinson discovered that the hyperreal numbers
could be used to give a rigorous treatment of the calculus with infinitesimals. The
presentation of the calculus which was given in this book is based on Robinson’s
treatment (but modified to make it suitable for a first course).

Robinson’s calculus is in the spirit of Leibniz’ old method of infinitesimals.
There are major differences in detail. For instance, Leibniz defined the derivative as
the ratio Ay/Ax where Ax is infinitesimal, while Robinson defines the derivative as
the standard part of the ratio Ay/Ax where Ax is infinitesimal. This is how Robinson
avoids the inconsistencies in the old infinitesimal approach. Also, Leibniz’ vague law
of continuity is replaced by the precisely formulated Transfer Principle.

The reason Robinson’s work was not done sooner is that the Transfer
Principle for the hyperreal numbers is a type of axiom that was not familiar in mathe-
matics until recently. It arose in the subject of model theory, which studies the
relationship between axioms and mathematical structures. The pioneering develop-
ments in model theory were not made until the 1930’s, by Goédel, Malcev, Skolem, and
Tarski; and the subject hardly existed until the 1950s.

Looking back we see that the method of infinitesimals was generally preferred
over the method of limits for over 150 years after Newton and Leibniz invented the
calculus, because infinitesimals have greater intuitive appeal. But the method of
limits was finally adopted around 1870 because it was the first mathematically precise
treatment of the calculus. Now it is also possible to use infinitesimals in a mathemati-
cally precise way. Infinitesimals in Robinson’s sense have been applied not only to
the calculus but to the much broader subject of analysis. They have led to new results
and problems in mathematical research. Since Skolem’s infinite hyperintegers are
usually called nonstandard integers, Robinson called the new subject “nonstandard
analysis.” (He called the real numbers “standard” and the other hyperreal numbers
“nonstandard.” This is the origin of the name “‘standard part.”)

The starting point for this course was a pair of intuitive pictures of the real
and hyperreal number systems. These intuitive pictures are really only rough sketches
that are not completely trustworthy. In order to be sure that the results are correct,
the calcutus must be based on mathematically precise descriptions of these number
systems, which fill in the gaps in the intuitive pictures. There are two ways to do this.
The quickest way is to list the mathematical properties of the real and hyperreal
numbers. These properties are to be accepted as basic and are called axioms. The
second way of mathematically describing the real and hyperreal numbers is to start
with the positive integers and, step by step, construct the integers, the rational
numbers, the real numbers, and the hyperreal numbers. This second method is
better because it shows that there really is a structure with the desired properties.
At the end of this epilogue we shall briefly outline the construction of the real and
hyperreal numbers and give some examples of infinitesimals.

We now turn to the first way of mathematically describing the real and hyper-
real numbers. We shall list two groups of axioms in this epilogue, one for the real
numbers and one for the hyperreal numbers. The axioms for the hyperreal numbers
will just be more careful statements of the Extension Principle and Transfer
Principle of Chapter 1. The axioms for the real numbers come in three sets: the
Algebraic Axioms, the Order Axioms, and the Completeness Axiom. All the familiar
facts about the real numbers can be proved using only these axioms.
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l. ALGEBRAIC AXIOMS FOR THE REAL NUMBERS

A Closure laws 0 and 1 are real numbers. If a and b are real numbers, then
soarea + b, ab, and —a. If ais a real number and a # 0, then 1/a is a real
number.

B Commutative laws a+b=b+a ab = ba.
C Associative laws a+b+c)=(@+b)+c albc) = (ab)c.
D Identity laws O+a=a lea = a.

1
E Inverse laws a+(—a)=0 Ifa#0, a-==1.
a

F Distributive law a<(b + ¢c)=ab + ac.

DEFINITION

The positive integers are the real numbers 1,2 =1+1,3=14+1+1,
4=14+1+1+ 1, and so on.

Il. ORDER AXIOMS FOR THE REAL NUMBERS

A 0«1

B Transitive law Ifa <band b < cthena < c.

C Trichotomy law  Exactly one of the relations a < b,a = b,b < a, holds.
D Sumlaw Ifa<b,thena+c<b+ c

E Productlaw Ifa < band 0 < ¢, then ac < bc.

F Root axiom For every real number a > 0 and every positive integer n,

there is a real number b > Q such that b" = qa.

lll. COMPLETENESS AXIOM

Let A be a set of real numbers such that whenever x and y are in A, any real
number between x and y is in A. Then A is an interval.

THEOREM

An increasing sequence {8,y either converges or diverges to o.

PROOF Let T be the set of all real numbers x such that x < S, for some n. T is
obviously nonempty.

Case 7 T is the whole real line. If H is infinite we have x < Sy for all real numbers x.
So Sy, 1s positive infinite and (S, diverges to co.

Case 2 T is not the whole real line. By the Completeness Axiom, 7 is an interval
(— a5, b] or (— oo, b). For each real x < b, we have

XSS <S}1+1£Sn+2§”'§b

n —
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for some n. It follows that for infinite H, Sy < b and Sy = b. Therefore {S,>
converges to b.

We now take up the second group of axioms, which give the properties of
the hyperreal numbers. There will be two axioms, called the Extension Axiom and
the Transfer Axiom, which correspond to the Extension Principle and Transfer
Principle of Section 1.5. We first state the Extension Axiom.

I*. EXTENSION AXIOM

(a) The set R of real numbers is a subset of the set R* of hyperreal numbers.

(b) There is given a relation <* on R*, such that the order relation < on
R is a subset of <*, <* is transitive (a < *b and b <* ¢ implies a <* ¢),
and <* satisfies the Trichotomy Law: for all a, b in R*, exactly one of
a<*b,a=bb<*aholds.

(¢) There is a hyperreal number ¢ such that 0 <* ¢ and & <*r for each
positive real number r.

(d) For each real function f, there is given a hyperreal function f* with the
same number of variables, called the natural extension of /.

Part (c) of the Extension Axiom states that there is at least one positive
infinitesimal. Part (d) gives us the natural extension for each real function. The
Transfer Axiom will say that this natural extension has the same properties as the
original function.

Recall that the Transfer Principle of Section 1.5 made use of the intuitive
idea of a real statement. Before we can state the Transfer Axiom, we must give an
exact mathematical explanation of the notion of a real statement. This will be done
in several steps, first introducing the concepts of a real expression and a formula.

We begin with the concept of a real expression, or term, built up from variables
and real constants using real functions. Real expressions can be built up as follows:

(1) A real constant standing alone is a real expression.
(2) A variable standing alone is a real expression.

(3) 1If e is a real expression, and f is a real function of one variable, then
f(e) is a real expression. Similarly, if ey, . .., e, are real expressions, and
g is a real function of n variables, then g(e,, ..., e,) is a real expression.

Step (3) can be used repeatedly to build up longer expressions. Here are
some examples of real expressions, where x and y are variables:

2, x4y |x—4], sin(myd) \/X%ﬁ a(x, f(O),  1/0.

NE

By a formula, we mean a statement of one of the following kinds, where
d and e are real expressions:

(1) An equation between two real expressions, d = e.

(2) An inequality between two real expressions, d < e, d < e,d > e,d > ¢,
ord # e
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(3) A statement of the form “e is defined” or “e is undefined.”
Here are some examples of formulas:
Xx+y=35,
1 —x
f&) =77

g(x,y) < f(1),
f(x, x) is undefined.

2

3

If each variable in a formula is replaced by a real number, the formula will be either
true or false. Ordinarily, a formula will be true for some values of the variables and
false for others. For example, the formula x + y = 5 will be true when (x, y) = (4, 1)
and false when (x, y) = (7, —2).

DEFINITION

A real statement is either a nonempty finite set of formulas T or a combination
involving two nonempty finite sets of formulas S and T that states that “whenever
every formula in S is true, every formula in T is true.”

We shall give several comments and examples to help make this definition
clear. Sometimes, instead of writing “whenever every formula in S is true, every
formula in T is true” we use the shorter form “if S then T” for a real statement.
Each of the Algebraic Axioms for the Real Numbers is a real statement. The com-
mutative laws, associative laws, identity laws, and distributive laws are real statements.
For example, the commutative laws are the pair of formulas

a+b=>b+aq, ab = ba,

which involve the two variables a and b. The closure laws may be expressed as four
real statements:

a+bis deﬁned,

ab is defined,

—a is defined,

if a # 0, then 1/q is defined.

The inverse laws consist of two more real statements. The Trichotomy Law is part
of the Extension Axiom, and all of the other Order Axioms for the Real Numbers
are real statements. However, the Completeness Axiom is not a real statement, because
it is not built up from equations and inequalities between terms.

A typical example of a real statement is the inequality for exponents discussed
in Section 8.1:

ifa>0,andg > 1,then (@ + 1) > aq + 1.

This statement is true for all real numbers a and q.

A formula can be given a meaning in the hyperreal number system as well
as in the real number system. Consider a formula with the two variables x and y.
When x and y are replaced by particular real numbers, the formula will be either
true or false in the real number system. To give the formula a meaning in the hyperreal
number system, we replace each real function by its natural extension and replace
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the real order relation < by the hyperreal relation <* When x and y are replaced
by hyperreal numbers, each real function f is replaced by its natural extension f*,
and the real order relation < is replaced by <*, the formula will be either true or
false in the hyperreal number system.
For example, the formula x + y = 5 is true in the hyperreal number system
when (x, ) = (2 — & 3 + &), but false when (x, y) = (2 + & 3 + ¢), if e is nonzero.
We are now ready to state the Transfer Axiom.

I1*. TRANSFER AXIOM

Every real statement that holds for all real numbers holds for all hyperreal
numbers.

It is possible to develop the whole calculus course as presented in this
book from these axioms for the real and hyperreal numbers. By the Transfer Axiom,
all the Algebraic Axioms for the Real Numbers also hold true for the hyperreal
numbers. In other words, we can transfer every Algebraic Axiom for the real numbers
to the hyperreal numbers. We can also transfer every Order Axiom for the real
numbers to the hyperreal numbers. The Trichotomy Law is part of the Extension
Axiom. Each of the other Order Axioms is a real statement and thus carries over to
the hyperreal numbers by the Transfer Axiom. Thus we can make computations with
the hyperreal numbers in the same way as we do for the real numbers.

There is one fact of basic importance that we state now as a theorem.

THEOREM (Standard Part Principle)

For every finite hyperreal number b, there is exactly one real number r rhat
is infinitely close to b.

PROOF We first show that there cannot be more than one real number infinitely
close to b. Suppose 1 and s are real numbers such that r =~ b and s = b.
Then r &~ s, and since r and s are real, r must be equal to s. Thus there is at
most one real number infinitely close to b.

We now show that there is a real number infinitely close to b. Let A4
be the set of all real numbers less than b. Then any real number between two
elements of 4 is an element of 4. By the Completeness Axiom for the real
numbers, A4 is an interval. Since the hyperreal number b is finite. 4 must be
an interval of the form (— oc,r) or (—oc, r] for some real number r. Every
real number s < r belongs to 4, so s < b. Also, every real number ¢ > r does
not belong to A, so r > b. This shows that r is infinitely close to b.

It was pointed out earlier that the Completeness Axiom does not qualify
as a real statement. For this reason, the Transfer Principle cannot be used to transfer
the Completeness Axiom to the hyperreal numbers. In fact, the Completeness Axiom
is not true for the hyperreal numbers. By a closed hyperreal inrerval, we mean a set
of hyperreal numbers of the form [a, b], the set of all hyperreal numbers x for which
a < x < b, where a and b are hyperreal constants. Open and half-open hyperreal
intervals are defined in a similar way. When we say that the Completeness Axiom
is not true for the hyperreal numbers, we mean that there actually are sets 4 of
hyperreal numbers such that:
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(a) Whenever x and y are in A4, any hyperreal number between x and y is in
A.

(b) A isnot a hyperreal interval.

Here are two quite familiar examples.

EXAMPLE 1 The set 4 of all infinitesimals has property (a) above but is not a
hyperreal interval. It has property (a) because any hyperreal number that
is between two infinitesimals is itself infinitesimal. We show that A4 is not
a hyperreal interval. A cannot be of the form [a, ) or (a, ®0) because
every infinitesimal is less than 1. A cannot be of the form [a, b] or (a, b],
because if b is positive infinitesimal, then 2+ b is a larger infinitesimal. 4
cannot be of the form [a, b) or (g, b), because if b is positive and not infini-
tesimal, then b/2 is less than b but still positive and not infinitesimal.

The set B of all finite hyperreal numbers is another example of a set that
has property (a) above but is not an interval.

Here are some examples that may help to illustrate the nature of the hyper-
real number system and the use of the Transfer Axiom.

EXAMPLE 2 Let f be the real function given by the equation

fx) =1 —x%

Its graph is the unit semicircle with center at the origin. The following two
real statements hold for all real numbers x:

whenever 1 — x2 >0, f(x)=./1—x*;

whenever 1 — x2 <0,  f(x)is undefined.

By the Transfer Axiom, these real statements also hold for all hyperreal
numbers x. Therefore the natural extension f* of fis given by the same

equation
F*x) = /1 — x2

The domain of f* is the set of all hyperreal numbers between —1 and 1.
The hyperreal graph of f*, shown in Figure E.1, can be drawn on paper by
drawing the real graph of f(x) and training an infinitesimal microscope on
certain key points.

EXAMPLE 3 Let f be the identity function on the real numbers, f(x) = x. By the
Transfer Axiom, the equation f(x) = x is true for all hyperreal x. Thus the
natural extension f* of f is defined, and f*(x) = x for all hyperreal x.
Figure E.2 shows the hyperreal graph of f*. Under a microscope, it has a
45° slope.

Here is an example of a hyperreal function that is not the natural extension
of a real function.
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EXAMPLE 4 One hyperreal function, which we have already studied in some detalil,
is the standard part function st(x). For real numbers the standard part
function has the same values as the identity function,

st(x) = x for all real x.

However, the hyperreal graph of st(x), shown in Figure E.3, is very different
from the hyperreal graph of the identity function /*. The domain of the
standard part function is the set of all finite numbers, while f* has domain
R*. Thus for infinite x, f*(x) = x, but st(x) is undefined. If x is finite but
not real, f*(x) = x but st(x) # x. Under the microscope, an infinitesimal
piece of the graph of the standard part function is horizontal, while the
identity function has a 45° slope.

The standard part function is not the natural extension of the identity
function, and hence is not the natural extension of any real function.
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st(x)
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Figure E.3

The standard part function is the only hyperreal function used in this course

except for natural extensions of real functions.
We conclude with a few words about the construction of the real and the

hyperreal numbers. Before Weierstrass, the rational numbers were on solid ground
but the real numbers were something new. Before one could safely use the axioms for
the real numbers, it had to be shown that the axioms did not lead to a contradiction.
This was done by starting with the rational numbers and constructing a structure
which satisfied all the axioms for the real numbers. Since anything proved from the
axioms is true in this structure, the axioms cannot lead to a contradiction.

The idea is to construct real numbers out of Cauchy sequences of rational

numbers.

DEFINITION

A Cauchy Sequence is a sequence {a,, a,, ...» of numbers such that for every
real & > 0 there is an integer n, such that the numbers

<anc’ an5+1 > an£+2’ .. >

are all within ¢ of each other.

Two Cauchy sequences
<a1’a25-">, <b1,b2,...>

of rational numbers are called Cauchy equivalent, in symbols {a,,a,,...>
{b,,b,,...D,if the difference sequence

{ay = by,a, — by,..>

converges to zero. (Intuitively this means that the two sequences have the same limit.)

Il

PROPERTIES OF CAUCHY EQUIVALENCE
1) If<ay,a,,...0 =<d},d5,...0and {b;,b,,...> =<Kb},b,,..>

then the sum sequences are equivalent,
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{ay + by,ay +by,..>=ay +b),ds + b5, 0.
(2)  Under the same hypotheses, the product sequences are equivalent,
ayebyayeby,..> =Ldy«b),dy-by,.. 0.
(3} Ifa, = b, for all but finitely many n. then
{ay ay,...0 =<b by, .. 0.

The set of real numbers is then defined as the set of all equivalence classes of
Cauchy sequences of rational numbers. A rational number r corresponds to the
equivalence class of the constant sequence {r,r,r,...>. The sum of the equivalence
class of {a;,a,,...» and the equivalence class of {(b;,b,,...> is defined as the
equivalence class of the sum sequence

{ay + by,a, + by,

The product is defined in a similar way. It can be shown that all the axioms for the
real numbers hold for this structure.

Today the real numbers are on solid ground and the hyperreal numbers are
a new idea. Robinson used the ultraproduct construction of Skolem to show that
the axioms for the hyperreal numbers (for example, as used in this book) do not lead
to a contradiction. The method is much like the construction of the real numbers
from the rationals. But this time the real number system is the starting point. We
construct hyperreal numbers out of arbitrary (not just Cauchy) sequences of real
numbers,

By an ultraproduct equivalence we mean an equivalence relation = on the

set of all sequences of real numbers which have the properties of Cauchy equivalence
(1}(3) and also

(4) If each a, belongs to the set {0, 1} then <a,,a,,...> is equivalent to
exactly one of the constant sequences <0,0,0,...> or {1, 1, [,.. ).

Given an ultraproduct equivalence relation, the set of hyperreal numbers is
defined as the set of all equivalence classes of sequences of real numbers. A real number
r corresponds to the equivalence class of the constant sequence (r, r, r,...>. Sums and
products are defined as for Cauchy sequences. The natural extension f* of a real
function f(x) is defined so that the image of the equivalence class of {a,,a,,...> is
the equivalence class of {f(a), f(a,),...>. It can be proved that ultraproduct
equivalence relations exist, and that all the axioms for the real and hyperreal numbers
hold for the structure defined in this way.

When hyperreal numbers are constructed as equivalence classes of sequences
of real numbers, we can give specific examples of infinite hyperreal numbers. The
equivalence class of

{1,230,

is a positive infinite hyperreal number. The equivalence class of
(4,4,9,...,n% ..

is larger, and the equivalence class of
1,2,4,...,2" .

is a still larger infinite hyperreal number.
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We can also give examples of nonzero infinitesimals. The equivalence classes
of

L2173, 1n,. .,
1, 1/4,1/9,...,n72, ..,
and L2, 104,277

are progressively smaller positive infinitesimals.

The mistake of Leibniz and his contemporaries was to identify all the in-
finitesimals with zero. This leads to an immediate contradiction because dy/dx
becomes 0/0. In the present treatment the equivalence classes of

1,172,173, .., 1/n, .. >
and 0,0,0,...,0,..>

are different hyperreal numbers. They are not equal but merely have the same standard
part, zero. This avoids the contradiction and once again makes infinitesimals a
mathematically sound method.

For more information about the ideas touched on in this epilogue, see
the instructor’s supplement, Foundations of Infinitesimal Calculus, which has a
self-contained treatment of ultraproducts and the hyperreal numbers.
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