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1 Introduction.

The first draft of these notes was prepared by the students in Math 735 at the University
of Wisconsin - Madison during the fall semester of 1992. The students faithfully transcribed
many of the errors made by the lecturer. While the notes have been edited and many
errors removed, particularly due to a careful reading by Geoffrey Pritchard, many errors
undoubtedly remain. Read with care.

These notes do not eliminate the need for a good book. The intention has been to
state the theorems correctly with all hypotheses, but no attempt has been made to include
detailed proofs. Parts of proofs or outlines of proofs have been included when they seemed
to illuminate the material or at the whim of the lecturer.
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2 Review of probability.

A probability space is a triple (Ω,F , P ) where Ω is the set of “outcomes”, F is a σ-algebra of
“events”, that is, subsets of Ω, and P : F → [0,∞) is a measure that assigns “probabilities”
to events. A (real-valued) random variable X is a real-valued function defined on Ω such
that for every Borel set B ∈ B(R), we have X−1(B) = {ω : X(ω) ∈ B} ∈ F . (Note that
the Borel σ-algebra B(R)) is the smallest σ-algebra containing the open sets.) We will
occasionally also consider S-valued random variables where S is a separable metric space
(e.g., Rd). The definition is the same with B(S) replacing B(R).

The probability distribution on S determined by

µX(B) = P (X−1(B)) = P{X ∈ B}
is called the distrbution of X. A random variable X has a discrete distribution if its range is
countable, that is, there exists a sequence {xi} such that

∑
P{X = xi} = 1. The expectation

of a random variable with a discrete distribution is given by

E[X] =
∑

xiP{X = xi}

provided the sum is absolutely convergent. If X does not have a discrete distribution, then
it can be approximated by random variables with discrete distributions. Define Xn = k+1

n

and Xn = k
n

when k
n
< X ≤ k+1

n
, and note that Xn < X ≤ Xn and |Xn −Xn| ≤ 1

n
. Then

E[X] ≡ lim
n→∞

E[Xn] = limE[Xn]

provided E[Xn] exists for some (and hence all) n. If E[X] exists, then we say that X is
integrable.

2.1 Properties of expectation.

a) Linearity: E[aX + bY ] = aE[X] + bE[Y ]

b) Monotonicity: if X ≥ Y a.s then E[X] ≥ E[Y ]

2.2 Convergence of random variables.

a) Xn → X a.s. iff P{ω : limn→∞Xn(ω) = X(ω)} = 1.

b) Xn → X in probability iff ∀ε > 0, limn→∞ P{|Xn −X| > ε} = 0.

c) Xn converges to X in distribution (denoted Xn ⇒ X) iff limn→∞ P{Xn ≤ x} = P{X ≤
x} ≡ FX(x) for all x at which FX is continuous.

Theorem 2.1 a) implies b) implies c).

Proof. (b⇒ c) Let ε > 0. Then

P{Xn ≤ x} − P{X ≤ x+ ε} = P{Xn ≤ x,X > x+ ε} − P{X ≤ x+ ε,Xn > x}
≤ P{|Xn −X| > ε}

and hence lim supP{Xn ≤ x} ≤ P{X ≤ x + ε}. Similarly, lim inf P{Xn ≤ x} ≥ P{X ≤
x− ε}. Since ε is arbitrary, the implication follows. �
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2.3 Convergence in probability.

a) If Xn → X in probability and Yn → Y in probability then aXn + bYn → aX + bY in
probability.

b) If Q : R → R is continuous and Xn → X in probability then Q(Xn) → Q(X) in
probability.

c) If Xn → X in probability and Xn−Yn → 0 in probability, then Yn → X in probability.

Remark 2.2 (b) and (c) hold with convergence in probability replaced by convergence in
distribution; however (a) is not in general true for convergence in distribution.

Theorem 2.3 (Bounded Convergence Theorem) Suppose that Xn ⇒ X and that there exists
a constant b such that P (|Xn| ≤ b) = 1. Then E[Xn] → E[X].

Proof. Let {xi} be a partition of R such that FX is continuous at each xi. Then∑
i

xiP{xi < Xn ≤ xi+1} ≤ E[Xn] ≤
∑

i

xi+1P{xi < Xn ≤ xi+1}

and taking limits we have∑
i

xiP{xi < X ≤ xi+1} ≤ limn→∞E[Xn]

≤ limn→∞E[Xn] ≤
∑

i

xi+1P{xi < X ≤ xi+1}

As max |xi+1 − xi| → 0, the left and right sides converge to E[X] giving the theorem. �

Lemma 2.4 Let X ≥ 0 a.s. Then limM→∞E[X ∧M ] = E[X].

Proof. Check the result first for X having a discrete distribution and then extend to general
X by approximation. �

Theorem 2.5 (Monotone Convergence Theorem.) Suppose 0 ≤ Xn ≤ X and Xn → X in
probability. Then limn→∞E[Xn] = E[X].

Proof. For M > 0
E[X] ≥ E[Xn] ≥ E[Xn ∧M ] → E[X ∧M ]

where the convergence on the right follows from the bounded convergence theorem. It follows
that

E[X ∧M ] ≤ lim inf
n→∞

E[Xn] ≤ lim sup
n→∞

E[Xn] ≤ E[X]

and the result follows by Lemma 2.4. �

Lemma 2.6 . (Fatou’s lemma.) If Xn ≥ 0 and Xn ⇒ X, then lim inf E[Xn] ≥ E[X].

6



Proof. Since E[Xn] ≥ E[Xn ∧M ] we have

lim inf E[Xn] ≥ lim inf E[Xn ∧M ] = E[X ∧M ].

By the Monotone Convergence Theorem E[X ∧M ] → E[X] and the lemma folllows. �

Theorem 2.7 (Dominated Convergence Theorem) Assume Xn ⇒ X, Yn ⇒ Y , |Xn| ≤ Yn,
and E[Yn] → E[Y ] <∞. Then E[Xn] → E[X].

Proof. For simplicity, assume in addition that Xn + Yn ⇒ X + Y and Yn − Xn ⇒ Y −
X (otherwise consider subsequences along which (Xn, Yn) ⇒ (X, Y )). Then by Fatou’s
lemma lim inf E[Xn + Yn] ≥ E[X + Y ] and lim inf E[Yn − Xn] ≥ E[Y − X]. From these
observations lim inf E[Xn] + limE[Yn] ≥ E[X] + E[Y ], and hence lim inf E[Xn] ≥ E[X].
Similarly lim inf E[−Xn] ≥ E[−X] and lim supE[Xn] ≤ E[X] �

Lemma 2.8 (Markov’s inequality)

P{|X| > a} ≤ E[|X|]/a, a ≥ 0.

Proof. Note that |X| ≥ aI{|X|>a}. Taking expectations proves the desired inequality. �

2.4 Norms.

For 1 ≤ p < ∞, Lp is the collection of random variables X with E[|X|p] < ∞ and the
Lp-norm is defined by ||X||p = E[|X|p]1/p. L∞ is the collection of random variables X such
that P{|X| ≤ c} = 1 for some c <∞, and ||X||∞ = inf{c : P{|X| ≤ c} = 1.

Properties of norms:

1) ||X − Y ||p = 0 implies X = Y a.s. .

2) |E[XY ]| ≤ ||X||p||Y ||q 1
p

+ 1
q

= 1.

3) ||X + Y ||p ≤ ||X||p + ||Y ||p

Schwartz inequality. (p = q = 1
2
).

Note that
0 ≤ E[(aX + bY )2] = a2E[X2] + 2abE[XY ] + b2E[Y 2].

Assume that E[XY ] ≤ 0 (otherwise replace X by −X) and take a, b > 0. Then

−E[XY ] ≤ a

2b
E[X2] +

b

2a
E[Y 2] .

Take a = ‖Y ‖ and b = ‖X‖. �

Triangle inequality. (p = 1
2
)
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We have

‖X + Y ‖2 = E[(X + Y )2]

= E[X2] + 2E[XY ] + E[Y 2]

≤ ‖X‖2 + 2‖X‖‖Y ‖+ ‖Y ‖2

= (‖X‖+ ‖Y ‖)2.

�

It follows that rp(X, Y ) = ||X−Y ||p defines a metric on Lp, the space of random variables
satisfying E[|X|p] <∞. (Note that we identify two random variables that differ on a set of
probability zero.) Recall that a sequence in a metric space is Cauchy if

lim
n,m→∞

rp(Xn, Xm) = 0

and a metric space is complete if every Cauchy sequence has a limit. For example, in the
case p = 1, suppose {Xn} is Cauchy and let nk satisfy

sup
m>nk

‖Xm −Xnk
‖1 = E[|Xm −Xnk

|] ≤ 1

4k
.

Then, with probability one, the series

X ≡ Xn1 +
∞∑

k=1

(Xnk+1
−Xnk

)

is absolutely convergent, and it follows that

lim
m→∞

‖Xm −X‖ = 0.

2.5 Information and independence.

Information obtained by observations of the outcome of a random experiment is represented
by a sub-σ-algebra D of the collection of events F . If D ∈ D, then the oberver “knows”
whether or not the outcome is in D.

An S-valued random variable Y is independent of a σ-algebra D if

P ({Y ∈ B} ∩D) = P{Y ∈ B}P (D),∀B ∈ B(S), D ∈ D.

Two σ-algebras D1,D2 are independent if

P (D1 ∩D2) = P (D1)P (D2), ∀D1 ∈ D1, D2 ∈ D2.

Random variables X and Y are independent if σ(X) and σ(Y ) are independent, that is, if

P ({X ∈ B1} ∩ {Y ∈ B2}) = P{X ∈ B1}P{Y ∈ B2}.

8



2.6 Conditional expectation.

Interpretation of conditional expectation in L2.

Problem: Approximate X ∈ L2 using information represented by D such that the mean
square error is minimized, i.e., find the D-measurable random variable Y that minimizes
E[(X − Y )2].

Solution: Suppose Y is a minimizer. For any ε 6= 0 and any D-measurable random variable
Z ∈ L2

E[|X − Y |2] ≤ E[|X − Y − εZ|2] = E[|X − Y |2]− 2εE[Z(X − Y )] + ε2E[Z2].

Hence 2εE[Z(X − Y )] ≤ ε2E[Z2]. Since ε is arbitrary, E[Z(X − Y )] = 0 and hence

E[ZX] = E[ZY ] (2.1)

for every D-measurable Z with E[Z2] <∞. �

With (2.1) in mind, for an integrable random variable X, the conditional expectation of
X, denoted E[X|D], is the unique (up to changes on events of probability zero) random
variable Y satisfying

A) Y is D-measurable.

B)
∫

D
XdP =

∫
D
Y dP for all D ∈ D.

Note that Condition B is a special case of (2.1) with Z = ID (where ID denotes the indi-
cator function for the event D) and that Condition B implies that (2.1) holds for all bounded
D-measurable random variables. Existence of conditional expectations is a consequence of
the Radon-Nikodym theorem.

The following lemma is useful in verifying Condition B.

Lemma 2.9 Let C ⊂ F be a collection of events such that Ω ∈ C and C is closed under
intersections, that is, if D1, D2 ∈ C, then D1 ∩D2 ∈ C. If X and Y are integrable and∫

D

XdP =

∫
D

Y dP (2.2)

for all D ∈ C, then (2.2) holds for all D ∈ σ(C) (the smallest σ-algebra containing C).

Example: Assume that D = σ(D1, D2, . . . , ) where
⋃∞

i=1Di = Ω, and Di ∩ Dj = ∅
whenever i 6= j. Let X be any F -measurable random variable. Then,

E[X|D] =
∞∑
i=1

E[XIDi
]

P (Di)
IDi

9



To see that the above expression is correct, first note that the right hand side isD-measurable.
Furthermore, any D ε D can be written as D =

⋃
iεADi, where A ⊂ {1, 2, 3, . . .}. Therefore,∫

D

∞∑
i=1

E[X · IDi
]

P (Di)
IDi

dP =
∞∑
i=1

E[X · IDi
]

P (Di)

∫
D∩Di

IDi
dP (monotone convergence thm)

=
∑
iεA

E[X · IDi
]

P (Di)
P (Di)

=

∫
D

XdP

Properties of conditional expectation. Assume that X and Y are integrable random
variables and that D is a sub-σ-algebra of F .

1) E[E[X|D]] = E[X]. Just take D = Ω in Condition B.

2) If X ≥ 0 then E[X|D] ≥ 0. The property holds because Y = E[X|D] is D-measurable
and

∫
D
Y dP =

∫
D
XdP ≥ 0 for every D ε D. Therefore, Y must be positive a.s.

3) E[aX + bY |D] = aE[X|D] + bE[Y |D]. It is obvious that the RHS is D-measurable,
being the linear combination of two D-measurable random variables. Also,∫

D

(aX + bY )dP = a

∫
D

XdP + b

∫
D

Y dP

= a

∫
D

E[X|D]dP + b

∫
D

E[Y |D]dP

=

∫
D

(aE[X|D] + bE[Y |D])dP.

4) If X ≥ Y then E[X|D] ≥ E[Y |D]. Use properties (2) and (3) for Z = X − Y .

5) If X is D-measurable, then E[X|D] = X.

6) If Y is D-measurable and Y X is integrable, then E[Y X|D] = Y E[X|D]. First assume
that Y is a simple random variable, i.e., let {Di}∞i=1 be a partition of Ω, Di ε D, ci ∈ R,
for 1 ≤ i ≤ ∞, and define Y =

∑∞
i=1 ciIDi

. Then,∫
D

Y XdP =

∫
D

(
∞∑
i=1

ciIDi

)
XdP

=
∞∑
i=1

ci

∫
D∩Di

XdP

=
∞∑
i=1

ci

∫
D∩Di

E[X|D]dP

=

∫
D

(
∞∑
i=1

ciIDi

)
E[X|D]dP
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=

∫
D

Y E[X|D]P

For general Y , approximate by a sequence {Yn}∞n=1 of simple random variables, for
example, defined by

Yn =
k

n
if k

n
≤ Y < k+1

n
, k ∈ Z.

Then Yn converges to Y , and the result follows by the Dominated Convergence Theo-
rem.

7) If X is independent of D, then E[X|D] = E[X]. Independence implies that for D ∈ D,
E[XID] = E[X]P (D), ∫

D

XdP =

∫
Ω

XIDdP

= E[XID]

= E[X]

∫
Ω

IDdP

=

∫
D

E[X]dP

Since E[X] is D-measurable, E[X] = E[X|D].

8) If D1 ⊂ D2 then E[E[X|D2]|D1] = E[X|D1]. Note that if D ε D1 then D ε D2.
Therefore, ∫

D

XdP =

∫
D

E[X|D2]dP

=

∫
D

E[E[X|D2]|D1]dP,

and the result follows.

A function φ : R → R is convex if and only if for all x and y in R, and λ in [0, 1],
φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y). We need the following fact about convex functions
for the proof of the next property. Let x1 < x2 and y ε R. Then

φ(x2)− φ(y)

x2 − y
≥ φ(x1)− φ(y)

x1 − y
. (2.3)

Now assume that x1 < y < x2 and let x2 converge to y from above. The left side of (2.3) is
bounded below, and its value decreases as x2 decreases to y. Therefore, the right derivative
φ+ exists at y and

−∞ < φ+(y) = lim
x2→y+

φ(x2)− φ(y)

x2 − y
< +∞.

Moreover,
φ(x) ≥ φ(y) + φ+(y)(x− y), ∀x ∈ R. (2.4)
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9) Jensen’s Inequality. If φ is convex then

E[φ(X)|D] ≥ φ(E[X|D]).

Define M : Ω → R as M = φ+(E[X|D]). As measurability is preserved under compo-
sition, we can see that M is D-measurable. From (2.4),

φ(X) ≥ φ(E[X|D]) +M(X − E[X|D]),

and

E[φ(X)|D] ≥ E[φ(E[X|D])|D] + E[M(X − E[X|D])|D] Properties 3 and 4

= φ(E[X|D]) +ME[(X − E[X|D])|D] Property 6

= φ(E[X|D]) +M{E[X|D]− E[E[X|D]|D]} Property 3

= φ(E[X|D]) +M{E[X|D]− E[X|D]} Property 8

= φ(E[X|D])

10) Let X be an S1-valued, D-measurable random variable and Y be an S2-valued random
variable independent of D. Suppose that ϕ : S1 × S2 → R is a measurable function
and that ϕ(X, Y ) is integrable. Define

ψ(x) = E[ϕ(x, Y )].

Then, E[ϕ(X, Y )|D] = ψ(X).

11) Let Y be an S2-valued random variable (not necessarily independent of D). Suppose
that ϕ : S1 × S2 → R is a bounded measurable function. Then there exists a
measurable ψ : Ω× S1 → R such that for each x ∈ S1

ψ(ω, x) = E[ϕ(x, Y )|D](ω) a.s.

and
E[ϕ(X, Y )|D](ω) = ψ(ω,X(ω)) a.s.

for every D-measurable random variable X.

12) Let Y : Ω → N be independent of the i.i.d random variables {Xi}∞i=1. Then

E[
Y∑

i=1

Xi|σ(Y )] = Y · E[X1]. (2.5)

Identity (2.5) follows from Property (10) by taking ϕ(X, Y )(ω) =
∑Y (ω)

i=1 Xi(ω) and
noting that ψ(y) = E[

∑y
i=1Xi] = yE[X1].

13) E[|E[X|D]− E[Y |D]|p]≤ E[|X − Y |p], p ≥ 1.

E[|E[X|D]− E[Y |D]|p] = E[|E[X − Y ]|D]|p] using linearity

≤ E[E[|X − Y |p|D]] using Jensen’s inequality

= E[|X − Y |p]

14) Let {Xn}∞n=0 be a sequence of random variables and p ≥ 1. If limn→∞E[|X−Xn|p] = 0,
then limn→∞E[|E[X|D]− E[Xn|D]|p] = 0.
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3 Continuous time stochastic processes.

A continuous time stochastic process is a random function defined on the time interval
[0,∞), that is, for each ω ∈ Ω, X(·, ω) is a real or vector-valued function (or more generally,
E-valued for some complete, separable metric space E). Unless otherwise stated, we will
assume that all stochastic processes are cadlag, that is, for each ωεΩ, X(·, ω) is a right
continuous function with left limits at each t > 0. DE[0,∞) will denote the collection of
cadlag E-valued functions on [0,∞). For each ε > 0, a cadlag function has, at most, finitely
many discontinuities of magnitude greater than ε in any compact time interval. (Otherwise,
these discontinuities would have a right or left limit point, destroying the cadlag property).
Consequently, a cadlag function can have, at most, a countable number of discontinuities.

If X is a cadlag process, then it is completely determined by the countable family of
random variables, {X(t) : t rational}.

It is possible to define a metric on DE[0,∞) so that it becomes a complete, separable
metric space. The distribution of an E-valued, cadlag process is then defined by µX(B) =
P{X(·) ∈ B} for B ∈ B(DE[0,∞)). We will not discuss the metric at this time. For our
present purposes it is enough to know the following.

Theorem 3.1 Let X be an E-valued, cadlag process. Then µX on DE[0,∞) is determined
by its finite dimensional distributions {µt1,t2,...,tn : 0 ≤ t1 ≤ t2 ≤ . . . tn ; n ≥ 0} where
µt1,t2,...,tn(Γ) = P{(X(t1), X(t2), . . . , X(tn)) ∈ Γ}, Γ ∈ B(En).

3.1 Examples.

1) Standard Brownian Motion. Recall that the density function of a normal random variable
with expectation µ and variance σ2 is given by

fµ,σ(x) =
1√

2πσ2
exp{−(x− µ)2

2σ2
}

For each integer n > 0, each selection of times 0 ≤ t1 < t2 < . . . < tn and vector x ∈ Rn,
define the joint density function

fW (t1),W (t2),...,W (tn)(x) = f0,t1(x1) · f0,t2(x2 − x1) · . . . · f0,tn(xn − xn−1).

Note that the joint densities defined above are consistent in the sense that

fW (t′1),...,W (t′n−1)(x
′
1, . . . , x

′
n−1) =

∫ ∞

−∞
fW (t1),...,W (tn))(x1, . . . , xn)dxi

where (t′1, . . . , t
′
n−1) is obtained from (t1, . . . , tn) by deleting the ith entry. The Kolmogorov

Consistency Theorem, assures the existence of a stochastic process with these finite dimen-
sional distributions. An additional argument is needed to show that the process has cadlag
(in fact continuous) sample paths.

2) Poisson Process. Again, we specify the Poisson process with parameter λ, by specify-

ing its finite dimensional distributions. Let h(µ, k) = exp{−µ}µk

k!
, that is, the Poisson(µ)
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probability of k. For t1 < t2 < · · · < tn. Define

P{X(t1) = k1, X(t2) = k2, . . . , X(tn) = kn}

=


h(λt1, k1) · h(λ(t2 − t1), (k2 − k1)) · . . .

·h(λ(tn − tn−1), (kn − kn−1)) if k1 ≤ k2 ≤ . . . ≤ kn

0 otherwise

3.2 Filtrations.

Let σ(X(s) : s ≤ t) denote the smallest σ-algebra such that X(s) is σ(X(s) : s ≤ t)-
measurable for all s ≤ t.

A collection of σ-algebras {Ft}, satisfying

Fs ⊆ Ft ⊆ F

for all s ≤ t is called a filtration. Ft is interpreted as corresponding to the information
available at time t (the amount of information increasing as time progresses). A stochastic
process X is adapted to a filtration {Ft} if X(t) is Ft-measurable for all t ≥ 0.

An E-valued stochastic process X adapted to {Ft} is a Markov process with respect to
{Ft} if

E[f(X(t+ s))|Ft] = E[f(X(t+ s))|X(t)]

for all t, s ≥ 0 and f ∈ B(E), the bounded, measurable functions on E.
A real-valued stochastic process X adapted to {Ft} is a martingale with respect to {Ft}

if
E[X(t+ s)|Ft] = X(t) (3.1)

for all t, s ≥ 0.

Proposition 3.2 Standard Brownian motion, W , is both a martingale and a Markov pro-
cess.

Proof. Let Ft = σ(W (s) : s ≤ t). Then

E[W (t+ s)|Ft] = E[W (t+ s)−W (t) +W (t)|Ft]

= E[W (t+ s)−W (t)|Ft] + E[W (t)|Ft]

= E[W (t+ s)−W (t)] + E[W (t)|Ft]

= E[W (t)|Ft]

= W (t)

so W is an {Ft}-martingale. Similarly W is a Markov process. Define T (s)f(x) = E[f(x+
W (s))], and note that

E[f(W (t+ s))|Ft] = E[f(W (t+ s)−W (t) +W (t))|Ft]

= T (s)f(W (t))

= E[f(W (t+ s))|W (t)]

�
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3.3 Stopping times.

A random variable τ with values in [0,∞] is an {Ft}-stopping time if

{τ ≤ t} ∈ Ft ∀ t ≥ 0.

Let X be a cadlag stochastic process that is {Ft}-adapted. Then

τα = inf{t : X(t) or X(t−) ≥ α}

is a stopping time. In general, for B ∈ B(R), τB = inf{t : X(t) ∈ B} is not a stopping time;
however, if (Ω,F , P ) is complete and the filtration {Ft} is complete in the sense that F0

contains all events of probability zero and is right continuous in the sense that Ft = ∩s>tFs,
then for any B ∈ B(R), τB is a stopping time.

If τ , τ1, τ2 . . . are stopping times and c ≥ 0 is a constant, then

1) τ1 ∨ τ2 and τ1 ∧ τ2 are stopping times.

2) τ + c, τ ∧ c, and τ ∨ c are stopping times.

3) supk τk is a stopping time.

4) If {Ft} is right continuous, then infk τk, lim infk→∞ τk, and lim supk→∞ τk are stopping
times.

Lemma 3.3 Let τ be a stopping time and for n = 1, 2, . . ., define

τn =
k + 1

2n
, if

k

2n
≤ τ <

k + 1

2n
, k = 0, 1, . . . .

Then {τn} is a decreasing sequence of stopping times converging to τ .

Proof. Observe that

{τn ≤ t} = {τn ≤
[2nt]

2n
} = {τ < [2nt]

2n
} ∈ Ft.

�
For a stopping time τ , define

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft,∀t ≥ 0}.

Then Fτ is a σ-algebra and is interpreted as representing the information available to an
observer at the random time τ . Occasionally, one also uses

Fτ− = σ{A ∩ {t < τ} : A ∈ Ft, t ≥ 0} ∨ F0.

Lemma 3.4 If τ1 and τ2 are stopping times and τ1 ≤ τ2, then Fτ1 ⊂ Fτ2.

Lemma 3.5 If X is cadlag and {Ft}-adapted and τ is a stopping time, then X(τ) is Fτ -
measurable and X(τ ∧ t) is {Ft}-adapted.
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3.4 Brownian motion

A process X has independent increments if for each choice of 0 ≤ t1 < t2 < · · · < tm,
X(tk+1) − X(tk), k = 1, . . . ,m − 1, are independent. X is a Brownian motion if it has
continuous sample paths and independent, Gaussian-distributed increments. It follows that
the distribution of a Brownian motion is completely determined by mX(t) = E[X(t)] and
aX(t) = V ar(X(t)). X is standard if mX ≡ 0 and aX(t) = t. Note that the independence of
the increments implies

V ar(X(t+ s)−X(t)) = aX(t+ s)− aX(t),

so aX must be nondecreasing. If X is standard

V ar(X(t+ s))−X(t)) = s.

Consequently, standard Brownian motion has stationary increments. Ordinarily, we will
denote standard Brownian motion by W .

If aX is continuous and nondecreasing and mX is continuous, then

X(t) = W (aX(t)) +mX(t)

is a Brownian motion with

E[X(t)] = mX(t), V ar(X(t)) = aX(t).

3.5 Poisson process

A Poisson process is a model for a series of random observations occurring in time. For
example, the process could model the arrivals of customers in a bank, the arrivals of telephone
calls at a switch, or the counts registered by radiation detection equipment.

Let N(t) denote the number of observations by time t. We assume that N is a counting
process, that is, the observations come one at a time, so N is constant except for jumps of
+1. For t < s, N(s) − N(t) is the number of observations in the time interval (t, s]. We
make the following assumptions about the model.

0) The observations occur one at a time.

1) Numbers of observations in disjoint time intervals are independent random variables,
that is, N has independent increments.

2) The distribution of N(t+ a)−N(t) does not depend on t.

Theorem 3.6 Under assumptions 0), 1), and 2), there is a constant λ such that N(s)−N(t)
is Poisson distributed with parameter λ(s− t), that is,

P{N(s)−N(t) = k} =
(λ(s− t))k

k!
eλ(s−t).
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If Theorem 3.6 holds, then we refer to N as a Poisson process with parameter λ. If λ = 1,
we will call N the unit Poisson process.

More generally, if (0) and (1) hold and Λ(t) = E[N(t)] is continuous and Λ(0) = 0, then

N(t) = Y (Λ(t)),

where Y is a unit Poisson process.
Let N be a Poisson process with parameter λ, and let Sk be the time of the kth obser-

vation. Then

P{Sk ≤ t} = P{N(t) ≥ k} = 1−
k−1∑
i=0

(λt)i

i
eλt, t ≥ 0.

Differentiating to obtain the probability density function gives

fSk
(t) =

{
λ(λt)k−1e−λt t ≥ 0

0 t < 0.

The Poisson process can also be viewed as the renewal process based on a sequence of
exponentially distributed random variables.

Theorem 3.7 Let T1 = S1 and for k > 1, Tk = Sk − Sk−1. Then T1, T2, . . . are independent
and exponentially distributed with parameter λ.
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4 Martingales.

A stochastic process X adapted to a filtration {Ft} is a martingale with respect to {Ft} if

E[X(t+ s)|Ft] = X(t) (4.1)

for all t, s ≥ 0. It is a submartingale if

E[X(t+ s)|Ft] ≥ X(t) (4.2)

and a supermartingale if
E[X(t+ s)|Ft] ≤ X(t). (4.3)

4.1 Optional sampling theorem and Doob’s inequalities.

Theorem 4.1 (Optional sampling theorem.) Let X be a martingale and τ1, τ2 be stopping
times. Then for every t ≥ 0

E[X(t ∧ τ2)|Fτ1 ] = X(t ∧ τ1 ∧ τ2).

If τ2 <∞ a.s., E[|X(τ2)|] <∞ and limt→∞E[|X(t)|I{τ2>t}] = 0, then

E[X(τ2)|Fτ1 ] = X(τ1 ∧ τ2) .

The same results hold for sub and supermartingales with = replaced by ≥ (submartingales)
and ≤ (supermartingales).

Proof. See, for example, Ethier and Kurtz (1986), Theorem 2.2.13. �

Theorem 4.2 (Doob’s inequalities.) If X is a non-negative sub-martingale, then

P{sup
s≤t

X(s) ≥ x} ≤ E[X(t)]

x

and for α > 1
E[sup

s≤t
X(s)α] ≤ (α/α− 1)αE[X(t)α].

Proof. Let τx = inf{t : X(t) ≥ x} and set τ2 = t and τ1 = τx. Then from the optional
sampling theorem we have that

E[X(t)|Fτx ] ≥ X(t ∧ τx) ≥ I{τx≤t}X(τx) ≥ xI{τx≤t} a.s.

so we have that
E[X(t)] ≥ xP{τx ≤ t} = xP{sup

s≤t
X(s) ≥ x}

See Ethier and Kurtz, Proposition 2.2.16 for the second inequality. �
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Lemma 4.3 If M is a martingale and ϕ is convex with E[|ϕ(M(t))|] <∞, then

X(t) ≡ ϕ(M(t))

is a sub-martingale.

Proof.
E[ϕ(M(t+ s))|Ft] ≥ ϕ(E[M(t+ s)|Ft])

by Jensen’s inequality. �

From the above lemma, it follows that if M is a martingale then

P{sup
s≤t

|M(s)| ≥ x} ≤ E[|M(t)|]
x

(4.4)

and
E[sup

s≤t
|M(s)|2] ≤ 4E[M(t)2]. (4.5)

4.2 Local martingales.

The concept of a local martingale plays a major role in the development of stochastic inte-
gration. M is a local martingale if there exists a sequence of stopping times {τn} such that
limn→ τn = ∞ a.s. and for each n, M τn ≡M(· ∧ τn) is a martingale.

The total variation of Y up to time t is defined as

Tt(Y ) ≡ sup
∑

|Y (ti+1)− Y (ti)|

where the supremum is over all partitions of the interval [0, t]. Y is an FV-process if Tt(Y ) <
∞ for each t > 0.

Theorem 4.4 (Fundamental Theorem of Local Martingales.) Let M be a local martingale,
and let δ > 0. Then there exist local martingales M̃ and A satisfying M = M̃ +A such that
A is FV and the discontinuities of M̃ are bounded by δ.

Remark 4.5 One consequence of this theorem is that any local martingale can be decomposed
into an FV process and a local square integrable martingale. Specifically, if γc = inf{t :
|M̃(t)| ≥ c}, then M̃(·∧γc) is a square integrable martingale. (Note that |M̃(·∧γc)| ≤ c+δ.)

Proof. See Protter (1990), Theorem III.13. �
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4.3 Quadratic variation.

The quadratic variation of a process Y is defined as

[Y ]t = lim
max |ti+1−ti|→0

∑
(Y (ti+1)− Y (ti))

2

where convergence is in probability; that is, for every ε > 0 there exists a δ > 0 such that
for every partition {ti} of the interval [0, t] satisfying max |ti+1 − ti| ≤ δ we have

P{|[Y ]t −
∑

(Y (ti+1)− Y (ti))
2| ≥ ε} ≤ ε.

If Y is FV, then [Y ]t =
∑

s≤t(Y (s)− Y (s−))2 =
∑

s≤t ∆Y (s)2 where the summation can be
taken over the points of discontinuity only and ∆Y (s) ≡ Y (s)− Y (s−) is the jump in Y at
time s. Note that for any partition of [0, t]∑

(Y (ti+1)− Y (ti))
2 −

∑
|Y (ti+1)−Y (ti)|>ε

(Y (ti+1)− Y (ti))
2 ≤ εTt(Y ).

Proposition 4.6 (i) If M is a local martingale, then [M ]t exists and is right continous.
(ii) If M is a square integrable martingale, then the limit

lim
max |ti+1−ti|→0

∑
(M(ti+1)−M(ti))

2

exists in L1 and E[(M(t)2] = E[[M ]t].

Proof. See, for example, Ethier and Kurtz (1986), Proposition 2.3.4. �

Let M be a square integrable martingale with M(0)=0. Write M(t) =
∑m−1

i=0 M(ti+1)−
M(ti) where 0 = t0 < ... < tm = t. Then

E[M(t)2] = E[(
m−1∑
i=0

M(ti+1)−M(ti))
2] (4.6)

= E[
m−1∑
i=0

(M(ti+1)−M(ti))
2

+
∑
i6=j

(M(ti+1)−M(ti))(M(tj+1)−M(tj))].

For ti < ti+1 ≤ tj < tj+1.

E[(M(ti+1)−M(ti))(M(tj+1)−M(tj))] (4.7)

= E[E[(M(ti+1)−M(ti))(M(tj+1)−M(tj))|Ftj ]]

= E[(M(ti+1)−M(ti))(E[M(tj+1)|Ftj ]−M(tj))]

= 0,

and thus the expectation of the second sum in (4.6) vanishes. By the L1 convergence in
Proposition 4.6

E[M(t)2] = E[
m−1∑
i=0

(M(ti+1)−M(ti))
2] = E[[M ]t].
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Example 4.7 If M(t) = N(t)− λt where N(t) is a Poisson process with parameter λ, then
[M ]t = N(t), and since M(t) is square integrable, the limit exists in L1.

Example 4.8 For standard Brownian motion W , [W ]t = t. To check this identity, apply
the law of large numbers to

[nt]∑
k=1

(W (
k

n
)−W (

k − 1

n
))2.

Proposition 4.9 If M is a square integrable {Ft}-martingale, Then M(t)2 − [M ]t is an
{Ft}-martingale.

Remark 4.10 For example, if W is standard Brownian motion, then W (t)2 − t is a mar-
tingale.

Proof. The conclusion follows from part (ii) of the previous proposition. For t, s ≥ 0, let
{ui} be a partition of (0, t + s] with 0 = u0 < u1 < ... < um = t < um+1 < ... < un = t + s
Then

E[M(t+ s)2|Ft]

= E[(M(t+ s)−M(t))2|Ft] +M(t)2

= E[(
n−1∑
i=m

M(ui+1)−M(ui))
2|Ft] +M(t)2

= E[
n−1∑
i=m

(M(ui+1)−M(ui))
2|Ft] +M(t)2

= E[[M ]t+s − [M ]t|Ft] +M(t)2

where the first equality follows since, as in (4.7), the conditional expectation of the cross
product term is zero and the last equality follows from the L1 convergence in Proposition
4.6. �

4.4 Martingale convergence theorem.

Theorem 4.11 (Martingale convergence theorem.) Let X be a submartingale satisfying
suptE[|X(t)|] <∞. Then limt→∞X(t) exists a.s.

Proof. See, for example, Durrett (1991), Theorem 4.2.10. �
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5 Stochastic integrals.

Let X and Y be cadlag processes, and let {ti} denote a partition of the interval [0, t]. Then
we define the stochastic integral of X with respect to Y by∫ t

0

X(s−)dY (s) ≡ lim
∑

X(ti)(Y (ti+1)− Y (ti)) (5.1)

where the limit is in probability and is taken as max |ti+1 − ti| → 0. For example, let W (t)
be a standard Brownian motion. Then∫ t

0

W (s)dW (s) = lim
∑

W (ti)(W (ti+1)−W (ti)) (5.2)

= lim
∑

(W (ti)W (ti+1)−
1

2
W (ti+1)

2 − 1

2
W (ti)

2)

+
∑

(
1

2
W (ti+1)

2 − 1

2
W (ti)

2)

=
1

2
W (t)2 − lim

1

2

∑
(W (ti+1)−W (ti))

2

=
1

2
W (t)2 − 1

2
t.

This example illustrates the significance of the use of the left end point of [ti, ti+1] in the
evaluation of the integrand. If we replace ti by ti+1 in (5.2), we obtain

lim
∑

W (ti+1)(W (ti+1)−W (ti))

= lim
∑

(−W (ti)W (ti+1) +
1

2
W (ti+1)

2 +
1

2
W (ti)

2)

+
∑

(
1

2
W (ti+1)

2 − 1

2
W (ti)

2)

=
1

2
W (t)2 + lim

1

2

∑
(W (ti+1)−W (ti))

2

=
1

2
W (t)2 +

1

2
t.

5.1 Definition of the stochastic integral.

Throughout, we will be interested in the stochastic integral as a stochastic process. With
this interest in mind, we will use a slightly different definition of the stochastic integral than
that given in (5.1). For any partition {ti} of [0,∞), 0 = t0 < t1 < t2 < . . ., and any cadlag
x and y, define

S(t, {ti}, x, y) =
∑

x(ti)(y(t ∧ ti+1)− y(t ∧ ti)).

For stochastic processes X and Y , define Z =
∫
X−dY if for each T > 0 and each ε > 0,

there exists a δ > 0 such that

P{sup
t≤T

|Z(t)− S(t, {ti}, X, Y )| ≥ ε} ≤ ε
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for all partitions {ti} satisfying max |ti+1 − ti| ≤ δ.
If X is piecewise constant, that is, for some collection of random variables {ξi} and

random variables {τi} satisfying 0 = τ0 < τ1 < · · ·,

X =
∑

ξiI[τi,τi+1) ,

then ∫ t

0

X(s−)dY (s) =
∑

ξi(Y (t ∧ τi+1)− Y (t ∧ τi))

=
∑

X(τi)(Y (t ∧ τi+1)− Y (t ∧ τi)) .

Our first problem is to identify more general conditions on X and Y under which
∫
X−dY

will exist.

5.2 Conditions for existence.

The first set of conditions we will consider require that the integrator Y be of finite variation.
The total variation of Y up to time t is defined as

Tt(Y ) ≡ sup
∑

|Y (ti+1)− Y (ti)|

where the supremum is over all partitions of the interval [0, t].

Proposition 5.1 Tt(f) < ∞ for each t > 0 if and only if there exist monotone increasing
functions f1, f2 such that f = f1 − f2. If Tt(f) <∞, then f1 and f2 can be selected so that
Tt(f) = f1 + f2. If f is cadlag, then Tt(f) is cadlag.

Proof. Note that

Tt(f)− f(t) = sup
∑

(|f(ti+1)− f(ti)| − (f(ti+1)− f(ti)))

is an increasing function of t, as is Tt(f) + f(t). �

Theorem 5.2 If Y is of finite variation then
∫
X−dY exists for all X,

∫
X−dY is cadlag,

and if Y is continuous,
∫
X−dY is continuous. (Recall that we are assuming throughout that

X is cadlag.)

Proof. Let {ti}, {si} be partitions. Let {ui} be a refinement of both. Then there exist
ki, li, k

′
i, l

′
i such that

Y (ti+1)− Y (ti) =

li∑
j=ki

Y (uj+1)− Y (uj)

Y (si+1)− Y (si) =

l′i∑
j=k′i

Y (uj+1)− Y (uj).

23



Define
t(u) = ti, ti ≤ u < ti+1 s(u) = si, si ≤ u < si+1 (5.3)

so that

|S(t, {ti}, X, Y )− S(t, {si}, X, Y )| (5.4)

= |
∑

X(t(ui))(Y (ui+1 ∧ t)− Y (ui ∧ t))

−
∑

X(s(ui))(Y (ui+1 ∧ t)− Y (ui ∧ t))|

≤
∑

|X(t(ui))−X(s(ui))||Y (ui+1 ∧ t)− Y (ui ∧ t)|.

But there is a measure µY such that Tt(Y ) = µY (0, t]. Since |Y (b) − Y (a)| ≤ µY (a, b], the
right side of (5.4) is less than∑

|X(t(ui))−X(s(ui))|µY (ui ∧ t, ui+1 ∧ t] =
∑∫

(ui∧t,ui+1∧t]

|X(t(u−))−X(s(u−))|µY (du)

=

∫
(0,t]

|X(t(u−))−X(s(u−))|µY (du).

But
lim |X(t(u−))−X(s(u−))| = 0,

so ∫
(0,t]

|X(t(u−))−X(s(u−))|µY (du) → 0 (5.5)

by the bounded convergence theorem. Since the integral in (5.5) is monotone in t, the
convergence is uniform on bounded time intervals. �

Recall that the quadratic variation of a process is defined by

[Y ]t = lim
max |ti+1−ti|→0

∑
(Y (ti+1)− Y (ti))

2,

where convergence is in probability. For example, if Y is a Poisson process, then [Y ]t = Y (t)
and for standard Brownian motion, [W ]t = t.

Note that∑
(Y (ti+1)− Y (ti))

2 = Y (t)2 − Y (0)2 − 2
∑

Y (ti)(Y (ti+1)− Y (ti))

so that

[Y ]t = Y (t)2 − Y (0)2 − 2

∫ t

0

Y (s−)dY (s)

and [Y ]t exists if and only if
∫
Y−dY exists. By Proposition 4.6, [M ]t exists for any local

martingale and by Proposition 4.9, for a square integrable martingale M(t)2 − [M ]t is a
martingale.

If M is a square integrable martingale and X is bounded (by a constant) and adapted,
then for any partition {ti},

Y (t) = S(t, {ti}, X,M) =
∑

X(ti)(M(t ∧ ti+1)−M(t ∧ ti))
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is a square-integrable martingale. (In fact, each summand is a square-integrable martingale.)
This observation is the basis for the following theorem.

Theorem 5.3 Suppose M is a square integrable {Ft}- martingale and X is cadlag and {Ft}-
adapted. Then

∫
X−dM exists.

Proof. Claim: If we can prove∫ t

0

X(s−)dM(s) = lim
∑

X(ti)(M(ti+1 ∧ t)−M(ti ∧ t))

for every bounded cadlag X, we are done. To verify this claim, let Xk(t) = (X(t)∧k)∨ (−k)
and suppose

lim
∑

Xk(ti)(M(ti+1 ∧ t)−M(ti ∧ t)) =

∫ t

0

Xk(s−)dM(s)

exists. Since
∫ t

0
X(s−)dM(s) =

∫ t

0
Xk(s−)dM(s) on {sups≤t |X(s)| ≤ k}, the assertion is

clear.
Now suppose |X(t)| ≤ C. Since M is a square integrable martingale and |X| is bounded,

it follows that for any partition {ti}, S(t, {ti}, X,M) is a square integrable martingale. (As
noted above, for each i, X(ti)(M(ti+1 ∧ t) −M(ti ∧ t)) is a square-integrable martingale.)
For two partitions {ti} and {si}, define {ui}, t(u), and s(u) as in the proof of Theorem 5.2.
Recall that t(ui), s(ui) ≤ ui, so X(t(u)) and X(s(u)) are {Fu}-adapted. Then by Doob’s
inequality and the properties of martingales,

E[sup
t≤T

(S(t, {ti}, X,M)− S(t, {si}, X,M))2] (5.6)

≤ 4E[(S(T, {ti}, X,M)− S(T, {si}, X,M))2]

= 4E[(
∑

(X(t(ui))−X(s(ui))(M(ui+1 ∧ T )−M(ui ∧ T )))2]

= 4E[
∑

(X(t(ui))−X(s(ui))
2(M(ui+1 ∧ T )−M(ui ∧ T ))2]

= 4E[
∑

(X(t(ui))−X(s(ui))
2([M ]ui+1∧T − [M ]ui∧T )].

Note that [M ] is nondecreasing and so determines a measure by µ[M ](0, t] = [M ]t, and it
follows that

E[
∑

(X(t(ui))−X(s(ui)))
2([M ]ui+1

− [M ]ui
)] (5.7)

= E[

∫
(0,t]

(X(t(u))−X(s(u)))2µ[M ](du)],

since X(t(u)) and X(s(u)) are constant between ui and ui+1. Now

|
∫

(0,t]

(X(t(u))−X(s(u)))2µ[M ](du)| ≤ 4C2µ[M ](0, t] ,

so by the fact thatX is cadlag and the dominated convergence theorem, the right side of (5.7)
goes to zero as max |ti+1 − ti| → 0 and max |si+1 − si| → 0. Consequently,

∫ t

0
X(s−)dM(s)

25



exists by the completeness of L2, or more precisely, by the completeness of the space of
processes with norm

‖Z‖T =
√
E[sup

t≤T
|Z(t)|2].

�

Corollary 5.4 If M is a square integrable martingale and X is adapted, then
∫
X−dM is

cadlag. If, in addition, M is continuous, then
∫
X−dM is continuous. If |X| ≤ C for some

constant C > 0, then
∫
X−dM is a square integrable martingale.

Proposition 5.5 Suppose M is a square integrable martingale and

E

[∫ t

0

X(s−)2d[M ]s

]
<∞.

Then
∫
X−dM is a square integrable martingale with

E

[
(

∫ t

0

X(s−)dM(s))2

]
= E

[∫ t

0

X(s−)2d[M ]s

]
. (5.8)

Remark 5.6 If W is standard Brownian motion, the identity becomes

E

[(∫ t

0

X(s−)dW (s)

)2
]

= E

[∫ t

0

X2(s)ds

]
.

Proof. Suppose X(t) =
∑
ξiI[ti,ti+1) is a simple function. Then

E

[(∫ t

0

X(s−)dM(s)

)2
]

= E
[∑

X(ti)
2(M(ti+1)−M(ti))

2
]

= E
[∑

X(ti)
2
(
[M ]ti+1

− [M ]ti
)]

= E

[∫ t

0

X2(s−)d[M ]s

]
.

Now let X be bounded, with |X(t)| ≤ C, and for a sequence of partitions {tni } with
limn→∞ supi |tni+1 − tni | = 0, define

Xn(t) = X(tni ), for tni ≤ t < tni+1.

Then by the argument in the proof of Theorem 5.3, we have∫ t

0

Xn(s−)dM(s) =
∑

X(tni )
(
M(t ∧ tni+1)−M(t ∧ tni )

)
→

∫ t

0

X(s−)dM(s),
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where the convergence is in L2. Since
∫
Xn−dM is a martingale, it follows that

∫
X−dM is

a martingale, and

E

[(∫ t

0

X(s−)dM(s)

)2
]

= lim
n→∞

E

[(∫ t

0

Xn(s−)dM(s)

)2
]

= lim
n→∞

E

[∫ t

0

X2
n(s−)d[M ]s

]
= E

[∫ t

0

X2(s−)d[M ]s

]
,

The last equality holds by the dominated convergence theorem. This statement establishes
the theorem for bounded X.

Finally, for arbitrary cadlag and adapted X, define Xk(t) = (k ∧X(t)) ∨ (−k). Then∫ t

0

Xk(s−)dM(s) →
∫ t

0

X(s−)dM(s)

in probability, and by Fatou’s lemma,

lim inf
k→∞

E

[(∫ t

0

Xk(s−)dM(s)

)2
]
≥ E

[(∫ t

0

X(s−)dM(s)

)2
]
.

But

lim
k→∞

E

[(∫ t

0

Xk(s−)dM(s)

)2
]

= lim
k→∞

E

[∫ t

0

X2
k(s−)d[M ]s

]
(5.9)

= lim
k→∞

E

[∫ t

0

X2(s−) ∧ k2d[M ]s

]
= E

[∫ t

0

X2(s−)d[M ]s

]
<∞,

so

E

[∫ t

0

X2(s−)d[M ]s

]
≥ E

[(∫ t

0

X(s−)dM(s)

)2
]
.

Since (5.8) holds for bounded X,

E

[(∫ t

0

Xk(s−)dM(s)−
∫ t

0

Xj(s−)dM(s)

)2
]

(5.10)

= E

[(∫ t

0

(Xk(s−)−Xj(s−))dM(s)

)2
]

= E

[∫ t

0

|Xk(s−)−Xj(s−)|2d[M ]s

]
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Since
|Xk(s)−Xj(s)|2 ≤ 4X(s)2,

the dominated convergence theorem implies the right side of (5.10) converges to zero as
j, k →∞. Consequently, ∫ t

0

Xk(s−)dM(s) →
∫ t

0

X(s−)dM(s)

in L2, and the left side of (5.9) converges to E[(
∫ t

0
X(s−)dM(s))2] giving (5.8). �

If
∫ t

0
X(s−)dY1(s) and

∫ t

0
X(s−)dY2(s) exist, then

∫ t

0
X(s−)d(Y1(s) + Y2(s)) exists and

is given by the sum of the other integrals.

Corollary 5.7 If Y = M+V where M is a {Ft}-local martingale and V is an {Ft}-adapted
finite variation process, then

∫
X−dY exists for all cadlag, adapted X,

∫
X−dY is cadlag,

and if Y is continuous,
∫
X−dY is continuous.

Proof. If M is a local square integrable martingale, then there exists a sequence of stopping
times {τn} such that M τn defined by M τn(t) = M(t ∧ τn) is a square-integrable martingale.
But for t < τn, ∫ t

0

X(s−)dM(s) =

∫ t

0

X(s−)dM τn(s),

and hence
∫
X−dM exists. Linearity gives existence for any Y that is the sum of a local

square integrable martingale and an adapted FV process. But Theorem 4.4 states that
any local martingale is the sum of a local square integrable martingale and an adapted FV
process, so the corollary follows. �

5.3 Semimartingales.

With Corollary 5.7 in mind, we define Y to be an {Ft}-semimartingale if and only if Y =
M + V , where M is a local martingale with respect to {Ft} and V is an {Ft}-adapted finite
variation process. By Theorem 4.4 we can always select M and V so that M is local square
integrable. In particular, we can take M to have discontinuities uniformly bounded by a
constant. If the discontinuities of Y are already uniformly bounded by a constant, it will be
useful to know that the decomposition preserves this property for both M and V .

Lemma 5.8 Let Y be a semimartingale and let δ ≥ sup |∆Y (s)|. Then there exists a local
square integrable martingale M and a finite variation process V such that Y = M + V ,

sup |M(s)−M(s−)| ≤ δ

sup |V (s)− V (s−)| ≤ 2δ.
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Proof. Let Y = M̃ + Ṽ be a decompostion of Y into a local martingale and an FV process.
By Theorem 4.4, there exists a local martingale M with discontinuities bounded by δ and
an FV process A such that M̃ = M + A. Defining V = A + Ṽ = Y −M , we see that the
discontinuities of V are bounded by 2δ. �

The class of semimartingales is closed under a variety of operations. Clearly, it is lin-
ear. It is also easy to see that a stochastic integral with a semimartingale integrator is a
semimartingale, since if we write∫ t

0

X(s−)dY (s) =

∫ t

0

X(s−)dM(s) +

∫ t

0

X(s−)dV (s),

then the first term on the right is a local square integrable martingale whenever M , is and
the second term on the right is a finite variation process whenever V is.

Lemma 5.9 If V is of finite variation, then Z2(t) =
∫ t

0
X(s−)dV (s) is of finite variation.

Proof. For any partition {ti} of [a, b],

|Z2(b)− Z2(a)| = lim
∣∣∣∑X(ti) (V (ti+1)− V (ti))

∣∣∣
≤ sup

a≤s<b
|X(s)| lim

∑
|V (ti+1)− V (ti)|

≤ sup
a≤s<b

|X(s)| (Tb(V )− Ta(V )) ,

and hence
Tt(Z) ≤ sup

0≤s<t
|X(s)|Tt(V ). (5.11)

�

Lemma 5.10 Let M be a local square integrable martingale, and let X be adapted. Then
Z1(t) =

∫ t

0
X(s−)dM(s) is a local square integrable martingale.

Proof. There exist τ1 ≤ τ2 ≤ · · ·, τn →∞, such that M τn = M(·∧ τn) is a square integrable
martingale. Define

γn = inf {t : |X(t)| or |X(t−)| ≥ n} ,

and note that limn→∞ γn = ∞. Then setting Xn(t) = (X(t) ∧ n) ∨ (−n),

Z1(t ∧ τn ∧ γn) =

∫ t∧γn

0

Xn(s−)dM τn(s)

is a square integrable martingale, and hence Z1 is a local square integrable martingale. �
We summarize these conclusions as

Theorem 5.11 If Y is a semimartingale with respect to a filtration {Ft} and X is cadlag
and {Ft}-adapted, then

∫
X−dY exists and is a cadlag semimartingale.
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The following lemma provides a useful estimate on
∫
X−dY in terms of properties of M

and V .

Lemma 5.12 Let Y = M + V be a semimartingale where M is a local square-integrable
martingale and V is a finite variation process. Let σ be a stopping time for which E[[M ]t∧σ] =
E[M(t ∧ σ)2] <∞, and let τc = inf{t : |X(t)| or |X(t−)| ≥ c}. Then

P{sup
s≤t

|
∫ s

0

X(u−)dY (u)| > K}

≤ P{σ ≤ t}+ P{sup
s<t

|X(s)| ≥ c}+ P{ sup
s≤t∧σ∧τc

|
∫ s

0

X(u−)dM(u)| > K/2}

+P{ sup
s≤t∧τc

|
∫ s

0

X(u−)dV (u)| > K/2}

≤ P{σ ≤ t}+ P{sup
s<t

|X(s)| ≥ c}+
16c2E[[M ]t∧σ]

K2
+ P{Tt(V ) ≥ (2c)−1K}.

Proof. The first inequality is immediate. The second follows by applying Doob’s inequality
to the square integrable martingale∫ s∧σ∧τc

0

X(u−)dM(u)

and observing that

sup
u≤s

|
∫ s

0

X(u−)dV (u)| ≤ Ts(V ) sup
u<s

|X(u)|.

�

5.4 Change of time variable.

We defined the stochastic integral as a limit of approximating sums∫ t

0

X(s−)dY (s) = lim
∑

X(ti)(Y (t ∧ ti+1)− Y (t ∧ ti)),

where the ti are a partition of [0,∞). By Theorem 5.20, the same limit holds if we replace
the ti by stopping times. The following lemma is a consequence of this observation.

Lemma 5.13 Let Y be an {Ft}-semimartingale, X be cadlag and {Ft} adapted, and γ be
continuous and nondecreasing with γ(0) = 0. For each u, assume γ(u) is an {Ft}-stopping
time. Then, Gt = Fγ(t) is a filtration, Y ◦ γ is a {Gt} semimartingale, X ◦ γ is cadlag and
{Gt}-adapted, and ∫ γ(t)

0

X(s−)dY (s) =

∫ t

0

X ◦ γ(s−)dY ◦ γ(s). (5.12)

(Recall that if X is {Ft}-adapted, then X(τ) is Fτ measurable).
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Proof.∫ t

0

X ◦ γ(s−)dY ◦ γ(s) = lim Σ{X ◦ γ(ti)(Y (γ(ti+1 ∧ t))− Y (γ(ti ∧ t)))}

= lim Σ{X ◦ γ(ti)(Y (γ(ti+1) ∧ γ(t))− Y (γ(ti) ∧ γ(t)))}

=

∫ γ(t)

0

X(s−)dY (s),

where the last limit follows by Theorem 5.20. That Y ◦γ is an {Fγ(t)}-semimartingale follows
from the optional sampling theorem. �

Lemma 5.14 Let A be strictly increasing and adapted with A(0) = 0 and γ(u) = inf{s :
A(s) > u}. Then γ is continuous and nondecreasing, and γ(u) is an {Ft}-stopping time.

Proof. Best done by picture. �

For A and γ as in Lemma 5.14, define B(t) = A ◦ γ(t) and note that B(t) ≥ t.

Lemma 5.15 Let A, γ, and B be as above, and suppose that Z(t) is nondecreasing with
Z(0) = 0. Then∫ γ(t)

0

Z(s−)dA(s) =

∫ t

0

Z ◦ γ(s−)dA ◦ γ(s)

=

∫ t

0

Z ◦ γ(s−)d(B(s)− s) +

∫ t

0

Z ◦ γ(s−)ds

= Z ◦ γ(t)(B(t)− t)−
∫ t

0

(B(s)− s)dZ ◦ γ(s)

−[B,Z ◦ γ]t +

∫ t

0

Z ◦ γ(s)ds

and hence ∫ γ(t)

0

Z(s−)dA(s) ≤ Z ◦ γ(t−)(B(t)− t) +

∫ t

0

Z ◦ γ(s)ds.

5.5 Change of integrator.

Lemma 5.16 Let Y be a semimartingale, and let X and U be cadlag and adapted. Suppose
Z(t) =

∫ t

0
X(s−)dY (s) . Then∫ t

0

U(s−)dZ(s) =

∫ t

0

U(s−)X(s−)dY (s).

Proof. Let {ti} be a partition of [0, t], and define

t(s) = ti as ti ≤ s < ti+1,
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so that ∫ t

0

U(s−)dZ(s) = lim
∑

U(ti)(Z(t ∧ ti+1)− Z(t ∧ ti))

= lim
∑

U(ti ∧ t)
∫ t∧ti+1

t∧ti

X(s−)dY (s)

= lim
∑∫ t∧ti+1

t∧ti

U(ti ∧ t)X(s−)dY (s)

= lim
∑∫ t∧ti+1

t∧ti

U(t(s−))X(s−)dY (s)

= lim

∫ t

0

U(t(s−))X(s−)dY (s)

=

∫ t

0

U(s−)X(s−)dY (s)

The last limit follows from the fact that U(t(s−)) → U(s−) as max |ti+1 − ti| → 0 by
splitting the integral into martingale and finite variation parts and arguing as in the proofs
of Theorems 5.2 and 5.3. �

Example 5.17 Let τ be a stopping time (w.r.t. {Ft}). Then U(t) = I[0,τ)(t) is cadlag and
adapted, since {U(t) = 1} = {τ > t} ∈ Ft. Note that

Y τ (t) = Y (t ∧ τ) =

∫ t

0

I[0,τ)(s−)dY (s)

and ∫ t∧τ

0

X(s−)dY (s) =

∫ t

0

I[0,τ)(s−)X(s−)dY (s)

=

∫ t

0

X(s−)dY τ (s)

5.6 Localization

It will frequently be useful to restrict attention to random time intervals [0, τ ] on which
the processes of interest have desirable properties (for example, are bounded). Let τ be a
stopping time, and define Y τ by Y τ (t) = Y (τ ∧ t) and Xτ− by setting Xτ−(t) = X(t) for
t < τ and X(t) = X(τ−) for t ≥ τ . Note that if Y is a local martingale, then Y τ is a local
martingale, and if X is cadlag and adapted, then Xτ− is cadlag and adapted. Note also that
if τ = inf{t : X(t) or X(t−) ≥ c}, then Xτ− ≤ c.

The next lemma states that it is possible to approximate an arbitrary semimartingale by
semimartingales that are bounded by a constant and (consequently) have bounded disconti-
nuities.
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Lemma 5.18 Let Y = M +V be a semimartingale, and assume (without loss of generality)
that sups |∆M(s)| ≤ 1. Let

A(t) = sup
s≤t

(|M(s)|+ |V (s)|+ [M ]s + Ts(V ))

and
σc = inf{t : A(t) ≥ c},

and define M c ≡ Mσc, V c ≡ V σc−, and Y c ≡ M c + V c. Then Y c(t) = Y (t) for t < σc,
limc→∞ σc = ∞, |Y c| ≤ c+ 1, sups |∆Y c(s)| ≤ 2c+ 1, [M c] ≤ c+ 1, T (V ) ≤ c.

Finally, note that

S(t ∧ τ, {ti}, X, Y ) = S(t, {ti}, Xτ−, Y τ ). (5.13)

5.7 Approximation of stochastic integrals.

Proposition 5.19 Suppose Y is a semimartingale X1, X2, X3, . . . are cadlag and adapted,
and

lim
n→∞

sup
t≤T

|Xn(t)−X(t)| = 0

in probability for each T > 0. Then

lim
n→∞

sup
t≤T

∣∣∣∣∫ t

0

Xn(s−)dY (s)−
∫ t

0

X(s−)dY (s)

∣∣∣∣ = 0

in probability.

Proof. By linearity and localization, it is enough to consider the cases Y a square integrable
martingale and Y a finite variation process, and we can assume that |Xn| ≤ C for some
constant C. The martingale case follows easily from Doob’s inequality and the dominated
convergence theorem, and the FV case follows by the dominated convergence theorem. �

Theorem 5.20 Let Y be a semimartingale and X be cadlag and adapted. For each n,
let 0 = τn

0 ≤ τn
1 ≤ τn

2 ≤ · · · be stopping times and suppose that limk→∞ τn
k = ∞ and

limn→∞ supk |τn
k+1 − τn

k | = 0. Then for each T > 0

lim
n→∞

sup
t≤T

|S(t, {τn
k }, X, Y )−

∫ t

0

X(s−)dY (s)| = 0.

Proof. If Y is FV, then the proof is exactly the same as for Theorem 5.2 (which is an ω by
ω argument). If Y is a square integrable martingale and X is bounded by a constant, then
defining τn(u) = τn

k for τn
k ≤ u < τn

k+1,

E[(S(t, {τn
k }, X, Y )−

∫ t

0

X(s−)dY (s))2]

= E[

∫ t

0

(X(τn(u−))−X(u−))2d[Y ]u]

and the result follows by the dominated convergence theorem. The theorem follows from
these two cases by linearity and localization. �
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5.8 Connection to Protter’s text.

The approach to stochastic integration taken here differs somewhat from that taken in Prot-
ter (1990) in that we assume that all integrands are cadlag and do not introduce the notion
of predictability. In fact, however, predictability is simply hidden from view and is revealed
in the requirement that the integrands are evaluated at the left end points in the definition
of the approximating partial sums. If X is a cadlag integrand in our definition, then the left
continuous process X(·−) is the predictable integrand in the usual theory. Consequently,
our notation

∫
X−dY and ∫ t

0

X(s−)dY (s)

emphasizes this connection.
Protter (1990) defines H(t) to be simple and predictable if

H(t) =
m∑

i=0

ξiI(τi,τi+1](t),

where τ0 < τ1 < · · · are {Ft}-stopping times and the ξi are Fτi
measurable. Note that H is

left continuous. In Protter, H · Y is defined by

H · Y (t) =
∑

ξi (Y (τi+1 ∧ t)− Y (τi ∧ t)) .

Defining

X(t) =
∑

ξiI[τi,τi+1)(t),

we see that H(t) = X(t−) and note that

H · Y (t) =

∫ t

0

X(s−)dY (s),

so the definitions of the stochastic integral are consistent for simple functions. Protter
extends the definition H · Y by continuity, and Propositon 5.19 ensures that the definitions
are consistent for all H satisfying H(t) = X(t−), where X is cadlag and adapted.
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6 Covariation and Itô’s formula.

6.1 Quadratic covariation.

The covariation of Y1, Y2 is defined by

[Y1, Y2]t ≡ lim
∑

i

(Y1(ti+1)− Y1(ti)) (Y2(ti+1)− Y2(ti)) (6.1)

where the {ti} are partitions of [0, t] and the limit is in probability as max |ti+1 − ti| → 0.
Note that

[Y1 + Y2, Y1 + Y2]t = [Y1]t + 2[Y1, Y2]t + [Y2]t.

If Y1, Y2, are semimartingales, then [Y1, Y2]t exists. This assertion follows from the fact that

[Y1, Y2]t = lim
∑

i

(Y1(ti+1)− Y1(ti)) (Y2(ti+1)− Y2(ti))

= lim (
∑

(Y1(ti+1)Y2(ti+1)− Y1(ti)Y2(ti))

−
∑

Y1(ti)(Y2(ti+1)− Y2(ti))−
∑

Y2(ti)(Y1(ti+1)− Y1(ti)))

= Y1(t)Y2(t)− Y1(0)Y2(0)−
∫ t

0

Y1(s−)dY2(s)−
∫ t

0

Y2(s−)dY1(s).

Recall that if Y is of finite variation, then [Y ]t =
∑

s≤t (∆Y (s))2, where ∆Y (s) ≡ Y (s)−
Y (s−).

Lemma 6.1 Let Y be a finite variation process, and let X be cadlag. Then

[X,Y ]t =
∑
s≤t

∆X(s)∆Y (s).

Remark 6.2 Note that this sum will be zero if X and Y have no simultaneous jumps. In
particular, if either X or Y is a finite variation process and either X or Y is continuous,
then [X, Y ] = 0.

Proof. We have that the covariation [X, Y ]t is

lim
max |ti+1−ti|→0

∑
(X(ti+1)−X(ti))(Y (ti+1)− Y (ti))

= lim
max |ti+1−ti|→0

∑
|X(ti+1)−X(ti)|>ε

(X(ti+1)−X(ti))(Y (ti+1)− Y (ti))

+ lim
max |ti+1−ti|→0

∑
|X(ti+1)−X(ti)|]≤ε

(X(ti+1)−X(ti))(Y (ti+1)− Y (ti)),

where the first term on the right is approximately∑
s≤t

|∆X(s)|>ε

∆X(s)∆Y (s)
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plus or minus a few jumps where ∆X(s) = ε. Since the number of jumps in X is countable,
ε can always be chosen so that there are no such jumps. The second term on the right is
bounded by

ε
∑

|Y (ti+1)− Y (ti)| ≤ εTt(Y ),

where Tt(Y ) is the total variation of Y (which is bounded). �

6.2 Continuity of the quadratic variation.

Since
∑
aibi ≤

√∑
a2

i

∑
b2i it follows that [X,Y ]t ≤

√
[X]t[Y ]t. Observe that

[X − Y ]t = [X]t − 2[X, Y ]t + [Y ]t

[X − Y ]t + 2 ([X, Y ]t − [Y ]t) = [X]t − [Y ]t

[X − Y ]t + 2[X − Y, Y ]t = [X]t − [Y ]t.

Therefore,
|[X]t − [Y ]t| ≤ [X − Y ]t + 2

√
[X − Y ]t[Y ]t. (6.2)

Assuming that [Y ]t <∞, we have that [X − Y ]t → 0 implies [X]t → [Y ]t.

Lemma 6.3 Let Mn, n = 1, 2, 3, . . ., be square-integrable martingales with limn→∞E[(Mn(t)−
M(t))2] = 0 for all t. Then E [|[Mn]t − [M ]t|] → 0.

Proof. Since

E [|[Mn]t − [M ]t|] ≤ E [[Mn −M ]t] + 2E
[√

[Mn −M ]t[M ]t

]
≤ E [[Mn −M ]t] + 2

√
E [[Mn −M ]t]E [[M ]t],

we have the L1 convergence of the quadratic variation. �

Lemma 6.4 Suppose sups≤t |Xn(s) − X(s)| → 0 and sups≤t |Yn(s) − Y (s)| → 0 for each
t > 0, and supn Tt(Yn) <∞. Then

lim
n

[Xn, Yn]t = [X, Y ]t.

Proof. Note that Tt(Y ) ≤ supn Tt(Yn), and recall that

[Xn, Yn]t =
∑
s≤t

∆Xn(s)∆Yn(s).

We break the sum into two parts,∣∣∣ ∑
s≤t

|∆Xn(s)|≤ε

∆Xn(s)∆Yn(s)
∣∣∣ ≤ ε

∑
s≤t

|∆Yn(s)| ≤ εTt(Yn)

and ∑
s≤t,|∆Xn(s)|>ε

∆Xn(s)∆Yn(s).
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Since ∆Xn(s) → ∆X(s) and ∆Yn(s) → ∆Y (s), we have

lim sup |[Xn, Yn]t − [X, Y ]t| = lim sup |
∑

∆Xn(s)∆Yn(s)−
∑

∆X(s)∆Y (s)|
≤ ε(Tt(Yn) + Tt(Y )),

and the lemma follows. �

Lemma 6.5 Let Yi = Mi + Vi, Y
n
i = Mn

i + V n
i , i = 1, 2, n = 1, 2, . . . be semimartingales

with Mn
i a local square integrable martingale and V n

i finite variation. Suppose that there
exist stopping times γk such that γk →∞ as k →∞ and for each t ≥ 0,

lim
n→∞

E[(Mn
i (t ∧ γk)−Mi(t ∧ γk))

2] = 0,

and that for each t ≥ 0 supi,n Tt(V
n
i ) <∞ and

lim
n→∞

sup
s≤t

|V n
i (s)− Vi(s)| = 0.

Then [Y n
1 , Y

n
2 ]t → [Y1, Y2]t.

Proof. The result follows from Lemmas 6.3 and 6.4 by writing

[Y n
1 , Y

n
2 ]t = [Mn

1 ,M
n
2 ]t + [Mn

1 , V
n
2 ]t + [V n

1 , Y
n
2 ]t.

�

Lemma 6.5 provides the proof for the following.

Lemma 6.6 Let Yi be a semimartingale, Xi be cadlag and adapted, and

Zi(t) =

∫ t

0

Xi(s−)dYi(s) i = 1, 2

Then,

[Z1, Z2]t =

∫ t

0

X1(s−)X2(s−)d[Y1, Y2]s

Proof. First verify the identity for piecewise constant Xi. Then approximate general Xi by
piecewise constant processes and use Lemma 6.5 to pass to the limit. �

Lemma 6.7 Let X be cadlag and adapted and Y be a semimartingale. Then

lim
max |ti+1−ti|→0

∑
X(ti)(Y (ti+1 ∧ t)− Y (ti ∧ t))2 =

∫ t

0

X(s−)d[Y ]s. (6.3)

Proof. Let Z(t) =
∫ t

0
2Y (s−)dY (s). Observing that

(Y (ti+1 ∧ t)− Y (ti ∧ t))2 = Y 2(ti+1 ∧ t)− Y 2(ti ∧ t)− 2Y (ti)(Y (ti+1 ∧ t)− Y (ti ∧ t))

and applying Lemma 5.16, we see that the left side of (6.3) equals∫ t

0

X(s−)dY 2(s)−
∫ t

0

2X(s−)Y (s−)dY (s) =

∫ t

0

X(s−)d(Y 2(s)− Z(s)) ,

and since [Y ]t = Y 2(t)− Y 2(0)−
∫ t

0
2Y (s−)dY (s), the lemma follows. �

37



6.3 Ito’s formula.

Theorem 6.8 Let f ∈ C2, and let Y be a semimartingale. Then

f (Y (t)) = f (Y (0)) +

∫ t

0

f ′ (Y (s−)) dY (s) (6.4)

+

∫ t

0

1

2
f ′′ (Y (s−)) d[Y ]s

+
∑
s≤t

(f (Y (s))− f (Y (s−))− f ′ (Y (s−)) ∆Y (s)

−1

2
f ′′ (Y (s−)) (∆Y (s))2 ).

Remark 6.9 Observing that the discontinuities in [Y ]s satisfy ∆[Y ]s = ∆Y (s)2, if we define
the continuous part of the quadratic variation by

[Y ]ct = [Y ]t −
∑
s≤t

∆Y (s)2,

then (6.4) becomes

f (Y (t)) = f (Y (0)) +

∫ t

0

f ′ (Y (s−)) dY (s) (6.5)

+

∫ t

0

1

2
f ′′ (Y (s−)) d[Y ]cs

+
∑
s≤t

(f (Y (s))− f (Y (s−))− f ′ (Y (s−)) ∆Y (s))

Proof. Define

Γf (x, y) =
f(y)− f(x)− f ′(x)(y − x)− 1

2
f ′′(x)(y − x)2

(y − x)2

Then

f (Y (t)) = f (Y (0)) +
∑

f (Y (ti+1))− f (Y (ti)) (6.6)

= f (Y (0)) +
∑

f ′ (Y (ti)) (Y (ti+1)− Y (ti))

+
1

2

∑
f ′′ (Y (ti)) (Y (ti+1)− Y (ti))

2

+
∑

Γf (Y (ti), Y (ti+1)) (Y (ti+1)− Y (ti))
2 .

The first three terms on the right of (6.6) converge to the corresponding terms of (6.4) by
previous lemmas. Note that the last term in (6.4) can be written∑

s≤t

Γf (Y (s−), Y (s))∆Y (s)2. (6.7)

To show convergence of the remaining term, we need the following lemma.
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Lemma 6.10 Let X be cadlag. For ε > 0, let Dε(t) = {s ≤ t : |∆X(s)| ≥ ε}. Then

lim sup
max |ti+1−ti|→0

max
(ti,ti+1]∩Dε(t)=∅

|X(ti+1)−X(ti)| ≤ ε.

(i.e. by picking out the sub-intervals with the larger jumps, the remaining intervals have the
above property.) (Recall that ∆X(s) = X(s)−X(s−) )

Proof. Suppose not. Then there exist an < bn ≤ t and s ≤ t such that an → s, bn → s,
(an, bn] ∩Dε(t) = ∅ and lim sup |X(bn)−X(an)| > ε. That is, suppose

lim sup
m→∞

max
(tmi ,tmi+1]∩Dε(t)=∅

|X(tmi+1)−X(ti)
m| > δ > ε

Then there exists a subsequence in (tmi , t
m
i+1]i,m such that |X(tmi+1)−X(tmi )| > δ. Selecting a

further subsequence if necessary, we can obtain a sequence of intervals {(an, bn]} such that
|X(an) − X(bn)| > δ and an, bn → s. Each interval satisfies an < bn < s, s ≤ an < bn, or
an < s ≤ bn. If an infinite subsequence satisfies the first condition, then X(an) → X(s−) and
X(bn) → X(s−) so that |X(bn)−X(an)| → 0. Similarly, a subsequence satisfying the second
condition gives |X(bn) − X(an)| → 0 since X(bn) → X(s) and X(an) → X(s). Finally, a
subsequence satisfying the third condition satisfies |X(bn) − X(an)| → |X(s) − X(s−)| =
|∆X(s)| ≥ δ > ε, and the contradiction proves the lemma. �

Proof of Theorem 6.8 continued. Assume f ∈ C2 and suppose f ′′ is uniformly con-
tinuous. Let γf (ε) ≡ sup|x−y|≤ε Γf (x, y). Then γf (ε) is a continuous function of ε and
limε→0 γf (ε) = 0. Let Dε(t) = {s ≤ t : |Y (s)− Y (s−)| ≥ ε}. Then∑

Γf (Y (ti), Y (ti+1)) (Y (ti+1)− Y (ti))
2

=
∑

(ti,ti+1]∩Dε(t) 6=∅

Γf (Y (ti), Y (ti+1)) (Y (ti+1)− Y (ti))
2

+
∑

(ti,ti+1]∩Dε(t)=∅

Γf (Y (ti), Y (ti+1)) (Y (ti+1)− Y (ti))
2 ,

where the second term on the right is bounded by

e({ti}, Y ) ≡ γf

(
max

(ti,ti+1]∩Dε(t)=∅
|Y (ti+1)− Y (ti)|

)∑
(Y (ti+1)− Y (ti))

2

and
lim sup

max |ti+1−ti|→0

e({ti}, Y ) ≤ γf (ε)[Y ]t.

It follows that

lim sup |
∑

Γf (Y (ti), Y (ti+1)) (Y (ti+1)− Y (ti))
2 −

∑
Γf (Y (s−), Y (s))∆Y (s)2|

≤ 2γf (ε)[Y ]t

which completes the proof of the theorem. �
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6.4 The product rule and integration by parts.

Let X and Y be semimartingales. Then

X(t)Y (t) = X(0)Y (0) +
∑

(X(ti+1)Y (ti+1)−X(ti)Y (ti))

= X(0)Y (0) +
∑

X(ti) (Y (ti+1)− Y (ti)) +
∑

Y (ti) (X(ti+1)−X(ti))

+
∑

(Y (ti+1)− Y (ti)) (X(ti+1)−X(ti))

= X(0)Y (0) +

∫ t

0

X(s−)dY (s) +

∫ t

0

Y (s−)dX(s) + [X, Y ]t.

Note that this identity generalizes the usual product rule and provides us with a formula for
integration by parts.∫ t

0

X(s−)dY (s) = X(t)Y (t)−X(0)Y (0)−
∫ t

0

Y (s−)dX(s)− [X, Y ]t. (6.8)

Example 6.11 (Linear SDE.) As an application of (6.8), consider the stochastic differential
equation

dX = −αXdt+ dY

or in integrated form,

X(t) = X(0)−
∫ t

0

αX(s)ds+ Y (t).

We use the integrating factor eαt.

eαtX(t) = X(0) +

∫ t

0

eαtdX(s) +

∫ t

0

X(s−)deαs

= X(0)−
∫ t

0

αX(s)eαsds+

∫ t

o

eαsdY (s) +

∫ t

0

X(s)αeαsds

which gives

X(t) = X(0)e−αt +

∫ t

0

e−α(t−s)dY (s).

Example 6.12 (Kronecker’s lemma.) Let A be positive and nondecreasing, and limt→∞A(t) =
∞. Define

Z(t) =

∫ t

0

1

A(s−)
dY (s).

If limt→∞ Z(t) exists a.s., then limt→∞
Y (t)
A(t)

= 0 a.s.

Proof. By (6.8)

A(t)Z(t) = Y (t) +

∫ t

0

Z(s−)dA(s) +

∫ t

0

1

A(s−)
d[Y,A]s . (6.9)
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Rearranging (6.9) gives

Y (t)

A(t)
= Z(t)− 1

A(t)

∫ t

0

Z(s−)dA(s) +
1

A(t)

∑
s≤t

∆Y (s)

A(s−)
∆A(s). (6.10)

Note that the difference between the first and second terms on the right of (6.10) converges

to zero. Convergence of Z implies limt→∞
∆Y (t)
A(t−)

= 0, so the third term on the right of (6.10)
converges to zero giving the result. �

6.5 Itô’s formula for vector-valued semimartingales.

Let Y (t) = (Y1(t), Y2(t), ...Ym(t))T (a column vector). The product rule given above is a
special case of Itô’s formula for a vector-valued semimartingale Y . Let f ∈ C2(Rm). Then

f (Y (t)) = f (Y (0)) +
m∑

k=1

∫ t

0

∂kf (Y (s−)) dYk(s)

+
m∑

k,l=1

1

2

∫ t

0

∂k∂lf (Y (s−)) d[Yk, Yl]s

+
∑
s≤t

(f (Y (s))− f (Y (s−))−
m∑

k=1

∂kf (Y (s−)) ∆Yk(s)

−
m∑

k,l=1

1

2
∂k∂lf (Y (s−)) ∆Yk(s)∆Yl(s)),

or defining

[Yk, Yl]
c
t = [Yk, Yl]t −

∑
s≤t

∆Yk(s)∆Yl(s), (6.11)

we have

f (Y (t)) = f (Y (0)) +
m∑

k=1

∫ t

0

∂kf (Y (s−)) dYk(s) (6.12)

+
m∑

k,l=1

1

2

∫ t

0

∂k∂lf (Y (s−)) d[Yk, Yl]
c
s

+
∑
s≤t

(f (Y (s))− f (Y (s−))−
m∑

k=1

∂kf (Y (s−)) ∆Yk(s)).
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7 Stochastic Differential Equations

7.1 Examples.

The standard example of a stochastic differential equation is an Itô equation for a diffusion
process written in differential form as

dX(t) = σ(X(t))dW (t) + b(X(t))dt

or in integrated form as

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds (7.1)

If we define Y (t) =
(
W (t), t

)T

and F (X) =
(
σ(X), b(X)

)
, then (7.1) can be written as

X(t) = X(0) +

∫ t

0

F (X(s−))dY (s) . (7.2)

Similarly, consider the stochastic difference equation

Xn+1 = Xn + σ(Xn)ξn+1 + b(Xn)h (7.3)

where the ξi are iid and h > 0. If we define Y1(t) =
∑[t/h]

k=1 ξk, Y2(t) = [t/h]h, and X(t) =
X[t/h], then

X(t) = X(0) +

∫ t

0

(
σ(X(s−)), b(X(s−))

)
dY (s)

which is in the same form as (7.2). With these examples in mind, we will consider stochastic
differential equations of the form (7.2) where Y is an Rm-valued semimartingale and F is a
d×m matrix-valued function.

7.2 Gronwall’s inequality and uniqueness for ODEs.

Of course, systems of ordinary differential equations are of the form (7.2), and we begin our
study by recalling the standard existence and uniqueness theorem for these equations. The
following inequality will play a crucial role in our discussion.

Lemma 7.1 (Gronwall’s inequality.) Suppose that A is cadlag and non-decreasing, X is
cadlag, and that

0 ≤ X(t) ≤ ε+

∫ t

0

X(s−)dA(s) . (7.4)

Then
X(t) ≤ εeA(t).
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Proof. Iterating (7.4), we have

X(t) ≤ ε+

∫ t

0

X(s−)dA(s)

≤ ε+ εA(t) +

∫ t

0

∫ s−

0

X(u−)dA(u)dA(s)

≤ ε+ εA(t) + ε

∫ t

0

A(s−)dA(s) +

∫ t

0

∫ s−

0

∫ u−

0

X(σ−)dA(σ)dA(u)dA(s)

Since A is nondecreasing, it must be of finite variation, making [A]ct ≡ 0. Ito’s formula thus
yields

eA(t) = 1 +

∫ t

0

eA(s−)dA(s) + Σs≤t(e
A(s) − eA(s−) − eA(s−)∆A(s))

≥ 1 +

∫ t

0

eA(s−)dA(s)

≥ 1 + A(t) +

∫ t

0

∫ s−

0

eA(u−)dA(u)dA(s)

≥ 1 + A(t) +

∫ t

0

A(s−)dA(s) +

∫ t

0

∫ s−

0

∫ u−

0

eA(v−)dA(v)dA(u)dA(s) .

Continuing the iteration, we see that X(t) ≤ εeA(t). �

Theorem 7.2 (Existence and uniqueness for ordinary differential equations.) Consider the
ordinary differential equation in Rd

Ẋ =
dX

dt
= F (X)

or in integrated form,

X(t) = X(0) +

∫ t

0

F (X(s))ds. (7.5)

Suppose F is Lipschitz, that is, |F (x) − F (y)| ≤ L|x − y| for some constant L. Then for
each x0 ∈ Rd, there exists a unique solution of (7.5) with X(0) = x0.

Proof. (Uniqueness) Suppose Xi(t) = Xi(0) +
∫ t

0
F (Xi(s))ds, i = 1, 2

|X1(t)−X2(t)| ≤ |X1(0)−X2(0)|+
∫ t

0

|F (X1(s))− F (X2(s))|ds

≤ |X1(0)−X2(0)|+
∫ t

0

L|X1(s)−X2(s)|ds

By Gronwall’s inequality (take A(t) = Lt)

|X1(t)−X2(t)| ≤ |X1(0)−X2(0)|etL.

Hence, if X1(0) = X2(0), then X1(t) ≡ X2(t). �
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7.3 Uniqueness of solutions of SDEs.

We consider stochastic differential equations of the form

X(t) = U(t) +

∫ t

0

F (X(s−))dY (s). (7.6)

where Y is an Rm-valued semimartingale, U is a cadlag, adapted Rd-valued process, and
F : Rd → Md×m.

We will need the following generalization of Lemma 5.12.

Lemma 7.3 Let Y be a semimartingale, X be a cadlag, adapted process, and τ be a finite
stopping time. Then for any stopping time σ for which E[[M ](τ+t)∧σ] <∞,

P{sup
s≤t

|
∫ τ+s

τ

X(u−)dY (u)| > K} (7.7)

≤ P{σ ≤ τ + t}+ P{ sup
τ≤s<τ+t

|X(s)| > c}+
16c2E[[M ](τ+t)∧σ − [M ]τ∧σ]

K2

+P{Tτ+t(V )− Tτ (V ) ≥ (2c)−1K}.

Proof. The proof is the same as for Lemma 5.12. The strict inequality in the second term
on the right is obtained by approximating c from above by a decreasing sequence cn. �

Theorem 7.4 Suppose that there exists L > 0 such that

|F (x)− F (y)| ≤ L|x− y|.

Then there is at most one solution of (7.6).

Remark 7.5 One can treat more general equations of the form

X(t) = U(t) +

∫ t

0

F (X, s−)dY (s) (7.8)

where F : DRd [0,∞) → DMd×m [0,∞) and satisfies

sup
s≤t

|F (x, s)− F (y, s)| ≤ L sup
s≤t

|x(s)− y(s)| (7.9)

for all x, y ∈ DRd [0,∞) and t ≥ 0. Note that, defining xt by xt(s) = x(s ∧ t), (7.9) implies
that F is nonanticipating in the sense that F (x, t) = F (xt, t) for all x ∈ DRd [0,∞) and all
t ≥ 0.

Proof. It follows from Lemma 7.3 that for each stopping time τ satisfying τ ≤ T a.s. for
some constant T > 0 and t, δ > 0, there exists a constant Kτ (t, δ) such that

P{sup
s≤t

|
∫ τ+s

τ

X(u−)dY (u)| ≥ Kτ (t, δ)} ≤ δ
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for all cadlag, adapted X satisfying |X| ≤ 1. (Take c = 1 in (7.7).) Furthermore, Kτ can be
chosen so that for each δ > 0, limt→0Kτ (t, δ) = 0.

Suppose X and X̃ satisfy (7.6). Let τ0 = inf{t : |X(t) − X̃(t)| > 0}, and suppose
P{τ0 <∞} > 0. Select r, δ, t > 0, such that P{τ0 < r} > δ and LKτ0∧r(t, δ) < 1. Note that
if τ0 <∞, then

X(τ0)− X̃0(τ0) =

∫ τ0

0

(F (X(s−))− F (X̃(s−))dY (s) = 0. (7.10)

Define
τε = inf{s : |X(s)− X̃(s)| ≥ ε}.

Noting that |X(s)− X̃(s)| ≤ ε for s < τε, we have

|F (X(s))− F (X̃(s))| ≤ εL,

for s < τε, and

|
∫ τε

0

(F (X(s−))− F (X̃(s−))dY (s)| = |X(τε)− X̃(τε)| ≥ ε.

Consequently, for r > 0, letting τ r
0 = τ0 ∧ r, we have

P{τε − τ r
0 ≤ t}

≤ P{ sup
s≤t∧(τε−τr

0 )

|
∫ τr

0 +s

0

F (X(u−))dY (u)−
∫ τr

0 +s

0

F (X̃(u−))dY (u)| ≥ εLKτr
0
(t, δ)}

≤ δ.

Since the right side does not depend on ε and limε→0 τε = τ0, it follows that P{τ0 − τ0 ∧ r <
t} ≤ δ and hence that P{τ0 < r} ≤ δ, contradicting the assumption on δ and proving that
τ0 = ∞ a.s.

�

7.4 A Gronwall inequality for SDEs

Let Y be an Rm-valued semimartingale, and let F : Rd → Md×m satisfy |F (x) − F (y)| ≤
L|x− y|. For i = 1, 2, let Ui be cadlag and adapted and let Xi satisfy

Xi(t) = Ui(t) +

∫ t

0

F (Xi(s−))dY (s). (7.11)

Lemma 7.6 Let d = m = 1. Suppose that Y = M + V where M is a square-integrable
martingale and V is a finite variation process. Suppose that there exist δ > 0 and R > 0
such that supt |∆M(t)| ≤ δ, supt |∆V (t)| ≤ 2δ and Tt(V ) ≤ R, and that c(δ, R) ≡ (1 −
12L2δ2 − 6L2Rδ) > 0. Let

A(t) = 12L2[M ]t + 3L2RTt(V ) + t, (7.12)
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and define γ(u) = inf{t : A(t) > u}. (Note that the “t” on the right side of (7.12) only
serves to ensure that A is strictly increasing.) Then

E[ sup
s≤γ(u)

|X1(s)−X2(s)|2] ≤
3

c(δ, R)
e

u
c(δ,R)E[ sup

s≤γ(u)

|U1(s)− U2(s)|2]. (7.13)

Proof. Note that

|X1(t)−X2(t)|2 ≤ 3|U1(t)− U2(t)|2 (7.14)

+3|
∫ t

0

(F (X1(s−))− F (X2(s−)))dM(s)|2

+3|
∫ t

0

(F (X1(s−))− F (X2(s−)))dV (s)|2.

Doob’s inequality implies

E[ sup
t≤γ(u)

|
∫ t

0

(F (X1(s−))− F (X2(s−)))dM(s)|2] (7.15)

≤ 4E[

∫ γ(u)

0

|F (X1(s−))− F (X2(s−))|2d[M ]],

and Jensen’s inequality implies

E[ sup
t≤γ(u)

|
∫ t

0

(F (X1(s−))− F (X2(s−)))dV (s)|2] (7.16)

≤ E[Tγ(u)(V )

∫ γ(u)

0

|F (X1(s−))− F (X2(s−))|2dTs(V )].

Letting Z(t) = sups≤t |X1(s)−X2(s)|2 and using the Lipschitz condition and the assumption
that Tt(V ) ≤ R it follows that

E[Z ◦ γ(u)] ≤ 3E[ sup
s≤γ(u)

|U1(s)− U2(s)|2] (7.17)

+12L2E[

∫ γ(u)

0

|X1(s−)−X2(s−)|2d[M ]]

+3L2RE[

∫ γ(u)

0

|X1(s−)−X2(s−)|2dTs(V )]

≤ 3E[ sup
s≤γ(u)

|U1(s)− U2(s)|2]

+E[

∫ γ(u)

0

Z(s−)dA(s)]

≤ 3E[ sup
s≤γ(u)

|U1(s)− U2(s)|2]

+E[(A ◦ γ(u)− u)Z ◦ γ(u−)] + E[

∫ u

0

Z ◦ γ(s−)ds].
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Since 0 ≤ A ◦ γ(u)− u ≤ supt ∆A(t) ≤ 12L2δ2 + 6L2Rδ, (7.12) implies

c(δ, R)E[Z ◦ γ(u)] ≤ 3E[ sup
s≤γ(u)

|U1(s)− U2(s)|2] +

∫ u

0

E[Z ◦ γ(s−)]ds,

and (7.13) follows by Gronwall’s inequality.
Note that the above calculation is valid only if the expectations on the right of (7.15)

and (7.16) are finite. This potential problem can be eliminated by defining τK = inf{t :
|X1(t)−X2(t)| ≥ K} and replacing γ(u) by γ(u)∧τK . Observing that |X1(s−)−X2(s−)| ≤ K
for s ≤ τK , the estimates in (7.17) imply (7.13) with γ(u) replaced by γ(u) ∧ τK . Letting
K →∞ gives (7.13) as originally stated. �

Lemma 7.6 gives an alternative approach to proving uniqueness.

Lemma 7.7 Let d = m = 1, and let U = U1 = U2 in (7.11). Then there is a stopping time
σ depending only on Y such that P{σ > 0} = 1 and X1(t) = X2(t) for t ∈ [0, σ].

Proof Let τ1 = inf{t > 0 : |∆Y (t)| > δ} and define Ŷ by

Ŷ (t) =

{
Y (t) t < τ1
Y (t−) t ≥ τ1.

Then Ŷ is a semimartingale satisfying supt |∆Y (t)| ≤ δ and hence by Lemma 5.8, Ŷ can be
written as Ŷ = M̂ + V̂ where M̂ is a local square-integrable martingale with |∆M̂(t)| ≤ δ
and V̂ is finite variation with |∆V̂ (t)| ≤ 2δ. Let τ2 = inf{t : |M̂(t)| ≥ K} and, noting that
|M̂(t)| ≤ K + δ for t ≤ τ2, we have that M̂ τ2 ≡ M̂(· ∧ τ2) is a square-integrable martingale.
Finally, let τ3 = inf{t : Tt(V̂ ) > R} and define

ˆ̂
V (t) =

{
V̂ (t) t < τ3
V̂ (t−) t ≥ τ3

and
ˆ̂
Y = M̂ τ2 +

ˆ̂
V . Note that

ˆ̂
Y satisfies the conditions of Lemma 7.6 and that Y (t) =

ˆ̂
Y (t)

for t < σ ≡ τ1 ∧ τ2 ∧ τ3. Setting

ˆ̂
X i(t) =

{
Xi(t) t < σ
Xi(t−) t ≥ σ

and defining
ˆ̂
U similarly, we see that

ˆ̂
X i(t) =

ˆ̂
U(t) +

∫ t

0

F (
ˆ̂
X i(s−))d

ˆ̂
Y (s).

By Lemma 7.6, X1(t) =
ˆ̂
X1(t) =

ˆ̂
X2(t) = X2(t) for t < σ. Since Xi(σ) = Xi(σ−) +

F (Xi(σ−))∆Y (σ), we see that X1(σ) = X2(σ) as well. �

Proposition 7.8 . Let d = m = 1, and let U = U1 = U2 in (7.11). Then X1 = X2 a.s.

Proof. Let η = inf{t : X1(t) 6= X2(t)}. For any T < ∞, X1(T ∧ η) = X2(T ∧ η). But
“starting over” at T ∧ η, Lemma 7.7 implies that there is a stopping time η̂ > T ∧ η such
that X1(t) = X2(t) for t ≤ η̂, and hence P{η > T} = 1. But T is arbitrary, so η = ∞. �

Remark 7.9 The proof of these results for d,m > 1 is essentially the same with different
constants in the analogue of Lemma 7.6.
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7.5 Existence of solutions.

If X is a solution of (7.6), we will say that X is a solution of the equation (U, Y, F ). Let
Y c be defined as in Lemma 5.18. If we can prove existence of a solution Xc of the equation
(U, Y c, F ) (that is, of (7.6) with Y replaced by Y c), then since Y c(t) = Y (t) for t < σc,
we have existence of a solution of the original equation on the interval [0, σc). For c′ > c,
suppose Xc′ is a solution of the equation (U, Y c′ , F ). Define X̂c(t) = Xc′(t) for t < σc

and X̂c(t) = F (Xc′(σc−))∆Y c(σc) for t ≥ σc. Then X̂c will be a solution of the equation
(U, Y c, F ). Consequently, if for each c > 0, existence and uniqueness holds for the equation
(U, Y c, F ), then Xc(t) = Xc′(t) for t < σc and c′ > c, and hence, X(t) = limc→∞Xc(t) exists
and is the unique solution of the equation (U, Y, F ).

With the above discussion in mind, we consider the existence problem under the hypothe-
ses that Y = M + V with |M |+ [M ] + T (V ) ≤ R. Consider the following approximation:

Xn(0) = X(0)

Xn(
k + 1

n
) = Xn(

k

n
) + U(

k + 1

n
)− U(

k

n
) + F (X(

k

n
))(Y (

k + 1

n
)− Y (

k

n
)).

Let ηn(t) = k
n

for k
n
≤ t < k+1

n
. Extend Xn to all t ≥ 0 by setting

Xn(t) = U(t) +

∫ t

0

F (Xn ◦ ηn(s−))dY (s) .

Adding and subtracting the same term yields

Xn(t) = U(t) +

∫ t

0

(F (Xn ◦ ηn(s−))− F (Xn(s−)))dY (s) +

∫ t

0

F (Xn(s−))dY (s)

≡ U(t) +Dn(t) +

∫ t

0

F (Xn(s−))dY (s).

Assume that |F (x)−F (y)| ≤ L|x− y|, and for b > 0, let γb
n = inf{t : |F (Xn(t))| ≥ b}. Then

for T > 0,

E[ sup
s≤γb

n∧T

|Dn(s)|2] ≤ 2E[ sup
t≤γb

n∧T

(

∫ t

0

(F (Xn ◦ ηn(s−))− F (Xn(s−)))dM(s))2]

+2E[ sup
t≤γb

n∧T

(

∫ t

0

(F (Xn ◦ ηn(s−))− F (Xn(s−)))dV (s))2]

≤ 8L2E[

∫ γb
n∧T

0

|Xn ◦ ηn(s−)−Xn(s−)|2d[M ]s]

+2RL2E[

∫ γb
n∧T

0

|Xn ◦ ηn(s−)−Xn(s−)|2dTs(V )]

= 8L2E[

∫ γb
n∧T

0

F 2(Xn ◦ ηn(s−))(Y (s−)− Y (ηn(s−)))2d[M ]s]

+2RL2E[

∫ γb
n∧T

0

F 2(Xn ◦ ηn(s−))(Y (s−)− Y (ηn(s−)))2dTs(V )]
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= 8L2b2E[

∫ γb
n∧T

0

(Y (s−)− Y (ηn(s−)))2d[M ]s]

+2RL2b2E[

∫ γb
n∧T

0

(Y (s−)− Y (ηn(s−)))2dTs(V )] ,

so under the boundedness assumptions on Y ,

E[ sup
s≤γb

n∧T

|Dn(s)|2] → 0.

Now assume that F is bounded, sup |∆M(s)| ≤ δ, sup |∆V (s)| ≤ 2δ, Tt(V ) ≤ R, and
that L, δ, and R satisfy the conditions of Lemma 7.6. Since

Xn(t) = U(t) +Dn(t) +

∫ t

0

F (Xn(s−))dY (s),

Lemma 7.6 implies {Xn} is a Cauchy sequence and converges uniformly in probability to a
solution of

X(t) = U(t) +

∫ t

0

F (X(s−))dY (s) .

A localization argument gives the following theorem.

Theorem 7.10 Let Y be an Rm-valued semimartingale, and let F : Rd → Md×m be bounded
and satisfy |F (x)− F (y)| ≤ L|x− y|. Then for each X(0) there exists a unique solution of

X(t) = U(t) +

∫ t

0

F (X(s−))dY (s). (7.18)

The assumption of boundedness in the above theorem can easily be weakened. For general
Lipschitz F , the theorem implies existence and uniqueness up to τk = inf{t : |F (x(s)| ≥ k}
(replace F by a bounded function that agrees with F on the set {x : |F (x)| ≤ k}). The
global existence question becomes whether or not limk τk = ∞? F is locally Lispchitz if for
each k > 0, there exists an Lk, such that

|F (x)− F (y)| ≤ Lk|x− y| ∀|x| ≤ k, |y| ≤ k.

Note that if F is locally Lipschitz, and ρk is a smooth nonnegative function satisfying
ρk(x) = 1 when |x| ≤ k and ρk(x) = 0 when |x| ≥ k + 1, then Fk(x) = ρk(x)F (x) is globally
Lipschitz and bounded.

Example 7.11 Suppose

X(t) = 1 +

∫ t

0

X(s)2ds .

Then F (x) = x2 is locally Lipschitz and local existence and uniqueness holds; however, global
existence does not hold since X hits ∞ in finite time.
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7.6 Moment estimates.

Consider the scalar Itô equation

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds.

Then by Itô’s formula and Lemma 5.16,

X(t)2 = X(0)2 +

∫ t

0

2X(s)σ(X(s))dW (s)

+

∫ t

0

2X(s)b(X(s))ds+

∫ t

0

σ2(X(s))ds .

Define τk = inf{t : |X(t)| ≥ k}. Then

|X(t ∧ τk)|2 = |X(0)|2 +

∫ t∧τk

0

2X(s)σ(X(s))dW (s)

+

∫ t∧τk

0

(2X(s)b(X(s)) + σ2(X(s)))ds .

Since ∫ t∧τk

0

2X(s)σ(X(s))dW (s) =

∫ t

0

1[0,τk)2X(s)σ(X(s))dW (s)

has a bounded integrand, the integral is a martingale. Therefore,

E[|X(t ∧ τk)|2] = E[|X(0)|2] +

∫ t

0

E[1[0,τk)(2X(s)b(X(s)) + σ2(X(s)))]ds .

Assume (2xb(x) + σ2(x)) ≤ K1 +K2|x|2 for some Ki > 0. (Note that this assumption holds
if both b(x) and σ(x) are globally Lipschitz.) Then

mk(t) ≡ E[|X(t ∧ τk)|2]

= E|X(0)|2 +

∫ t

0

E{1[0,τk)[2X(s)b(X(s)) + σ2(X(s))]}ds

≤ m0 +K1t+

∫ t

0

mk(s)K2ds

and hence
mk(t) ≤ (m0 +K1t)e

K2t.

Note that
|X(t ∧ τk)|2 = (I{τk>t}|X(t)|+ I{τk≤t}|X(τk)|)2,

and we have
k2P (τk ≤ t) ≤ E(|X(t ∧ τk)|2) ≤ (m0 +K1t)e

K2t.

Consequently, as k → ∞, P (τk ≤ t) → 0 and X(t ∧ τk) → X(t). By Fatou’s Lemma,
E|X(t)|2 ≤ (m0 +K1t)e

K2t.
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Remark 7.12 The argument above works well for moment estimation under other condi-
tions also. Suppose 2xb(x) + σ2(x) ≤ K1 − ε|x|2. (For example, consider the equation
X(t) = X(0)−

∫ t

0
αX(s)ds+W (t).) Then

eεt|X(t)|2 ≤ |X(0)|2 +

∫ t

0

eεs2X(s)σ(X(s))dW (s)

+

∫ t

0

eεs[2X(s)b(X(s)) + σ2(X(s))]ds+

∫ t

0

εeεs|X(s)|2ds

≤ |X(0)|2 +

∫ t

0

eεs2X(s)σ(X(s))dW (s) +

∫ t

0

eεsK1ds

≤ |X(0)|2 +

∫ t

0

eεs2X(s)σ(X(s))dW (s) +
K1

2
(eεt − 1),

and hence

eεtE[|X(t)|2] ≤ E[|X(0)|2] +
K1

ε
[eεt − 1].

Therefore,

E[|X(t)|2]] ≤ e−εtE[|X(0)|2] +
K1

ε
(1− e−εt),

which is uniformly bounded.

Consider a vector case example. Assume,

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds,

where σ is a d×m matrix, b is a d-dimensional vector, and W is an m-dimensional standard
Brownian motion. Then

|X(t)|2 =
d∑

i=1

|Xi(t)|2 = |X(0)|2 +
∑∫ t

0

2Xi(s)dXi(s) +
d∑

i=1

[Xi]t .

Define Zi(t) =
∑m

k=1

∫ t

0
σik(X(s))dWk(s) ≡

∑m
k=1 Uk where Uk =

∫ t

0
σik(X(s))dWk(s). Then

[Zi] =
∑

k,l[Uk, Ul], and

[Uk, Ul]t =

∫ t

0

σik(X(s))σil(X(s))d[Wk,Wl]s

=


0 k 6= l∫ t

0
σ2

ik(X(s))ds k = l

Consequently,

|X(t)|2 = |X(0)|2 +

∫ t

0

2X(s)
T

σ(X(s))dW (s)
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+

∫ t

0

[2X(s) · b(X(s)) +
∑
i,k

σ2
ik(X(s))]ds

= |X(0)|2 +

∫ t

0

2X(s)
T

σ(X(s))dW (s)

+

∫ t

0

(2X(s) · b(X(s)) + trace(σ(X(s))σ(X(s))
T

))ds .

As in the univariate case, if we assume,

2x · b(x) + trace(σ(x)σ(x)
T

) ≤ K1 − ε|x|2,

then E[|X(s)|2] is uniformly bounded.
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8 Stochastic differential equations for diffusion pro-

cesses.

8.1 Generator for a diffusion process.

Consider

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds,

where X is Rd-valued, W is an m-dimensional standard Brownian motion, σ is a d × m
matrix-valued function and b is an Rd-valued function. For a C2 function f ,

f(X(t)) = f(X(0)) +
d∑

i=1

∫ t

0

∂if(X(s))dX(s)

+
1

2

∑
1≤i,j≤d

∫ t

0

∂i∂jf(X(s))d[Xi, Xj]s.

The covariation satisfies

[Xi, Xj]t =

∫ t

0

∑
k

σi,k(X(s))σj,k(X(s))ds =

∫ t

0

ai,j(X(s))ds,

where a = ((ai,j)) = σ · σT , that is ai,j(x) =
∑

k σik(x)σkj(x). If we denote

Lf(x) =
d∑

i=1

bi(x)∂if(x) +
1

2

∑
i,j

ai,j(x)∂i∂jf(x),

then

f(X(t)) = f(X(0)) +

∫ t

0

∇fT (X(s))σ(X(s))dW (s)

+

∫ t

0

Lf(X(s))ds .

Since
a = σ · σT ,

we have ∑
ξiξjai,j = ξTσσT ξ = |σT ξ|2 ≥ 0,

and hence a is nonnegative definite. Consequently, L is an elliptic differential operator. L
is called the differential generator or simply the generator for the corresponding diffusion
process.

Example 8.1 If
X(t) = X(0) +W (t),

then ((ai,j(x))) = I, and hence Lf(x) = 1
2
∆f(x).
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8.2 Exit distributions in one dimension.

If d = m = 1, then

Lf(x) =
1

2
a(x)f ′′(x) + b(x)f ′(x)

where
a(x) = σ2(x).

Find f such that Lf(x) = 0 (i.e., solve the linear first order differential equation for f ′).
Then

f(X(t)) = f(X(0)) +

∫ t

0

f ′(X(s))σ(X(s))dW (s)

is a local martingale. Fix a < b, and define τ = inf{t : X(t) /∈ (a, b)}. If supa<x<b |f ′(x)σ(x)| <
∞, then

f(X(t ∧ τ)) = f(X(0)) +

∫ t

0

1[0,τ)(s)f
′(X(s))σ(X(s))dW (s)

is a martingale, and
E[f(X(t ∧ τ))|X(0) = x] = f(x).

Moreover, if we assume supa<x<b f(x) <∞ and τ <∞ a.s. then letting t→∞ we have

E[f(X(τ))|X(0) = x] = f(x).

Hence
f(a)P (X(τ) = a|X(0) = x) + f(b)P (X(τ) = b|X(0) = x) = f(x),

and therefore the probability of exiting the interval at the right endpoint is given by

P (X(τ) = b|X(0) = x) =
f(x)− f(a)

f(b)− f(a)
. (8.1)

To find conditions under which P (τ <∞) = 1, or more precisely, under which E[τ ] <∞,
solve Lg(x) = 1. Then

g(X(t)) = g((X(0)) +

∫ t

0

g′(X(s))σ(X(s))dW (s) + t,

and assuming supa<x<b |g′(x)σ(x)| <∞, we conclude that the stochastic integral in

g(X(t ∧ τ)) = g(x) +

∫ t∧τ

0

g′(X(s))σ(X(s))dW (s) + t ∧ τ

is a martingale and hence

E[g(X(t ∧ τ))|X(0) = x] = g(x) + E[t ∧ τ ].

If
C = sup

a≤x≤b
|g(x)| <∞,

then 2C ≥ E[t ∧ τ ], so 2C ≥ E[τ ], which implies τ <∞ a.s. By (8.1), we also have

E[τ |X(0) = x] = E[g(X(τ))|X(0) = x]− g(x)

= g(b)
f(x)− f(a)

f(b)− f(a)
+ g(a)

f(b)− f(x)

f(b)− f(a)
− g(x)
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8.3 Dirichlet problems.

In the one-dimensional case, we have demonstrated how solutions of a boundary value prob-
lem for L were related to quantities of interest for the diffusion process. We now consider
the more general Dirichlet problem

Lf(x) = 0 x ∈ D

f(x) = h(x) x ∈ ∂D
(8.2)

for D ⊂ Rd.

Definition 8.2 A function f is Hölder continuous with Hölder exponent δ > 0 if

|f(x)− f(y)| ≤ L|x− y|δ

for some L > 0.

Theorem 8.3 Suppose D is a bounded, smooth domain,

inf
x∈D

∑
ai,j(x)ξiξj ≥ ε|ξ|2,

where ε > 0, and ai,j, bi, and h are Hölder continuous. Then there exists a unique C2

solution f of the Dirichlet problem (8.2).

To emphasize dependence on the initial value, let

X(t, x) = x+

∫ t

0

σ(X(s, x))dW (s) +

∫ t

0

b(X(s, x))ds. (8.3)

Define τ = τ(x) = inf{t : X(t, x) /∈ D}. If f is C2 and bounded and satisfies (8.2), we have

f(x) = E[f(X(t ∧ τ, x))],

and assuming τ <∞ a.s., f(x) = E[f(X(τ, x))]. By the boundary condition

f(x) = E[h(X(τ, x))] (8.4)

giving a useful representation of the solution of (8.2). Conversely, we can define f by (8.4),
and f will be, at least in some weak sense, a solution of (8.2). Note that if there is a C2,
bounded solution f and τ <∞, f must be given by (8.4) proving uniqueness of C2, bounded
solutions.

8.4 Harmonic functions.

If ∆f = 0 (i.e., f is harmonic) on Rd, and W is standard Brownian motion, then f(x+W (t))
is a martingale (at least a local martingale).
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8.5 Parabolic equations.

Suppose u is bounded and satisfies 
ut = Lu

u(0, x) = f(x).

By Itô’s formula, for a smooth function v(t, x),

v(t,X(t)) = v(0, X(0)) + (local) martingale+

∫ t

0

[vs(s,X(s)) + Lv(s,X(s))]ds.

For fixed r > 0, define
v(t, x) = u(r − t, x).

Then ∂
∂t
v(t, x) = −u1(r − t, x), where u1(t, x) = ∂

∂t
u(t, x). Since u1 = Lu and Lv(t, x) =

Lu(r − t, x), v(t,X(t)) is a martingale. Consequently,

E[u(r − t,X(t, x))] = u(r, x),

and setting t = r, E[u(0, X(r, x))] = u(r, x), that is ,we have

u(r, x) = E[f(X(r, x))].

8.6 Properties of X(t, x).

Assume now that

|σ(x)− σ(y)| ≤ K|x− y|, |b(x)− b(y)| ≤ K|x− y|

for some constant K. By arguments similar to those of Section 7.6, we can obtain the
estimate

E[|X(t, x)−X(t, y)|n] ≤ C(t)|x− y|n. (8.5)

Consequently, we have the following

Theorem 8.4 There is a version of X(t, x) such that the mapping (t, x) → X(t, x) is con-
tinous a.s.

Proof. The proof is based on Kolmogorov’s criterion for continuity of processes indexed by
Rd. �

8.7 Markov property.

Given a filtration {Ft}, W is called an {Ft}-standard Brownian motion if

1) W is {Ft}-adapted

2) W is a standard Brownian motion
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3) W (r + ·)−W (r) is independent of Fr.

For example, if W is an {Ft}-Brownian motion, then

E[f(W (t+ r)−W (r))|Fr] = E[f(W (t))].

Let Wr(t) ≡ W (r + t)−W (r). Note that Wr is an {Fr+t}- Brownian motion. We have

X(r + t, x) = X(r, x) +

∫ r+t

r

σ(X(s, x))dW (s) +

∫ r+t

r

b(X(s, x))ds

= X(r, x) +

∫ t

0

σ(X(r + s, x))dWr(s)

+

∫ t

0

b(X(r + s, x))ds.

Define Xr(t, x) such that

Xr(t, x) = x+

∫ t

0

σ(Xr(s, x))dWr(s) +

∫ t

0

b(Xr(s, x))ds.

ThenX(r+t, x) = Xr(t,X(r, x)). Intuitively, X(r+t, x) = Ht(X(r, x),Wr) for some function
H, and by the independence of X(r, x) and Wr,

E[f(X(r + t, x))|Fr] = E[f(Ht(X(r, x),Wr))|Fr]

= u(t,X(r, x)),

where u(t, z) = E[Ht(z,Wr)]. Hence

E[f(X(r + t, x))|Fr] = E[f(X(r + t, x))|X(r, x)],

that is, the Markov property holds for X.
To make this calculation precise, define

ηn(t) =
k

n
, for

k

n
≤ t <

k + 1

n
,

and let

Xn(t, x) = x+

∫ t

0

σ(Xn(ηn(s), x))dW (s) +

∫ t

0

b(Xn(ηn(s), x))ds.

Suppose that z ∈ CRm [0,∞). Then

Hn(t, x, z) = x+

∫ t

0

σ(Hn(ηn(s), x, z))dz(s) +

∫ t

0

b(Hn(ηn(s), x, z))ds

is well-defined. Note that Xn(t, x) = Hn(t, x,W ).
We also have

X(r + t, x) = Xr(t,X(r, x))

= lim
n→∞

Xn
r (t,X(r, x))

= lim
n→∞

Hn(t,X(r, x),Wr).
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and it follows that

E[f(X(r + t, x))|Fr] = lim
n→∞

E[f(Hn(t,X(r, x),Wr)|Fr]

= lim
n→n

E[f(Hn(t,X(r, x),Wr)|X(r, x)]

= E[f(X(r + t, x))|X(r, x)] .

8.8 Strong Markov property.

Theorem 8.5 Let W be an {Ft}-Brownian Motion and let τ be an {Ft} stopping time.
Define F τ

t = Fτ+t. Then Wτ (t) ≡ W (τ + t)−W (τ) is an {F τ
t } Brownian Motion.

Proof. Let

τn =
k + 1

n
, when

k

n
≤ τ <

k + 1

n
.

Then clearly τn > τ . We claim that

E[f(W (τn + t)−W (τn))|Fτn ] = E[f(W (t))].

Measurability is no problem, so we only need to check that for A ∈ Fτn∫
A

f(W (τn + t)−W (τn))dP = P (A)E[f(W (t))].

Observe that A ∩ {τn = k/n} ∈ Fk/n. Thus

LHS =
∑

k

∫
A∩{τn=k/n}

f(W (
k

n
+ t)−W (

k

n
))dP

=
∑

k

P (A ∩ {τn = k/n})E[f(W (
k

n
+ t)−W (

k

n
))]

=
∑

k

P (A ∩ {τn = k/n})E[f(W (t))]

= E[f(W (t))]P (A).

Note also that Fτn ⊃ Fτ . Thus

E[f(W (τn + t)−W (τn))|Fτ ] = E[f(W (t))].

Let n→∞ to get
E[f(W (τ + t)−W (τ))|Fτ ] = E[f(W (t))]. (8.6)

Since τ + s is a stopping time, (8.6) holds with τ replaced by τ + s and it follows that Wτ

has independent Gaussian increments and hence is a Brownian motion. �

Finally, consider

X(τ + t, x) = X(τ, x) +

∫ t

0

σ(X(τ + s, x))dWτ (s) +

∫ t

0

b(X(τ + s, x))ds.

By the same argument as for the Markov property, we have

E[f(X(τ + t, x))|Fτ ] = u(t,X(τ, x))

where u(t, x) = E[f(t, x)]. This identity is the strong Markov property.
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8.9 Equations for probability distributions.

We have now seen several formulas and assertions of the general form:

f (X(t))−
∫ t

0

Lf (X(s)) ds (8.7)

is a (local) martingale for all f in a specified collection of functions which we will denote
D(L), the domain of L. For example, if

dX = σ(X)dW + b(X)dt

and

Lf(x) =
1

2

∑
i

aij(x)
∂2

∂xi∂xj

f(x) +
∑

bi(x)
∂

∂xi

f(x) (8.8)

with
((aij(x))) = σ(x)σT (x),

then (8.7) is a martingale for all f ∈ C2
c (= D(L)). (C2

c denotes the C2 functions with
compact support.)

Markov chains provide another example. Suppose

X(t) = X(0) +
∑

lYl

(∫ t

0

βl (X(s)) ds

)
where {Yl} are independent unit Poisson processes. Define

Qf(x) = βl(x)
∑

l

(f(x+ l)− f(x)) .

Then

f (X(t))−
∫ t

0

Qf (X(s)) ds

is a (local) martingale.
Since f (X(t))−

∫ t

0
Lf (X(s)) ds is a martingale,

E [f(X(t))] = E [f(X(0)] + E

[∫ t

0

Lf(X(s))ds

]
= E [f(X(0))] +

∫ t

0

E [Lf(X(s))] ds.

Let νt(Γ) = P{X(t) ∈ Γ}. Then for all f in the domain of L, we have the identity∫
fdνt =

∫
fdν0 +

∫ t

0

∫
Lfdνsds, (8.9)

which is a weak form of the equation

d

dt
νt = L∗νt. (8.10)
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Theorem 8.6 Let Lf be given by (8.8) with a and b continuous, and let {νt} be probability
measures on Rd satisfying (8.9) for all f ∈ C2

c (Rd). If dX = σ(x)dW + b(x)dt has a unique
solution for each initial condition, then P{X(0) ∈ ·} = ν0 implies P{X(t) ∈ ·} = νt.

In nice situations, νt(dx) = pt(x)dx. Then L∗ should be a differential operator satisfying∫
Rd

pLfdx =

∫
Rd

fL∗pdx.

Example 8.7 Let d=1. Integrating by parts, we have∫ ∞

−∞
p(x)

(
1

2
a(x)f ′′(x) + b(x)f ′(x)

)
dx

=
1

2
p(x)a(x)f ′(x)

∣∣∣∣∞
−∞

−
∫ ∞

−∞
f ′(x)

(
1

2

d

dx
(a(x)p(x))− b(x)p(x)

)
dx.

The first term is zero, and integrating by parts again we have∫ ∞

−∞
f(x)

d

dx

(
1

2

d

dx
(a(x)p(x))− b(x)p(x)

)
dx

so

L∗p =
d

dx

(
1

2

d

dx
(a(x)p(x))− b(x)p(x)

)
.

Example 8.8 Let Lf = 1
2
f ′′ (Brownian motion). Then L∗p = 1

2
p′′, that is, L is self adjoint.

8.10 Stationary distributions.

Suppose
∫
Lfdπ = 0 for all f in the domain of L. Then∫

fdπ =

∫
fdπ +

∫ t

0

∫
Lfdπds,

and hence νt ≡ π gives a solution of (8.9). Under appropriate conditions, in particular, those
of Theorem 8.6, if P{X(0) ∈ ·} = π and f(X(t)) −

∫ t

0
Lf(X(s))ds is a martingale for all

f ∈ D(L), then we have P{X(t)} ∈ ·} = π, i.e. π is a stationary distribution for X.
Let d = 1. Assuming π(dx) = π(x)dx

d

dx

(
1

2

d

dx
(a(x)π(x))− b(x)π(x)

)
︸ ︷︷ ︸

this is a constant:
let the constant be 0

= 0,

so we have
1

2

d

dx
(a(x)π(x)) = b(x)π(x).
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Applying the integrating factor exp(−
∫ x

0
2b(z)/a(z)dz) to get a perfect differential, we have

1

2
e−

∫ x
0

2b(z)
a(z)

dz d

dx
(a(x)π(x))− b(x)e−

∫ x
0

2b(z)
a(z)

dzπ(x) = 0

a(x)e−
∫ x
0

2b(z)
a(z)

dzπ(x) = C

π(x) =
C

a(x)
e

∫ x
0

2b(z)
a(z)

dz.

Assume a(x) > 0 for all x. The condition for the existence of a stationary distribution is∫ ∞

−∞

1

a(x)
e

∫ x
0

2b(z)
a(z)

dzdx <∞.

8.11 Diffusion with a boundary.

(See Section 11.) Suppose

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds+ Λ(t)

with X(t) ≥ 0, and that Λ is nondecreasing and increasing only when X(t) = 0. Then

f(X(t))−
∫ t

0

Lf(X(s))ds

is a martingale, if f ∈ C2
c and f ′(0) = 0.∫ ∞

0

p(x)Lf(x)dx =

[
1

2
p(x)a(x)f ′(x)

]∞
0︸ ︷︷ ︸

=0

−
∫ ∞

0

f ′
(

1

2

d

dx
(a(x)p(x))− b(x)p(x)

)
dx

=

[
−f(x)

(
1

2

d

dx
(a(x)p(x))− b(x)p(x)

)]∞
0

+

∫ ∞

0

f(x)L∗p(x)dx

and hence

L∗p(x) =
d

dx

(
1

2

d

dx
(a(x)p(x))− b(x)p(x)

)
for p satisfying (

1

2
a′(0)− b(0)

)
p(0) +

1

2
a(0)p′(0) = 0 . (8.11)

The density for the distribution of the process should satisfy

d

dt
pt = L∗pt

and the stationary density satisfies

d

dx

(
1

2

d

dx
(a(x)π(x))− b(x)π(x)

)
= 0
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subject to the boundary condition (8.11). The boundary condition implies

1

2

d

dx
(a(x)π(x))− b(x)π(x) = 0

and hence
π(x) =

c

a(x)
e

∫ x
0

2b(z)
a(z)

dz, x ≥ 0.

Example 8.9 (Reflecting Brownian motion.) Let X(t) = X(0) + σW (t)− bt+ Λ(t), where
a = σ2 and b > 0 are constant. Then

π(x) =
2b

σ2
e−

2b
σ2 x,

so the stationary distribution is exponential.
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9 Poisson random measures

9.1 Poisson random variables

A random variable X has a Poisson distribution with parameter λ > 0 (we write X ∼
Poisson(λ)) if for each k ∈ {0, 1, 2, . . .}

P{X = k} =
λk

k!
e−λ.

From the definition it follows that E[X] = λ, V ar(X) = λ and the characteristic function of
X is given by

E[eiθX ] = eλ(eiθ−1).

Since the characteristic function of a random variable characterizes uniquely its distribution,
a direct computation shows the following fact.

Proposition 9.1 If X1, X2, . . . are independent random variables with Xi ∼ Poisson(λi)
and

∑∞
i=1 λi <∞, then

X =
∞∑
i=1

Xi ∼ Poisson

(
∞∑
i=1

λi

)

Proof. Since for each i ∈ {1, 2, . . .}, P (Xi ≥ 0) = 1, it follows that
∑k

i=0Xi is an increasing
sequence in k. Thus, X ≡

∑∞
i=1Xi exists. By the monotone convergence theorem

E[X] =
∞∑
i=1

E[Xi] =
∞∑
i=0

λi <∞,

and X is finite almost surely. Fix k ≥ 1. Then

E[eiθX ] = lim
k→∞

E

[
eiθ

k∑
i=1

Xi

]
= lim

k→∞
e(

∑k
i=1 λi)(e

iθ−1) = e(
∑∞

i=1 λi)(e
iθ−1),

and hence X ∼ Poisson (
∑∞

i=1 λi). �
Suppose in the last proposition

∑∞
i=1 λi = ∞. Then

P{X ≤ n} = lim
k→∞

P

{
k∑

i=1

Xi ≤ n

}
= lim

k→∞

n∑
i=0

1

i!

(
k∑

j=1

λj

)
exp

{
−

k∑
j=1

λj

}
= 0.

Thus P{X ≤ n} = 0 for every n ≥ 0. In other words, P{X < ∞} = 0, and
∑∞

i=1Xi ∼
Poisson(∞). From this we conclude the following result.

Corollary 9.2 If X1, X2, . . . are independent random variables with Xi ∼ Poisson(λi) then

∞∑
i=1

Xi ∼ Poisson

(
∞∑
i=1

λi

)
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9.2 Poisson sums of Bernoulli random variables

A random variable Y is said to be a Bernoulli with parameter p ∈ {0, 1] (we write Y ∼
Bernoulli(p)) if

P{Y = 1} = p , P{Y = 0} = 1− p.

Proposition 9.3 Let N ∼ Poisson(λ), and suppose that Y1, Y2, . . . are i.i.d. Bernoulli
random variables with parameter p ∈ [0, 1]. If N is independent of the Yi, then

∑N
i=0 Yi ∼

Poisson(λp).

Next, we present a natural generalization of the previous fact. For j = 1, . . . ,m, let ej

be the vector in Rm that has all its entries equal to zero, except for the jth which is 1.
For θ, y ∈ Rm, let

〈θ, y〉 =
m∑

j=1

θjyj.

Let Y = (Y1, ..., Ym), where the Yj are independent and s Yj ∼ Poisson(λj). Then the
characteristic function of Y has the form

E[ei〈θ,Y 〉] = exp

{
m∑

j=0

λj(e
iθj − 1)

}

Noting, as before, that the characteristic function of a Rm-valued random variable determines
its distribution we have the following:

Proposition 9.4 Let N ∼ Poisson(λ). Suppose that Y0, Y1, . . . are independent Rm-valued
random variables such that for all k ≥ 0 and j ∈ {1, . . . ,m}

P{Yk = ej} = pj,

where
∑m

j=1 pj = 1. Define X = (X1, ..., Xm) =
∑N

k=0 Yk. If N is independent of the Yk,
then X1, . . . , Xm are independent random variables and Xj ∼ Poisson(λpj).

Proof. Define X = (X1, . . . , Xm). Then, for arbitrary θ ∈ Rm, it follows that

E[ei〈θ,X〉] =
∑
k≥0

E

(
exp

{
i

k∑
j=1

〈Yj, θ〉

})
· P{N = k}

= e−λ
∑
k≥0

[
E(ei〈θ,Y1〉)

]k · λk

k!

= exp

{
m∑

j=1

λpj(e
iθj − 1)

}

From the last calculation we see that the coordinates of X must be independent and
Xj ∼ Poisson(λpj) as desired. �
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9.3 Poisson random measures

Let (E, E) be a measurable space, and let ν be a σ-finite measure on E . Let N (E) be the
collection of counting measures, that is, measures with nonnegative integer values, on E.
ξ is an N (E)-valued random variable on a probability space (Ω,F , P ) if for each ω ∈ Ω,
ξ(ω, ·) ∈ N (E) and for each A ∈ E , ξ(A) is a random variable with values in N∪ {∞}. (For
convenience, we will write ξ(A) instead of ξ(ω,A).)

An N (E)-valued random variable is a Poisson random measure with mean measure ν if

(i) For each A ∈ E , ξ(A) ∼ Poisson(ν(A)).

(ii) If A1, A2, . . . ∈ E are disjoint then ξ(A1), ξ(A2), . . . are independent random variables.

Clearly, ν determines the distribution of ξ provided ξ exists. We first show existence for
ν finite, and then we consider ν σ-finite.

Proposition 9.5 Suppose that ν is a measure on (E, E) such that ν(E) < ∞. Then there
exists a Poisson random measure with mean measure ν.

Proof. The case ν(E) = 0 is trivial, so assume that ν(E) ∈ (0,∞). Let N be a Poisson
random variable with defined on a probability space (Ω,F , P ) with E[N ] = ν(E). Let
X1, X2, . . . be iid E-valued random varible such that for every A ∈ E

P{Xj ∈ A} =
ν(A)

ν(E)
,

and assume that N is independent of the Xj.

Define ξ by ξ(A) =
∑N

k=0 1{Xk(ω)∈A}. In other words

ξ =
N∑

k=0

δXk

where, for each x ∈ E, δx is the Dirac mass at x.
Clearly, for each ω, ξ is a counting measure on E . To conclude that ξ is a Poisson

random measure, it is enough to check that given disjoint sets A1, . . . , Am ∈ E such that
∪m

i=1Ai = E, ξ(A1), . . . , ξ(Am) are independent and ξ(Ai) ∼ Poisson(ν(Ai)). For this, define
the Rm-valued random vectors

Zj = (1{Xj∈A1}, . . . ,1{Xj∈Am}).

Note that, for every j ≥ 0 and i ∈ {1, . . . ,m}, P{Zj = ei} = ν(Ai)
ν(E)

, since A1, . . . , Am partition
E. Since N and the Xj are mutually independent, it follows that N and the Zj are also.
Finally, since

(ξ(A1), . . . , ξ(Am)) =
N∑

j=1

Zj,

by Proposition 9.4, we conclude that ξ(A1), . . . , ξ(Am) are independent random variables
and ξ(Ai) ∼ Poisson(ν(Ai)). �

The existence of a Poisson random measure in the σ-finite case is a simple consequence
of the following kind of superposition result.
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Proposition 9.6 Suppose that ν1, ν2, . . . are finite measures defined on E, and that ν =∑∞
i=1 νi is σ-finite. For k = 1, 2, . . ., let ξk be a Poisson random measure with mean measure

νk, and assume that ξ1, ξ2, . . . are independent. Then ξ =
∑n

k=1 ξk defines a Poisson random
measure with mean measure ν.

Proof. By Proposition 9.5, for each i ≥ 1 there exists a probability space (Ωi,Fi, Pi) and
a Poisson random measure ξi on (Ωi,Fi, Pi) with mean measure νi. Consider the product
space (Ω,F , P ) where

Ω = Ω1 × Ω2 × . . .
F = F1 ×F2 × . . .
P = P1 × P2 × . . .

Note that any random variable Xi defined on (Ωi,Fi, Pi) can be viewed as a random variable
on (Ω,F , P ) by setting Xi(ω) = Xi(ωi). We claim the following:

(a) for A ∈ E and i ≥ 1, ξi(A) ∼ Poisson(νi(A)).

(b) if A1, A2, . . . ∈ E then ξ1(A1), ξ2(A2), . . . are independent random variables.

(c) ξ(A) =
∑∞

i=1 ξi(A) is a Poisson random measure with mean measure ν.

(a) and (b) are direct cosequences of the definitions. For (c), first note that ξ is a counting
measure in E for each fixed ω. Moreover, from (a), (b) and Corollary 9.2, we have that
ξ(A) ∼ Poisson(ν(A)). Now, suppose that B1, B2, . . . ∈ E are disjoint sets. Then, by (b)
it follows that the random variables ξ1(B1), ξ2(B1), . . . , ξ1(B2), ξ2(B2), . . . , ξ1(Bn), ξ2(Bn), . . .
are independent. Consequently, ξ(B1), ξ(B2), . . . are independet, and therefore, ξ is a Poisson
random measure with mean ν. �

Suppose now that ν is a σ-finite measure. By definition, there exist disjoint Ei such
that E = ∪∞i=1Ei and ν(Ei) < ∞ for all i ≥ 1. Now, for each i ≥ 1, consider the measure
νi defined on E by the formula νi(A) = ν(A ∩ Ei). Clearly each measure νi is finite and
ν =

∑∞
i=1 νi. Therefore, by Proposition 9.6 we have the following

Corollary 9.7 Suppose that ν is a σ-finite measure defined on E. Then there exists a
Poisson random measure with mean measure ν.

9.4 Integration w.r.t. a Poisson random measure

Let (Ω,F , P ) be a probability space and (E, E) be a measurable space. Let ν be a σ-finite
measure on (E, E), and let ξ be a Poisson random measure with mean measure ν. Recall
that for each ω ∈ Ω, ξ(ω, ·) is a counting measure on E . If f : E → R is a measurable
function with

∫
|f |dν <∞, then we claim that

ω →
∫

E

f(x)ξ(ω, dx)

is a R-valued random variable. Consider first simple functions defined on E, that is, f =∑n
j=1 cj1Aj

, where n ∈ N, c1, . . . , cn ∈ R, and A1, . . . , An ∈ E are such that ν(Aj) < ∞ for
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all j ∈ {1, . . . , n}. Then

Xf (ω) =

∫
E

f(x)ξ(ω, dx) =
n∑

j=0

cjξ(Aj)

is a random variable. Note that

E[Xf ] =

∫
E

fdν, E[|Xf |] ≤
∫

E

|f |dν, (9.1)

with equality holding if f ≥ 0. Recall that the spaces

L1(ν) = {h : E → R: h is measurable, and

∫
E

|h|dν <∞}

and
L1(P ) = {X : Ω → R : X is a random variable, and E[|X|] <∞}

are Banach spaces under the norms ‖h‖ =
∫

E
|h|dν and ‖X‖ = E[|X|] respectively. Since

the space of simple functions defined on E is dense in L1(ν), for f ∈ L1(ν), we can construct
a sequence of simple funtions fn such that fn → f pointwise and in L1 and |fn| ≤ |f |. It
follows that Xf (ω) =

∫
E
f(x)ξ(ω, dx) is a random variable satisfying (9.1).

As convenient, we will use any of the following to denote the integral.

Xf =

∫
E

f(x)ξ(dx) = 〈f, ξ〉.

From the interpretation of Xf as an ordinary integral, we have the following.

Proposition 9.8 Let f, g ∈ L1(ν).

(a) If f ≤ g ν-a.s., then Xf ≤ Xg P -a.s.

(b) If α ∈ R ν-a.s., then Xαf = αXf P -a.s.

(c) Xf+g = Xf +Xg P -a.s.

For A ∈ E , let FA = σ(ξ(B) : B ∈ E , B ⊂ A). Note that if A1 and A2 are disjoint,
then FA1 and FA2 are independent, that is, if H1 ∈ FA1 and H2 ∈ FA2 , then P (H1 ∩H2) =
P (H1)P (H2). In the proof of the previous result, we have used the following result.

Proposition 9.9 Suppose that f, g ∈ L1(ν) have disjoint supports i.e.
∫

E
|f | · |g|dν = 0.

Then Xf and Xg are independent.

Proof. Define A := {|f | > 0} and B := {|f | = 0}. Note that

Xf =

∫
A

f(x)ξ(dx)
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is FA-measurable and

Xg =

∫
g(x)ξ(dx) =

∫
B

g(x)ξ(dx) a.s.

where the right side is FB-measurable. Since FA and FB are independent, it follows that
Xf and Xg are independent. �

If ν has no atoms, then the support of ξ(ω, ·) has ν measure zero. Consequently, the
following simple consequence of the above observations may at first appear surprising.

Proposition 9.10 If f, g ∈ L1(ν) then

f = g ν-a.s. if and only if Xf = Xg P -a.s.

Proof. That the condition is sufficient follows directly from the linearity of Xf and (9.1).
For the converse, without lost of generality, we only need to prove that Xf = 0 P -a.s. implies
that f = 0 ν-a.s. Since f = f+ − f− where f+ = f1{f≥0} and f− = −f1{f<0}, it follows
that 0 = Xf = Xf+ −Xf− a.s. Note that Xf+ and Xf− are independent since the support
of f+ is disjoint from the support of f−. Consequently, Xf+ and Xf− must be equal a.s. to
the same constant. Similar analysis demonstrates that the constant must be zero, and we
have ∫

E

|f |dν =

∫
E

f+dν +

∫
E

f−dν = E[Xf+ ] + E[Xf− ] = 0.

�

9.5 Extension of the integral w.r.t. a Poisson random measure

We are going to extend our definition of Xf to a larger class of functions f . As motivation,

if ν is a finite measure, then, as we saw in the proof of Proposition 9.5, ξ =
∑N

k=1 δXk
is a

Poisson random measure with mean ν, whenever N ∼ Poisson(ν(E)) is independent of the

sequence of i.i.d. E-valued random variables X1, X2, . . . with P (Xi ∈ A) = ν(A)
ν(E)

. Now, given
any measurable function f : E → R, it is natural to define∫

E

f(x)ξ(dx) =
N∑

k=0

f(Xk),

and we want to ensure that this definition is consistent.

Proposition 9.11 If f : E → R is a simple function then for all a, b > 0

P{|Xf | ≥ b} ≤ 1

b

∫
E

|f | ∧ a dν +

(
1− exp

{
−a−1

∫
E

|f | ∧ a dν
})

Proof. First, notice that

P{|Xf | ≥ b} ≤ P{X|f | ≥ b} ≤ P{X|f |1{|f |≤a} ≥ b}+ P{X|f |1{|f |>a} > 0}
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But, by the Markov inequality,

P{X|f |1|f |≤a
≥ b} ≤ 1

b

∫
{|f |≤a}

|f |dν ≤ 1

b

∫
E

(|f | ∧ a)dν.

On the other hand, since P{X|f |1|f |>a
> 0} = P{ξ(|f | > a) > 0} and ξ{|f | > a} ∼

Poisson(ν{|f | > a}), we have

P{ξ(|f | > a) > 0} = 1− e−ν{|f |>a} ≤ 1− exp

{
−a−1

∫
E

|f | ∧ a dν
}
,

giving the desired result. �
Consider the vector space

L1,0(ν) = {f : E → R s.t. |f | ∧ 1 ∈ L1(ν)} .

Notice that L1(ν) ⊂ L1,0(ν). In particular, L1,0(ν) contains all simple functions defined on
E whose support has finite ν measure. Moreover, if ν is a finite measure then this vector
space is simple the space of all measurable functions. Given f, g ∈ L1.0(ν), we define the
distance between f and g as

d(f, g) =

∫
E

|f − g| ∧ 1 dν.

The function d defines a metric on L1,0(ν). Note that d does not come from any norm;
however, it is easy to check that

(a) d(f − g, p− q) = d(f − p, q − g)

(b) d(f − g, 0) = d(f, g)

Before considering the next simple but useful result, note that∫
E

|f | ∧ 1 dν =

∫
{|f |≤1}

|f |dν + ν{|f | > 1}

Hence, a function f belongs to L1,0(ν) if and only if both terms in the right side of the last
equality are finite.

Proposition 9.12 Under the metric d, the space of simple functions is dense in L1,0(ν).
Moreover, for every f ∈ L1,0(ν), there exists a sequence of simple functions {fn}, such that
|fn| ≤ |f | for every n, and {fn} converges pointwise and under d to f .

Proof. Let f ∈ L1,0(ν). First, suppose that f ≥ 0, and define

fn(x) =
n2n−1∑
k=0

1{k2−n≤f<(k+1)2−n} + 1{n2n≤f}. (9.2)
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Then {fn} is a nonnegative increasing sequence that converges pointwise to f and the
range(fn) is finite for all n. Consequently,∫

E

fndν =

∫
{f≤1}

fndν +

∫
{f>1}

fn ≤
∫
{f≤1}

fdν + n2nν{f > 1} <∞,

and for each n,
0 ≤ (f − fn) ∧ 1 ≤ (f ∧ 1) ∈ L1(ν).

Therefore, since limn→∞(f − fn) ∧ 1 = 0, by the bounded convergence theorem we can
conclude that limn→∞ d(f, fn) = 0.

For arbitrary f ∈ L1,0(ν), write f = f+ − f−. Define f+
n and f−n as in (9.2), and set

fn = f+
n − f−n . Since L1,0(ν) is linear and d is a metric,

d(f, fn) ≤ d(f+, f+
n ) + d(f−, f−n ),

and the proposition follows. �
Suppose that f ∈ L1,0(ν). By Proposition 9.12 there exist a sequence of simple functions

{fn} such that {fn} converges to f under d. But, from Proposition 9.11 with a = 1, we see
that for all n,m and b > 0,

P{|Xfn −Xfm| ≥ b} = P{|Xfn−fm| ≥ b} ≤ 1

b
d(fn, fm) + 1− e−d(fn,fm),

and we conclude that the sequence {Xfn} is Cauchy in probability. Therefore, there exists
a random variable Xf such that

Xf = lim
n→∞

Xfn ,

where the last limit is in probability. As we showed in Section 9.4, this limit does not depend
on the sequence of simple functions chosen to converge to f . Therefore, for every f ∈ L1,0(ν),
Xf is well-define and the definition is consistent with the previous definition for f ∈ L1(ν).

Before continuing, let us consider the generality of our selection of the space L1,0(ν).
From Proposition 9.11, we could have considered the space

L1,a(ν) :=
{
f : E → R : |f | ∧ a ∈ L1(ν)

}
for some value of a other than 1; however, L1,a(ν) = L1,0(ν) and the corresponding metric

da(f, g) :=

∫
E

(|f − g| ∧ a)dν

is equivalent to d.

Proposition 9.13 If f ∈ L1,0(ν), then for all θ ∈ R

E[eiθXf ] = exp

{∫
E

(eiθf(x) − 1) ν(dx)

}
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Proof. First consider simple f . Then, without loss of generality, we can write f =∑n
j=1 cj1Aj

with ν(Aj) <∞ for all j ∈ {1, . . . , n} andA1, . . . , An disjoints. Since ξ(A1), . . . , ξ(An)
are independent and ξ(Aj) ∼ Poisson(ν(Aj)), we have that

E[eiθXf ] =
n∏

j=1

E
(
eiθcjξ(Aj)

)
=

n∏
j=1

eν(Aj)(e
iθcj−1)

= exp

{
n∑

j=1

(eiθcj − 1)ν(Aj)

}

= exp

{∫
E

eiθf(x) − 1 ν(dx)

}
The general case follows by approximating f by simple functions {fn} as in Proposition 9.12
and noting that both sides of the identity

E[eiθXfn ] = exp

{∫
E

eiθfn(x) − 1 ν(dx)

}
converge by the bounded convergence theorem. �

9.6 Centered Poisson random measure

Let ξ be a Poisson random measure with mean ν. We define the centered random measure
for ξ by

ξ̃(A) = ξ(A)− ν(A), A ∈ E , ν(A) <∞.

Note that, for each K ∈ E with ν(K) <∞ and almost every ω ∈ Ω, the restriction of ξ̃(ω, ·)
to K is a finite signed measure.

In the previous section, we defined
∫

E
f(x)ξ(dx) for every f ∈ L1,0(ν). Now, let f =∑n

j=1 cj1Aj
be a simple function with ν(Aj) <∞. Then, the integral of f with respect to ξ̃

is the random variable X̃f (sometimes we write
∫

E
f(x)ξ̃(dx)) defined as

X̃f =

∫
E

f(x)ξ(dx)−
∫

E

f(x)ν(dx) =
n∑

j=1

cj(ξ(Aj)− ν(Aj))

Note that E[X̃f ] = 0.
Clearly, from our definition, it follows that for simple functions f, g, and α, β ∈ R that

X̃αf+βg = αX̃f + βX̃g.

Therefore, the integral with respect to a centered Poisson random measure is a linear func-
tion on the space of simple functions. The next result is the key to extending our def-
inition to the space L2(ν) = {h : E → R : h is measurable, and

∫
E
h2dν < ∞}, which

is a Banach space under the norm ‖h‖2 =
(∫

E
h2dν

)1/2
. Similarly, L2(P ) = {X : Ω →

R : X is a random variable, and
∫

E
X2dP <∞} is a Banach space under the norm ‖X‖2 =

{E[X2]}1/2.
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Proposition 9.14 If f is a simple function, then E[X̃2
f ] =

∫
E
f 2dν.

Proof. Write f =
∑n

j=1 cj1Aj
, where A1, . . . , An are disjoint sets with ν(Aj) < ∞. Since

ξ(A1), . . . , ξ(An) are independent and ξ(Aj) ∼ Poisson(ν(Aj)), we have that

E[X̃2
f ] = E

(
n∑

j=1

n∑
i=1

cjci(ξ(Aj)− ν(Aj))(ξ(Ai)− ν(Ai))

)

=
n∑

j=1

c2jE[ξ(Aj)− ν(Aj)]
2

=
n∑

j=1

c2jν(Aj)

=

∫
E

f 2dν

�
The last proposition, shows that X̃f determines a linear isometry from L2(ν) into L2(P ).

Therefore, since the space of simple functions is dense in L2(ν), we can extend the definition
of X̃f to all f ∈ L2(ν). As in Section 9.4, if (fn) is a sequence of simple functions that
converges to f in L2(ν), then we define

X̃f = lim
n→∞

X̃fn .

where the limit is L2(P ). Clearly, the linearity of X̃ over the space of simple functions is
inherited by the limit. Also, for every f ∈ L2(ν), we have that

E[X̃2
f ] =

∫
E

f 2dν

and
E[X̃f ] = 0.

Before continuing, note that if f is a simple function, then E|X̃f | ≤ 2
∫

E
|f |dν. This

inequality is enough to extend the definition of X̃ to the space L1(ν), where the simple
functions are also dense. Since ν is not necessarly finite, the spaces L1(ν) and L2(ν) are
not necessarily comparable. This slitghtly different approach will in the end be irrelevant,
because the space in which we are going to define X̃ contains both L2(ν) and L1(ν).

Now, we extend the definition of X̃f to a larger class of functions f . For this purpose,
consider the vector space

L2,1(ν) = {f : E → R : |f |2 ∧ |f | ∈ L1(ν)},

or equivalently, let
Φ(z) = z21[0,1](z) + (2z − 1)1[1,∞)(z).

Then
L2,1(ν) = LΦ(ν) = {f : E → R : Φ(|f |) ∈ L1(ν)}.
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Note that L1(ν) ⊂ LΦ(ν) and L2(ν) ⊂ LΦ(ν). In particular, LΦ(ν) contains all the simple
functions defined on E whose support has finite measure. Since Φ is convex and nondecreas-
ing and Φ(0) = 0, LΦ(ν) is an Orlicz space with norm

‖f‖Φ = inf{c :

∫
E

Φ(
|f |
c

)dν < 1}.

As in Proposition 9.12, that the space of simple functions with support having finite
measure is dense in LΦ(ν). The proof of this assertion follows by the same argument as in
Proposition 9.12.

Proposition 9.15 The space of simple functions is dense in LΦ(ν). Moreover, for every
f ∈ LΦ(ν) there exists a sequence of simple functions {fn}, such that |fn| ≤ |f | for every n,
and {fn} converges pointwise and ‖ · ‖Φ to f .

Proof. Take fn = f+
n − f−n as constructed in the proof of Proposition 9.12. �

Again the key to our extension is an inequality that allows us to define X̃ as a limit in
probability instead of one in L2(P ).

Proposition 9.16 If f : E → R is a simple function with support having finite measure,
then

E[|X̃f |] ≤ 3‖f‖Φ

Proof. Fix a > 0. Then, for c > 0 and 0 < α < 1,

E[|X̃f |] ≤ cE[|X̃c−1f1{c−1|f |≤1}
|] + cE[|X̃c−1f1{c−1|f |>1}

|]

≤ c
√
E[|X̃c−1f1{c−1|f |≤1}

|2 + 2c

∫
U

|c−1f |1{c−1|f |>1}dν

≤ c

√∫
U

c−2f 21{c−1|f |≤1}µ(du) + 2c

∫
U

|c−1f |1{c−1|f |>1}dν

≤ c

√∫
U

Φ(c−1|f |)dν + 2c

∫
U

Φ(c−1|f |)dν

Taking c = ‖f‖Φ, the right side is bounded by 3‖f‖Φ. �
Now, suppose that f ∈ LΦ(ν). Then by Proposition 9.15 there exists a sequence {fn} of

simple functions that converges to f in ‖ · ‖Φ. But, from Proposition 9.16, it follows that for
all n,m ≥ 1

P{|X̃fn − X̃fm| ≥ a} ≤ 3‖fn − fm‖Φ

a
.

Therefore, the sequence {X̃fn} is Cauchy in probability, and hence, there exists a random
variable X̃f such that

X̃f = lim
n→∞

X̃fn in probability.

As usual, the definition does not depend on the choice of {fn}. Also, note that the definition
of X̃f for functions f ∈ L2(ν) is consistent with the definition for f ∈ LΦ(ν).

We close the present section with the calculation of the characteristic function for the
random variable X̃f .
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Proposition 9.17 If f ∈ LΦ(ν), then for all θ ∈ R

E[eiθX̃f ] = exp

{∫
E

(eiθf(x) − 1− if(x)) ν(dx)

}
(9.3)

Proof. First, from Proposition 9.13, (9.3) holds for simple functions. Now, let f ∈ LΦ(ν),
and let {fn} be as in Proposition 9.15. Since X̃f = limn→∞ X̃fn in probability, without
lossing generality we can assume that {X̃fn) converges almost surely to X̃f on Ω. Hence,

for every θ ∈ R, limn→∞E[eiθX̃fn ] = E[eiθX̃f ]. On the other hand, since {fn} converges
pointwise to f , it follows that for all θ ∈ R,

lim
n→∞

(eiθfn − 1− ifn) = eiθf − 1− if.

But, there exists a constant k > 0 such that

|eiθfn − 1− ifn| ≤ k · (|fn|2 ∧ |fn|) ≤ k · (|f |2 ∧ |f |) ∈ L1(dν),

and the result follows by the dominated convergence theorem. �

9.7 Time dependent Poisson random measures

Let (U,U , µ) be a measurable space where µ is a σ-finite measure, and define

A = {A ∈ U : µ(A) <∞}.

Let B[0,∞) be the Borel σ-algebra of [0,∞), and denote Lebesgue measure on B[0,∞) by
m. Then, the product measure µ×m is σ-finite on U ×B[0,∞) and therefore, by Corollary
9.7, there exists a Poisson random meaure Y , with mean measure µ × m. Denote the
corresponding centered Poisson random measure by Ỹ .

For a A ∈ U and t ≥ 0, we write Y (A, t) instead of Y (A × [0, t]). Similarly, we write
Ỹ (A, t) instead of Ỹ (A× [0, t]).

Proposition 9.18 For each A ∈ A, Y (A, ·) is a Poisson process with intensity µ(A). In
particular, Ỹ (A, ·) is a martingale.

Proof. Fix A ∈ A. Clearly, the process Y (A, ·) satisfies the following properties almost
surely: (i) Y (A, 0) = 0 (ii) Y (A, t) ∼ Poisson(µ(A)t) (iii) Y (A, ·) has cadlag nondecreasing
sample paths with jumps of size one. Hence, to conclude that Y (A, ·) is a Poisson process,
it is enough to check that Y (A, t1) − Y (A, t0), . . . , Y (A, tn) − Y (A, tn−1) are independent
random variables, whenever 0 = t0 < . . . < tn. But

Y (A, ti)− Y (A, ti−1) = Y (A× (ti−1, ti])

for every i ∈ {1, . . . , n}, and the sets A× (t0, t1], . . . , A× (tn−1, tn] are disjoint in U × [0,∞).
Consequently, the random variables are independent, and hence Y (A, ·) is a Poisson random
process with intensity µ(A). �
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Proposition 9.19 If A1, A2, . . . ∈ A are disjoint sets, then the processes Y (A1, ·), Y (A2, ·), . . .
are independent.

Proof. Fix n ≥ 1 and let 0 = t0 < . . . < tm. Note that, for i = 1, . . . , n and j = 1, . . .m,
the random variables Y (Ai, tj)− Y (Ai, tj−1) are independent because the sets Ai × (tj−1, tj]
are disjoint, and the independence of Y (A1, ·), Y (A2, ·), . . . follows. �

For each t ≥ 0, define the σ-algebra

FY
t = σ (Y (A, s) s.t. A ∈ A and s ∈ [0, t]) ⊂ F

By definition, Y (A, ·) is {FY
t }-adapted process for all A ∈ A. In addition, by Proposition

9.19, for all A ∈ A and s, t ≥ 0, Y (A, t+s)−Y (A, t) is independen of FY
t . This independence

will play a central role in the definition of the stochastic integral with respect to Y . More
generally, we will say that Y is compatible with the filtration {FY

t } if Y is adapted to {FY
t }

and Y (A, t+ s)− Y (A, t) is independent of FY
t for all A ∈ U , and s.t ≥ 0.

9.8 Stochastic integrals for time-dependent Poisson random mea-
sures

Let Y be as in Section 9.7, and assume that Y is compatible with the filtration {Ft}. For
ϕ ∈ L1,0(µ). define

Y (ϕ, t) ≡
∫

U×[0,t]

ϕ(u)Y (du× ds)

Then Y (ϕ, ·) is a process with independent increments and, in particular, is a {Ft}-semimart-
ingale. Suppose ξ1, . . . , ξm are cadlag, {Ft}-adapted processes and that ϕ1, . . . , ϕm ∈ L1,0(µ).
Then

Z(u, t) =
m∑

k=1

ξk(t)ϕk(u) (9.4)

is a cadlag, L1,0(µ)-valued process, and we define

IZ(t) =

∫
U×[0,t]

Z(u, s−)Y (du× ds) ≡
m∑

k=1

∫ t

0

ξk(s−)dY (ϕ, s). (9.5)

Lemma 9.20 Let Y =
∑

i δ(Ui,Si). Then for Z given by (9.4) and IZ by (9.5), with proba-
bility one,

IZ(t) =
m∑

k=1

∑
i

1[0,t](Si)ξk(Si−)ϕk(Ui) =
∑

i

1[0,t](Si)Z(Ui, Si−),

and hence,
IZ(t) ≤ I|Z|(t). (9.6)

Proof. Approximate ϕk by ϕε
k = ϕk1{|ϕk|≥ε}, ε > 0. Then Y ({u : |ϕk(u)| ≥ ε} × [0, t]) <∞

a.s. and with ϕk replaced by ϕε
k, the lemma follows easily. Letting ε → 0 gives the desired

result. �
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Lemma 9.21 Let Z be given by (9.4) and IZ by (9.5). If E[
∫

U×[0,t]
|Z(u, s)|µ(du)ds] <∞,

then

E[IZ(t)] =

∫
U×[0,t]

E[Z(u, s)]µ(du)ds

and

E[|IZ(t)|] ≤
∫

U×[0,t]

E[|Z(u, s)|]µ(du)ds

Proof. The identity follows from the martingale properties of the Y (ϕi, ·), and the inequality
then follows by (9.6). �

With reference to Proposition 9.11, we have the following lemma.

Lemma 9.22 Let Z be given by (9.4) and IZ by (9.5). Then for each stopping time τ ,

P{sup
s≤t

|IZ(s)| ≥ b} ≤ P{τ ≤ t}+
1

b
E[

∫
U×[0,t∧τ ]

|Z(u, s)| ∧ aµ(du)ds]

+1− E[exp{−a−1

∫
U×[0,t∧τ ]

|Z(u, s)| ∧ aµ(du)ds}]

Proof. First, note that

P{sup
s≤t

|IZ(s)| ≥ b} ≤ P{τ ≤ t}+ P{ sup
s≤t∧τ

|IZ(s)| ≥ b}.

By (9.6),

P{ sup
s≤t∧τ

|IZ(s)| ≥ b} ≤ P{I|Z|(t∧τ) ≥ b} ≤ P{I|Z|1{|Z|≤a}(t∧τ) ≥ b}+P{I|Z|1{|Z|>a}(t∧τ) > 0}.

But, by the Markov inequality,

P{I|Z|1{|Z|≤a}(t ∧ τ) ≥ b} ≤ 1

b

∫
U×[0,t]

E[|Z(u, s)|1{|Z(u,s)|≤a,s≤τ}]µ(du)ds

≤ 1

b
E[

∫
U×[0,t∧τ ]

|Z(u, s)| ∧ aµ(du)ds].

On the other hand,

P{I|Z|1{|Z|>a}(t ∧ τ) > 0} = P{Y ({(u, s) : |Z(u, s−)| > a, s ≤ τ}) > 0}

= E

[
1− exp

{
−
∫ t

0

µ{u : |Z(u, s)| > a}ds
}]

giving the desired result.
�

Lemma 9.22 gives the estimates necessary to extend the integral to cadlag and adapted,
L1,0(µ)-valued processes.
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Theorem 9.23 If Z is a cadlag, adapted L1,0(µ)-valued processes, then there exist Zn of
the form (9.4) such that supt≤T

∫
U
|Z(u, t) − Zn(u, t)| ∧ 1µ(du) → 0 in probability for each

T > 0, and there exists an adapted, cadlag process IZ such that supt≤T |IZ(t) − IZn(t)| → 0
in probability.

Remark 9.24 We define ∫
U×[0,t]

Z(u, s−)Y (du× ds) = IZ(t).

The estimate in Lemma 9.22 ensures that the integral is well defined.

Now consider Ỹ . For ϕ ∈ LΦ, Ỹ (ϕ, t) =
∫

U×[0,t]
ϕ(u)Ỹ (du × ds) is a martingale. For Z

given by (9.4), but with ϕk ∈ LΦ, define

ĨZ(t) =

∫
U×[0,t]

Z(u, s−)Ỹ (du× ds) ≡
m∑

k=1

∫ t

0

ξk(s−)dỸ (ϕ, s). (9.7)

Then ĨZ is a local martingale with

[ĨZ ]t =

∫
U×[0,t]

Z2(u, s−)Y (du× ds).

Note that if Z has values in LΦ, then Z2 has values in L1,0.

Lemma 9.25 If E[
∫ t

0

∫
U
Z2(u, s)µ(du)ds] < ∞, then ĨZ is a square integrable martingale

with

E[Ĩ2
Z(t)] = E

[∫
U×[0,t]

Z2(u, s−)Y (du× ds)

]
= E

[∫ t

0

∫
U

Z2(u, s)µ(du)ds

]
Lemma 9.26 Let Z be given by (9.4) and IZ by (9.5). Then for each stopping time τ ,

P{sup
s≤t

|ĨZ(s)| ≥ a} ≤ P{τ ≤ t}+ 16

a2
∨ 4

a
E

[∫ t∧τ

0

∫
U

Φ(|Z(u, s)|)µ(du)ds

]
Proof. As before,

P{sup
s≤t

|ĨZ(s)| ≥ a} ≤ P{τ ≤ t}+ P{ sup
s≤t∧τ

|ĨZ(s)| ≥ a}

Fix a > 0. Then

P{ sup
s≤t∧τ

|ĨZ(s)| ≥ a} ≤ P{ sup
s≤t∧τ

|ĨZ1{|Z|≤1}(s)| ≥ 2−1a}+ P{ sup
s≤t∧τ

|ĨZ1{|Z|>1}(s)| ≥ 2−1a}

≤ 16

a2
E

[∫ t∧τ

0

∫
U

|Z(u, s)|21{|Z(u,s)|≤1}µ(du)

]
+

4

a
E[

∫ t∧τ

0

∫
U

|Z(u, s)|1{|Z(u,s)|>1}µ(du)ds]

≤ 16

a2
∨ 4

a
E

[∫ t∧τ

0

∫
U

Φ(|Z(u, s)|)µ(du)ds

]
.

�
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Remark 9.27 Lemma 9.26 gives the estimates needed to extend the definition of∫
U×[0,t]

Z(u, s−)Ỹ (du× ds)

to all cadlag and adapted, LΦ(µ)-valued processes Z.

Lemma 9.28 If Z is cadlag and adapted with values in L1(µ), then∫
U×[0,t]

Z(u, s−)Ỹ (du× ds) =

∫
U×[0,t]

Z(u, s−)Y (du× ds)−
∫ t

0

∫
U

Z(u, s)µ(du)ds

Lemma 9.29 If E[
∫ t

0

∫
U
Z2(u, s)µ(du)ds] < ∞, then ĨZ is a square integrable martingale

with

E[Ĩ2
Z(t)] = E

[∫
U×[0,t]

Z2(u, s−)Y (du× ds)

]
= E

[∫ t

0

∫
U

Z2(u, s)µ(du)ds

]
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10 Limit theorems.

10.1 Martingale CLT.

Definition 10.1 f : DR[0,∞) → R is continuous in the compact uniform topology if

sup
t≤T

|xn(t)− x(t)| → 0,

for every T > 0, implies f(xn) → f(x).

Definition 10.2 A sequence of cadlag stochastic processes {Zn} converges in distribution
to a continuous stochastic process Z (denoted Zn ⇒ Z), if

E[f(Zn)] → E[f(Z)]

for every bounded f that is continuous in the compact uniform topology.

Example 10.3 Consider g ∈ Cb(R), h ∈ C(Rd) and x : [0,∞) → Rd, where Cb(R) is the
space of all bounded continuous function on R. Define

F (x) = g(sup
s≤27

h(x(s))).

Then F is continous in the compact uniform topology, Note that if xn → x in the compact
uniform topology, then h ◦ xn → h ◦ x in the compact uniform topology.

Example 10.4 In the notation of the last example,

G(x) = g(

∫ 27

0

h(x(s))ds)

is also continuous in the compact uniform topology.

Theorem 10.5 Let {Mn} be a sequence of martingales. Suppose that

lim
n→∞

E[sup
s≤t

|Mn(s)−Mn(s−)|] = 0 (10.1)

and
[Mn]t → c(t) (10.2)

for each t > 0, where c(t) is continuous and deterministic. Then Mn ⇒M = W ◦ c.

Remark 10.6 If
lim

n→∞
E[|[Mn]t − c(t)|] = 0, ∀t ≥ 0, (10.3)

then by the continuity of c, both (10.1) and (10.2) hold. If (10.2) holds and limn→∞E[[Mn]t] =
c(t) for each t ≥ 0, then (10.3) holds by the dominated convergence theorem.

Proof. See Ethier and Kurtz (1986), Theorem 7.1.4. �
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Example 10.7 If Mn ⇒ W ◦ c, then

P{sup
s≤t

Mn(s) ≤ x} → P{sup
s≤t

W (c(s)) ≤ x} = P{ sup
u≤c(t)

W (u) ≤ x}.

Corollary 10.8 (Donsker’s invariance principle.) Let ξk be iid with mean zero and variance
σ2. Let

Mn(t) =
1√
n

[nt]∑
k=1

ξk.

Then Mn is a martingale for every n, and Mn ⇒ σW .

Proof. Since Mn is a finite variation process, we have

[Mn]t =
∑
s≤t

(∆Mn(s))2

=
1

n

[nt]∑
k=1

ξ2
k

=
[nt]

n[nt]

[nt]∑
k=1

ξ2
k → tσ2.

where the limit holds by the law of large numbers. Consequently, (10.2) is satisfied. Note
that the convergence is in L1, so by Remark 10.6, (10.1) holds as well. Theorem 10.5 gives
Mn ⇒ W (σ2·). �

Corollary 10.9 (CLT for renewal processes.) Let ξk be iid, positive and have mean m and
variance σ2. Let

N(t) = max{k :
k∑

i=1

ξi ≤ t}.

Then

Zn(t) ≡ N(nt)− nt/m√
n

⇒ W (
tσ2

m3
).

Proof. The renewal theorem states that

E[|N(t)

t
− 1

m
|] → 0

and
N(t)

t
→ 1

m
, a.s.

Let Sk =
∑k

1 ξi, M(k) = Sk −mk and Fk = σ{ξ1, . . . , ξk}. Then M is an {Fk}-martingale
and N(t) + 1 is an {Fk} stopping time. By the optional sampling theorem M(N(t) + 1) is
a martingale with respect to the filtration {FN(t)+1}.
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Note that

Mn(t) = −M(N(nt) + 1)/(m
√
n)

=
N(nt) + 1√

n
−
SN(nt)+1 − nt

m
√
n

− nt

m
√
n

=
N(nt)− nt/m√

n
+

1√
n
− 1

m
√
n

(SN(nt)+1 − nt) .

So asymptotically Zn behaves like Mn, which is a martingale for each n. Now, for Mn, we
have

sup
s≤t

|Mn(s)−Mn(s−)| = max
k≤N(nt)+1

|ξk −m|/m
√
n

and

[Mn]t =
1

m2n

N(nt)+1∑
1

|ξk −m|2 → tσ2

m3
.

Since

E[[Mn]t] =
1

m2n
E[N(nt) + 1] → tσ2

m3

Remark 10.6 applies and Zn ⇒ W ( tσ2

m3 ). �

Corollary 10.10 Let N(t) be a Poisson process with parameter λ and

X(t) =

∫ t

0

(−1)N(s)ds.

Define

Xn(t) =
X(nt)√

n
.

Then Xn ⇒ λ−1W .

Proof. Note that

(−1)N(t) = 1− 2

∫ t

0

(−1)N(s−)dN(s)

= 1− 2M(t)− 2λ

∫ t

0

(−1)N(s)ds,

where

M(t) =

∫ t

0

(−1)N(s−)d(N(s)− s)

is a martingale. Thus

Xn(t) =
X(nt)√

n
=

1− (−1)N(nt)

2λ
√
n

− M(nt)

λ
√
n
.

One may apply the martingale CLT by observing that [Mn]t = N(nt)/(nλ2) and that the
jumps of Mn are of magnitude 1/(λ

√
n). �

The martingale central limit theorem has a vector analogue.
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Theorem 10.11 (Multidimensional Martingale CLT). Let {Mn} be a sequence of Rd-valued
martingales. Suppose

lim
n→∞

E[sup
s≤t

|Mn(s)−Mn(s−)|] = 0 (10.4)

and
[M i

n,M
j
n]t → ci,j(t) (10.5)

for all t ≥ 0 where, C = ((ci,j)) is deterministic and continuous. Then Mn ⇒ M , where M
is Gaussian with independent increments and E[M(t)M(t)T ] = C(t).

Remark 10.12 Note that C(t) − C(s) is nonnegative definite for t ≥ s ≥ 0. If C is
differentiable, then the derivative will also be nonnegative definite and will, hence have a
nonnegative definite square root. Suppose C(t) = σ(t)2 where σ is symmetric. Then M can
be written as

M(t) =

∫ t

0

σ(s)dW (s)

where W is d-dimensional standard Brownian motion.

10.2 Sequences of stochastic differential equations.

Let {ξk} be iid with mean zero and variance σ2. Suppose X0 is independent of {ξk} and

Xk+1 = Xk + σ(Xk)
ξk+1√
n

+
b(Xk)

n
.

Define Xn(t) = X[nt], Wn(t) = 1/
√
n
∑[nt]

k=1 ξk, and Vn(t) = [nt]/n. Then

Xn(t) = Xn(0) +

∫ t

0

σ(Xn(s−))dWn(s) +

∫ t

0

b(Xn(s−))dVn(s)

By Donsker’s theorem, (Wn, Vn) ⇒ (σW, V ), with V (t) = t.
More generally we have the following equation:

Xn(t) = X(0) + εn(t) +

∫ t

0

σ(Xn(s−))dWn(s) +

∫ t

n

b(Xn(s−))dVn(s) . (10.6)

Theorem 10.13 Suppose in 10.6 Wn is a martingale, and Vn is a finite variation pro-
cess. Assume that for each t ≥ 0, supnE[[Wn]t] < ∞ and supnE[Tt(Vn)] < ∞ and that
(Wn, Vn, εn) ⇒ (W,V, 0), where W is standard Brownian motion and V (t) = t. Suppose that
X satisfies

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds (10.7)

and that the solution of (10.7) is unique. Then Xn ⇒ X.

Proof. See Kurtz and Protter (1991). �
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10.3 Approximation of empirical CDF.

Let ξi be i.i.d and uniform on [0, 1], let Nn(t) =
∑n

k=1 I[ξk,1](t), where 0 ≤ t ≤ 1. Define
Fn

t = σ(Nn(u); u ≤ t). For t ≤ s ≤ 1, we have

E[Nn(s)|Fn
t ] = E[Nn(t) +Nn(s)−Nn(t)|Fn

t ]

= Nn(t) + E[Nn(s)−Nn(t)|Fn
t ]

= Nn(t) + (n−Nn(t))(s− t)/(1− t) .

It follows that

M̃n(t) = Nn(t)−
∫ t

0

n−Nn(s)

1− s
ds

is a martingale.
Define Fn(t) ≡ Nn(t)

n
and Bn(t) =

√
n(Fn(t)− 1) = Nn(t)−nt√

n
. Then

Bn(t) =
1√
n

(Nn(t)− nt)

=
1√
n

(M̃n(t) + nt−
√
n

∫ t

0

Bn(s)ds

1− s
− nt)

= Mn(t)−
∫ t

0

Bn(t)

1− s
ds.

where Mn(t) = M̃n(t)√
n

. Note that [Mn]t = Fn(t) and by the law of large numbers, [Mn]t → t.

Since Fn(t) ≤ 1, the convergence is in L1 and Theorem 10.5 implies Mn ⇒ W . Therefore,
Bn ⇒ B where

B(t) = W (t)−
∫ t

0

B(s)

1− s
ds

at least if we restrict our attention to [0, 1 − ε] for some ε > 0. To see that convergence is
on the full interval [0, 1], observe that

E

∫ 1

1−ε

|Bn(s)|
1− s

ds =

∫ 1

1−ε

E[|Bn(s)|]
1− s

ds ≤
∫ 1

1−ε

√
E[B2

n(s)]

1− s
ds ≤

∫ 1

1−ε

√
s− s2

1− s
ds

which is integrable. It follows that for any δ > 0, supn P{sup1−ε≤s≤1 |Bn(1)−Bn(s)| ≥ δ} →
0. This uniform estimate ensures that Bn ⇒ B on the full interval [0, 1]. The process B is
known as Brownian Bridge.

10.4 Diffusion approximations for Markov chains.

Let X be an integer-valued process and write

X(t) = X(0) +
∑
l∈Z

lNl(t)
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where the Nl are counting processes, that is, Nl counts the number of jumps of X of size
l at or before time t. Assume that X is Markov with respect to {Ft}, and suppose that
P (X(t+ h) = j|X(t) = i) = qijh+ o(h) for i 6= j. If we define βl(x) = qx,x+l, then

E[Nl(t+ h)−Nl(t)|Ft] = qX(t),X(t)+lh+ o(h) = βl(X(t)) + o(h) .

Our first claim is that Ml(t) ≡ Nl(t)−
∫ t

0
βl(X(s))ds is a martingale (or at least a local

martingale). If we define τl(n) = inf{t : Nl(t) = n}, then for each n, Ml(· ∧ τl(n)) is a
martingale.

Assume everything is nice, in particular, for each l, assume that Ml(t) is an {Ft}-
martingale. Then

X(t) = X(0) +
∑

l

lNl(t) = X(0) +
∑

l

lMl(t) +
∑

l

l

∫ t

0

βl(X(s))ds .

If
∑

l |l|βl(x) <∞, then we can interchange the sum and integral. Let b(x) ≡
∑

l lβl(x), so
we have

X(t) = X(0) +
∑

l

lMl(t) +

∫ t

0

b(X(s))ds .

Note that [Ml]t = Nl(t) and [Ml,Mk]t = [Nl, Nk]t = 0. ThereforeE[Nl(t)] = E[
∫ t

0
βl(X(s))ds]

and E[[Ml]t] = E[Nl(t)] = E[(Ml(t))
2] holds. Consequently,

E[(
m∑
k

lMl(t))
2] =

m∑
k

l2E[Ml(t)
2] =

∑
[

∫ t

0

m∑
k

l2βl(X(s))ds],

so if

E[

∫ t

0

∑
l

l2βl(X(s))ds] <∞,

then
∑
lMl(t) is a square integrable martingale. If we only have

∑
l2βl(x) ≤ ∞ for each

x and
∑

l Nl(t) < ∞ a.s., then let τc = inf{t,
∑
l2βl(t) ≥ c} and assume that τc → ∞ as

c→∞. Then
∑

l lMl(t) is a local martingale.

Now consider the following sequence: Xn(t) = Xn(0) +
∑

lNn
l (t)

n
where, for example, we

can take Xn(t) = X(n2t)
n

and Nn
l (t) = Nl(n

2t) with X and N defined as before. Assume

Mn
l (t) ≡ 1

n
(Nn

l (t)−
∫ t

0

n2βn
l (Xn(s))ds)

is a martingale, so we have [Mn
l ]t =

Nn
l (t)

n2 and E[[Mn
l ]t] = E[

∫ t

0
βn

l (Xn(s))ds].
For simplicity, we assume that supn supx β

n
l (x) < ∞ and that only finitely many of the

βn
l are nonzero. Define bn(x) ≡ n

∑
l lβ

n
l (x). Then we have

Xn(t) = Xn(0) +
∑

l

lMn
l (t) +

∫ t

0

bn(Xn(s))ds

Assume:
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1) Xn(0) → X(0) ,

2) βn
l (x) → βl(x) ,

3) bn(x) → b(x) ,

4) n2 infx β
n
l (x) →∞

where the convergence in 1-3 is uniform on bounded intervals. By our assumptions,
E[(Mn

l (t))2]

n2 →
0, so by Doob’s inequality. It follows that sups≤t |

Mn
l (t)

n
| → 0. Consequently, [Mn

l ]t ∼∫ t

0
βn

l (Xn(s))ds.

Define W n
l (t) =

∫ t

0
1√

βn
l (Xn(s−)

dMn
l (s). Then

[W n
l ]t =

∫ t

0

d[Mn
l ]s

βn
l (Xn(s−)

=

∫ t

0

1

nβn
l (Xn(s−))

dMn
l (s) + t ≡ un

l (t) + t.

Note that un
l (t) is a martingale, and

E[un
l (t)2] = E[

∫ t

0

d[M l
n]s

n2βn
l (Xn(s−)2

]

= E[

∫ t

0

βn
l (Xn(s))ds

n2βn
l (Xn(s)2

]

= E[

∫ t

0

ds

n2βn
l (Xn(s−))

] → 0.

Consequently, under the above assumptions, [W n
l ]t → t and hence W n

l ⇒ Wl, where Wl is a
standard Brownian motion.

By definition, Mn
l (t) =

∫ t

0

√
βn

l (Xn(s−))dW n
l (s), so

Xn(t) = Xn(0) +
∑

l

l

∫ t

0

√
βn

l (Xn(s−))dW n
l (s) +

∫ t

0

bn(Xn(s))ds .

Let

εn(t) = Xn(0)−X(0) +
∑

l

∫ t

0

l(
√
βn

l (Xn(s−))−
√
βl(X(s−)))dW n

l (s)

+

∫ t

0

(bn(Xn(s))− b(X(s))ds

which converges to zero at least until Xn(t) exits a fixed bounded interval. Theorem 10.13
gives the following.

Theorem 10.14 Assume 1-4 above. Suppose the solution of

X(t) = X(0) +
∑

l

l

∫ t

0

√
βl(X(s))dWl(s) +

∫ t

0

b(X(s))ds

exists and is unique. Then Xn ⇒ X.
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10.5 Convergence of stochastic integrals.

Theorem 10.15 Let Yn be a semimartingale with decomposition Yn = Mn + Vn. Suppose
for each t ≥ 0 that sups≤t |Xn(s) −X(s)| → 0 and sups≤t |Yn(s) − Y (s)| → 0 in probability
as n → ∞, and that supnE[Mn(t)2] = supnE[[Mn]t] < ∞ and supnE[Tt(Vn)] < ∞. Then
for each T > 0

sup
t≤T

|
∫ t

0

Xn(s)dYn(s)−
∫ t

0

X(s)dY (s)| → 0

in probability.

Proof. See Kurtz and Protter (1991). �
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11 Reflecting diffusion processes.

11.1 The M/M/1 Queueing Model.

Arrivals form a Poisson process with parameter λ, and the service distribution is exponential
with parameter µ. Consequently, the length of the queue at time t satisfies

Q(t) = Q(0) + Ya(λt)− Yd(µ

∫ t

0

I{Q(s)>0}ds) ,

where Ya and Yd are independent unit Poisson processes. Define the busy period B(t) to be

B(t) ≡
∫ t

0

I{Q(s)>0}ds

Rescale to get

Xn(t) ≡ Q(nt)√
n
.

Then Xn(t) satisfies

Xn(t) = Xn(0) +
Ya(λnnt)√

n
− 1√

n
Yd(nµn

∫ t

0

I{Xn(s)>0}ds).

For a unit Poisson process Y , define Ỹ (u) ≡ Y (u)− u and observe that

Xn(t) = Xn(0) +
1√
n
Ỹa(nλnt)−

1√
n
Ỹd(nµn

∫ t

0

I{Xn(s)>0}ds)

+
√
n(λn − µn)t+

√
nµn

∫ t

0

I{Xn(s)=0}ds

We already know that if λn → λ and µn → µ, then

W n
a (t) ≡ 1√

n
Ỹa(nλnt) ⇒

√
λW1(t)

W n
d (t) ≡ 1√

n
Ỹd(nµnt) ⇒

√
µW2(t)),

where W1 and W2 are standard Brownian motions. Defining

cn ≡
√
n(λn − µn)

Λn(t) ≡
√
nµn(t−Bn(t)),

we can rewrite Xn(t) as

Xn(t) = Xn(0) +W n
a (t)−W n

d (Bn(t)) + cnt+ Λn(t).

Noting that Λn is nondecreasing and increases only when Xn is zero, we see that (Xn,Λn)
is the solution of the Skorohod problem corresponding to Xn(0) +W n

a (t)−W n
d (Bn(t))+ cnt,

that is, the following:
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Lemma 11.1 For w ∈ DR[0,∞) with w(0) ≥ 0, there exists a unique pair (x, λ) satisfying

x(t) = w(t) + λ(t) (11.1)

such that λ(0) = 0, x(t) ≥ 0∀t, and λ is nondecreasing and increases only when x = 0. The
solution is given by setting λ(t) = 0 ∨ sups≤t(−w(s)) and defining x by (11.1).

Proof. We leave it to the reader to check that λ(t) = 0∨ sups≤t(−w(s)) gives a solution. To
see that it gives the only solution, note that for t < τ0 = inf{s : w(s) ≤ 0} the requirements
on λ imply that λ(t) = 0 and hence x(t) = w(t). For t ≥ τ0, the nonnegativity of x implies

λ(t) ≥ −w(t),

and λ(t) nondecreasing implies
λ(t) ≥ sup

s≤t
(−w(s)).

If t is a point of increase of λ, then x(t) = 0, so we must have

λ(t) = −w(t) ≤ sup
s≤t

(−w(s)). (11.2)

Since the right side of (11.2) is nondecreasing, we must have λ(t) ≤ sups≤t(−w(s)) for all
t > τ0, and the result follows. �

Thus in the problem at hand, we see that Λn is determined by

Λn(t) = 0 ∨ (− inf
s≤t

(Xn(0) +W n
a (s)−W n

d (s)−W n
d (Bn(s)) + cns))

Consequently, if
Xn(0) +W n

a (t)−W n
d (Bn(t)) + cnt

converges, so does Λn and Xn along with it. Assuming that cn → c, the limit will satisfy

X(t) = X(0) +
√
λW1(t)−

√
λW2(t) + ct+ Λ(t)

Λ(t) = 0 ∨ sup
s≤t

(−(X(0) +
√
λ(W1(s)−W2(s)) + ct)).

Recalling that
√
λ(W1 − W2) has the same distribution as

√
2λW , where W is standard

Brownian motion, the limiting equation can be simplified to

X(t) = X(0) +
√

2λW (t) + ct+ Λ(t)

X(t) ≥ 0 ∀t,

where Λ is nondecreasing and Λ increases only when X(t) = 0.
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11.2 The G/G/1 queueing model.

Let η1, η2, ... be i.i.d. with ηi > 0 and

λ =
1

E[ηi]
.

The ηi represent interarrival times. The service times are denoted ξi, which are also i.i.d.
and positive with

µ =
1

E[ξi]
.

The arrival process is
A(t) = max{k : Σk

i=1ηi ≤ t}
and the service process is

S(t) = max{k : Σk
i=1ξi ≤ t}.

The queue-length then satisfies

Q(t) = Q(0) + A(t)− S(

∫ t

0

I{Q(s)>0}ds).

Following the approach taken with the M/M/1 queue, we can express the G/G/1 queue
as the solution of a Skorohod problem and use the functional central limit theorem for the
renewal processes to obtain the diffusion limit.

11.3 Multidimensional Skorohod problem.

We now consider a multidimensional analogue of the problem presented in Lemma 11.1. Let
D be convex and let η(x) denote the unit inner normal at x ∈ ∂D. Suppose w satisfies
w(0) ∈ D. Consider the equation for (x, λ)

x(t) = w(t) +

∫ t

0

η(x(s))dλ(s)

x(t)εD ∀t ≥ 0,

where λ is nondecreasing and increases only when x(t)ε∂D.

Proof of Uniqueness. Let

xi(t) = w(t) +

∫ t

0

η(xi(s))dλi(s)

Assume continuity for now. Since λi is nondecreasing, it is of finite variation. Itô’s formula
yields

(x1(t)− x2(t))
2 =

∫ t

0

2(x1(s)− x2(s))d(x1(s)− x2(s))

=

∫ t

0

2(x1(s)− x2(s))η(x1(s))dλ1(s)

−
∫ t

0

2(x1(s)− x2(s))η(x2(s))dλ2(s)

≤ 0,
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where the inequality follows from the fact that λi increases only when xi is on the boundary
and convexity implies that for any x ∈ ∂D and y ∈ D, η(x) · (y − x) ≥ 0. Consequently,
uniqueness follows.

If there are discontinuities, then

|x1(t)− x2(t)|2 =

∫ t

0

2(x1(s−)− x2(s−) · η(x1(s))dλ1(s)

−
∫ t

0

2(x1(s−)− x2(s−)) · η(x2(s))dλ2(s) + [x1 − x2]t

=

∫ t

0

2(x1(s−)− x2(s−)η(x1(s))dλ1(s)

−
∫ t

0

2(x1(s−)− x2(s−))η(x2(s))dλ2(s)

+2
∑
s≤t

(∆x1(s)−∆x2(s))(η(x1(s))∆λ1(s)− η(x2(s))∆λ2(s))

−[x1 − x2]t

=

∫ t

0

2(x1(s)− x2(s))η(x1(s))dλ1(s)

−
∫ t

0

2(x1(s)− x2(s))η(x2(s))dλ2(s)− [x1 − x2]t

≤ 0,

so the solution is unique.

Let W be standard Brownian motion, and let (X,λ) satisfy

X(t) = W (t) +

∫ t

0

η(X(s))dλ(s) , X(t)εD, ∀t ≥ 0

λ nondecreasing, and λ increasing only when Xε∂D. Itô’s formula yields

f(X(t)) = f(X(0) +

∫ t

0

∇f(X(s))dW (s) +

∫ t

0

1

2
∆f(X(s))ds

+

∫ t

0

η(X(s))∇f(X(s))dλ(s).

Assume η(x) · ∇f = 0 for xε∂D. If we solve

ut =
1

2
∆u

subject to the Neumann boundary conditions

η(x) · ∇u(x, t) = 0 ∀xε∂D,
u(x, 0) = f(x),
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we see that u(r − t,X(t)) is a martingale and hence

E[f(X(t, x))] = u(t, x).

Similarly, we can consider more general diffusions with normal reflection corresponding to
the equation

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds+

∫ t

0

η(X(s))dλ(s)

subject to the conditions that X(t)εD ∀t ≥ 0, λ is nondecreasing and increases only when
X(t)ε∂D. To examine uniqueness, apply Itô’s formula to get

|X1(s)−X2(s)|2 =

∫ t

0

2(X1(s)−X2(s))
T (σ(X1(s))− σ(X2(s)))dW (s) (11.3)

+

∫ t

0

(X1(s)−X2(s)) · (b(X1(s))− b(X2(s)))ds

+

∫ t

0

trace(σ(X1(s))− σ(X2(s)))(σ(X1(s))− σ(X2(s)))
Tds

+

∫ t

0

2(X1(s)−X2(s)) · η(X1(s))dλ1(s)

−
∫ t

0

2(X1(s)−X2(s)) · η(X2(s))dλ2(s).

The last two terms are negative as before, and assuming that σ and b are Lipschitz, we can
use Gronwall’s inequality to obtain uniqueness just as in the case of unbounded domains.

Existence can be proved by an iteration beginning with

X0(t) ≡ X(0),

and then letting

Xn+1(t) = X(0) +

∫ t

0

σ(Xn(s))dW (s) +

∫ t

0

b(Xn(s))ds+

∫ t

0

η(Xn(s))dλn+1(s).

An analysis similar to (11.3) enables one to show that the sequence {Xn} is Cauchy.

11.4 The Tandem Queue.

Returning to queueing models, consider a simple example of a queueing network, the tandem
queue:

Q1(t) = Q1(0) + Ya(λt)− Yd1(µ1

∫ t

0

I{Q1(s)>0}ds)

Q2(t) = Q2(0) + Yd1(µ1

∫ t

0

I{Q1(s)>0}ds)− Yd2(µ2

∫ t

0

I{Q2(s)>0}ds) .
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If we assume that

λn, µn
1 , µ

n
2 → λ

cn1 ≡
√
n(λn − µn

1 ) → c1

cn2 ≡
√
n(µn

1 − µn
2 ) → c2

and renormalize the queue lengths to define

Xn
1 (t) =

Q1(nt)√
n

= Xn
1 (0) +W n

a1(t) + cn1 t−W n
d1(

∫ t

0

I{Xn
1 (s)>0}ds)

+
√
nµn

1

∫ t

0

I{Xn
1 (s)=0}ds

Xn
2 (t) = Xn

n (0) +W n
d1(

∫ t

0

I{Xn
1 (s)>0}ds)−W n

d2(

∫ t

0

I{Xn
2 (s)>0}ds)

+cn2 t−
√
nµn

1

∫ t

0

I{Xn
1 (s)=0}ds+

√
nµn

2

∫ t

0

I{Xn
2 (s)=0}ds,

we can obtain a diffusion limit for this model. We know already that Xn
1 converges in

distribution to the X1 that is a solution of

X1(t) = X1(0) + λW1(t)− λW2(t) + c1t+ Λ1(t) .

For Xn
2 , we use similar techniques to show Xn

2 converges in distribution to X2 satisfying

X2(t) = X2(0) + λW2(t)− λW3(t) + c2t− Λ1(t) + Λ2(t),

or in vector form

X(t) = X(0) +

(
λ −λ 0
0 λ −λ

) W1

W2

W3

+

(
c1
c2

)
t+

(
1
−1

)
Λ1(t) +

(
0
1

)
Λ2(t)

where Λ1 increases only when X1 = 0 and Λ2 increases only when X2 = 0.
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12 Change of Measure

Let (Ω,F , Q) be a probability space and let L be a non-negative random variable, such that

EQ[L] =

∫
LdQ = 1.

Define P (Γ) ≡
∫

Γ
LdQ where Γ ∈ F . P is a probability measure on F . This makes P

absolutely continuous with respect to Q (P << Q) and L is denoted by

L =
dP

dQ
.

12.1 Applications of change-of-measure.

Maximum Likelihood Estimation: Suppose for each α ∈ A,

Pα(Γ) =

∫
Γ

LαdQ

and
Lα = H(α,X1, X2, . . . Xn)

for random variables X1, . . . , Xn. The maximum likelihood estimate α̂ for the “true” pa-
rameter α0 ∈ A based on observations of the random variables X1, . . . , Xn is the value of α
that maximizes H(α,X1, X2, . . . Xn).

For example, let

Xα(t) = X(0) +

∫ t

0

σ(Xα(s))dW (s) +

∫ t

0

b(Xα(s), α)ds,

We will give conditions under which the distribution of Xα is absolutely continuous with
respect to the distribution of X satisfying

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) . (12.1)

Sufficiency: If dPα = LαdQ where

Lα(X, Y ) = Hα(X)G(Y ),

then X is a sufficient statistic for α.

Finance: Asset pricing models depend on finding a change of measure under which the
price process becomes a martingale.

Stochastic Control: For a controlled diffusion process

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s), u(s))ds

where the control only enters the drift coefficient, the controlled process can be obtained
from an uncontrolled process satisfying (12.1) via a change of measure.
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12.2 Bayes Formula.

Assume dP = LdQ on (Ω,F). Note that EP [X] = EQ[XL]. We want to derive the
corresponding formula for conditional expectations.

Recall that Y = E[Z|D] if

1) Y is D-measurable.

2) For each D ∈ D,
∫

D
Y dP =

∫
D
ZdP .

Lemma 12.1 (Bayes Formula)

EP [Z|D] =
EQ[ZL|D]

EQ[L|D].
(12.2)

Proof. Clearly the right side of (12.2) is D-measurable. Let D ∈ D. Then∫
D

EQ[ZL|D]

EQ[L|D].
dP =

∫
D

EQ[ZL|D]

EQ[L|D]
LdQ

=

∫
D

EQ[ZL|D]

EQ[L|D]
EQ[L|D]dQ

=

∫
D

EQ[ZL|D]dQ

=

∫
D

ZLdQ =

∫
D

ZdP

which verifies the identity. �

For real-valued random variables with a joint density X, Y ∼ fXY (x, y), conditional
expectations can be computed by

E[g(Y )|X = x] =

∫∞
−∞ yfXY (x, y)dy

fX(x)

For general random variables, suppose X and Y are independent on (Ω,F , Q). Let L =
H(X, Y ) ≥ 0, and E[H(X,Y )] = 1. Define

νY (Γ) = Q{Y ∈ Γ}
dP = H(X, Y )dQ.

Bayes formula becomes

EP [g(Y )|X] =

∫
g(y)H(X, y)νY (dy)∫
H(X, y)νY (dy)

The left side is equal to
EQ[g(Y )H(X, Y )|X]

EQ[H(X, Y )|X]
,

and the independence of X and Y gives the identity by Property 10 of the Section 2.6.
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12.3 Local absolute continuity.

Let (Ω,F) be a measurable space, and let P and Q be probability measures on F . Suppose

Dn ⊂ Dn+1 and that for each n, P |Dn << Q|Dn . Define Ln = dP
dQ

∣∣∣
Dn

. Then {Ln} is

a nonnegative {Dn}-martingale on (Ω,F , Q) and L = limn→∞ Ln satisfies EQ[L] ≤ 1. If
EQ[L] = 1, then P << Q on D =

∨
nDn. The next proposition gives conditions for this

absolute continuity in terms of P .

Proposition 12.2 P << Q on D if and only if P{limn→∞Ln <∞} = 1.

Proof. We have

P{sup
n≤N

Ln ≤ K} =

∫
I{supn≤N Ln≤K}LNdQ.

The dominated convergence theorem implies

P{sup
n
Ln ≤ K} =

∫
{supn Ln≤K}

LdQ.

Letting K →∞ we see that EQ[L] = 1. �

12.4 Martingales and change of measure.

(See Protter (1990), Section III.6.) Let {Ft} be a filtration and assume that P |Ft << Q|Ft

and that L(t) is the corresponding Radon-Nikodym derivative. Then as before, L is an
{Ft}-martingale on (Ω,F , Q).

Lemma 12.3 Z is a P -local martingale if and only if LZ is a Q-local martingale.

Proof. Note that for a bounded stopping time τ , Z(τ) is P -integrable if and only if L(τ)Z(τ)
is Q-integrable. By Bayes formula, EP [Z(t+h)−Z(t)|Ft] = 0 if and only if EQ[L(t+h)(Z(t+
h)− Z(t))|Ft] = 0 which is equivalent to

EQ[L(t+ h)Z(t+ h)|Ft] = EQ[L(t+ h)Z(t)|Ft] = L(t)Z(t).

�

Theorem 12.4 If M is a Q-local martingale, then

Z(t) = M(t)−
∫ t

0

1

L(s)
d[L,M ]s (12.3)

is a P -local martingale. (Note that the integrand is 1
L(s)

, not 1
L(s−)

.)

Proof. Note that LM − [L,M ] is a Q-local martingale. We need to show that LZ is a
Q-local martingale. But letting V denote the second term on the right of (12.3), we have

L(t)Z(t) = L(t)M(t)− [L,M ]t −
∫ t

0

V (s−)dL(s),

and both terms on the right are Q-local martingales. �
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12.5 Change of measure for Brownian motion.

Let W be standard Brownian motion, and let ξ be an adapted process. Define

L(t) = exp{
∫ t

0

ξ(s)dW (s)− 1

2

∫ t

0

ξ2(s)ds}

and note that

L(t) = 1 +

∫ t

0

ξ(s)L(s)dW (s).

Then L(t) is a local martingale.
For independent standard Brownian motions W1, . . . ,Wm, and adapted processes {ξi},

L(t) = exp{
∑

i

∫ t

0

ξi(s)dW (s)− 1

2

∑
i

∫ t

0

ξ2
i (s)ds}

is the solution of

L(t) = 1 +
∑

i

∫ t

0

ξi(s)L(s)dWi(s).

Assume EQ[L(t)] = 1 for all t ≥ 0. Then L is a martingale. Fix a time T , and restrict
attention to the probability space (Ω,FT , Q). On FT , define dP = L(T )dQ.

For t < T , let A ∈ Ft. Then

P (A) = EQ[IAL(T )] = EQ[IAE
Q[L(T )|Ft]]

= EQ[IAL(t)]︸ ︷︷ ︸
has no dependence on T

(crucial that L is a martingale)

Claim: W̃i(t) = Wi(t)−
∫ t

0
ξi(s)ds is a standard Brownian motion on (Ω,FT , P ). Since W̃i

is continous and [W̃i]t = t a.s., it is enough to show that W̃i is a local martingale (and hence
a martingale). But since Wi is a Q-martingale and [L,Wi]t =

∫ t

0
ξi(s)L(s)ds, Theorem 12.4

gives the desired result. Since [W̃i, W̃j]t = [Wi,Wj]t = 0 for i 6= j, the W̃i are independe.
Now suppose that

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s)

and set
ξ(s) = b(X(s)).

Note that X is a diffusion with generator 1
2
σ2(x)f ′′(x). Define

L(t) = exp{
∫ t

0

b(X(s))dW (s)− 1

2

∫ t

0

b2(X(s))ds},
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and assume that EQ[L(T )] = 1 (e.g., if b is bounded). Set dP = L(T )dQ on (Ω,FT ). Define
W̃ (t) = W (t)−

∫ t

0
b(X(s))ds. Then

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) (12.4)

= X(0) +

∫ t

0

σ(X(s))dW̃ (s) +

∫ t

0

σ(X(s))b(X(s))ds

so under P , X is a diffusion with generator

1

2
σ2(x)f ′′(x) + σ(x)b(x)f ′(x). (12.5)

We can eliminate the appriori assumption that EQ[L(T )] = 1 by defining τn = inf{t :∫ t

0
b2(X(s))ds > n} and defining dP = L(T ∧ τn)dQ on FT∧τn . Then on (Ω,FT∧τn , P ), X

is a diffusion with generator (12.5) stopped at time T ∧ τn. But if there is a unique (in
distribution) such diffusion and

∫ t

0
b2(X(s))ds is almost surely finite for this diffusion, then

we can apply Proposition 12.2 to conclude that P << Q on FT , that is, E[L(T )] = 1.

12.6 Change of measure for Poisson processes.

Let N be an {Ft}-unit Poisson process on (Ω,F , Q), that is, N is a unit Poisson process
adapted to {Ft}, and for each t, N(t + ·) − N(t) is independent of Ft. If Z is nonnegative
and {Ft}-adapted, then

L(t) = exp

{∫ t

0

lnZ(s−)dN(s)−
∫ t

0

(Z(s)− 1)ds

}
satisfies

L(t) = 1 +

∫ t

0

(Z(s−)− 1)L(s−)d(N(s)− s)

and is a Q-local martingale. If E[L(T )] = 1 and we define dP = L(T )dQ on FT , the
N(t)−

∫ t

0
Z(s)ds is a P -local martingale.

If N1, . . . , Nm are independent unit Poisson processes and the Zi are nonneagative and
{Ft}-adapted

L(t) =
m∏

i=1

exp

{∫ t

0

lnZi(s−)dNi(s)−
∫ t

0

(Zi(s)− 1)ds

}
satisfies

L(t) = 1 +

∫ t

0

(Zi(s−)− 1)L(s−)d(Ni(s)− s).

Let J [0,∞) denote the collection of nonnegative integer-valued cadlag functions that are
constant except for jumps of +1. Suppose that λi : J [0,∞)m× [0,∞) → [0,∞), i = 1, . . . ,m
and that λi(x, s) = λi(x(· ∧ s), s) (that is, λi is nonanticipating). For N = (N1, . . . , Nm), if

97



we take Zi(t) = λi(N, t) and let τn = inf{t :
∑

iNi(t) = n}, then defining dP = L(τn)dQ on
Fτn , N on (Ω,Fτn , P ) has the same distribution as the solution of

Ñi(t) = Yi(

∫ t∧τ̃n

0

λi(Ñ , s)ds)

where the Yi are independent unit Poisson process and τ̃n = inf{t :
∑

i Ñi(t) = n}.
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13 Finance.

Consider financial activity over a time interval [0, T ] modeled by a probability space (Ω,F , P ).
Assume that there is a “fair casino” or market such that at time 0, for each event A ∈ F , a
price Q(A) ≥ 0 is fixed for a bet or a contract that pays one dollar at time T if and only if
A occurs. Assume that the market is such that an investor can either buy or sell the policy
and that Q(Ω) < ∞. An investor can construct a portfolio by buying or selling a variety
(possibly countably many) of contracts in arbitrary multiples. If ai is the “quantity” of a
contract for Ai (ai < 0 corresponds to selling the contract), then the payoff at time T is∑

i

aiIAi
.

We will require that
∑

i |ai|Q(Ai) <∞ so that the initial cost of the portfolio is (unambigu-
ously) ∑

i

aiQ(Ai).

The market has no arbitrage if no combination (buying and selling) of countably policies
with a net cost of zero results in a positive profit at no risk. That is, if

∑
|ai|Q(Ai) <∞,∑

i

aiQ(Ai) = 0,

and ∑
i

aiIAi
≥ 0 a.s.,

then ∑
i

aiIAi
= 0 a.s.

The no arbitrage requirement has the following implications.

Lemma 13.1 Assume that there is no arbitrage. If P (A) = 0, then Q(A) = 0. If Q(A) = 0,
then P (A) = 0.

Proof. Suppose P (A) = 0 and Q(A) > 0. Then construct a portfolio by buying one unit of
Ω and selling Q(Ω)/Q(A) units of A. Then the net cost is

Q(Ω)− Q(Ω)

Q(A)
Q(A) = 0

and the payoff is

1− Q(Ω)

Q(A)
IA = 1 a.s.

which contradicts the no arbitrage assumption.
Now suppose Q(A) = 0. Construct a portfolio by buying one unit of A. The cost of the

portfolio is Q(A) = 0 and the payoff is IA ≥ 0. So by the no arbitrage assumption, IA = 0
a.s., that is, P (A) = 0. �
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Lemma 13.2 If there is no arbitrage and A ⊂ B, then Q(A) ≤ Q(B).

Proof. Suppose Q(B) < Q(A). Construct a portfolio by buying one unit of B and selling
Q(B)/Q(A) units of A. Then the net cost of the portfolio is

Q(B)− Q(B)

Q(A)
Q(A) = 0

and the payoff is

IB −
Q(B)

Q(A)
IA = IB−A + (1− Q(B)

Q(A)
)IA ≥ 0,

which is strictly positive on B. But Q(A) > 0 implies P (A) > 0, so there is a postive payoff
with positive probability contradicting the no arbitrage assumption. �

Theorem 13.3 If there is no arbitrage, Q must be a measure on F that is equivalent to P .

Proof. Let A1, A2, . . . be disjoint and for A = ∪∞i=1Ai, suppose that Q(A) < ρ ≡
∑

iQ(Ai).
Then buy one unit of A and sell Q(A)/ρ units of Ai for each i. The net cost is zero and the
net payoff is

IA −
Q(A)

ρ

∑
i

IAi
= (1− Q(A)

ρ
)IA.

Note that Q(Ai) > 0 implies P (Ai) > 0 and hence P (A) > 0, so the right side is ≥ 0 a.s.
and is > 0 with positive probability, contradicting the no arbtrage assumption. It follows
that Q(A) ≥ ρ.

If Q(A) > ρ, then sell one unit of A and buy Q(A)/ρ units of Ai for each i. �

Theorem 13.4 If there is no arbitrage, Q << P and P << Q. (P and Q are equivalent.)

Proof. The result follows form Lemma 13.1. �

If X and Y are random variables satisfying X ≤ Y a.s., then no arbitrage should mean

Q(X) ≤ Q(Y ).

It follows that for any Q-integrable X, Q(X) =
∫
XdQ.

13.1 Assets that can be traded at intermediate times.

Let {Ft} represent the information available at time t. Let B(t) be the price of a bond at
time t that is worth $1 at time T (e.g. B(t) = e−r(T−t)), that is, at any time 0 ≤ t ≤ T ,
B(t) is the price of a contract that pays exactly $1 at time T . Note that B(0) = Q(Ω), and
define Q̂(A) = Q(A)/B(0).

Let X(t) be the price at time t of another tradeable asset. For any stopping time τ ≤ T ,
we can buy one unit of the asset at time 0, sell the asset at time τ and use the money
received (X(τ)) to buy X(τ)/B(τ) units of the bond. Since the payoff for this strategy is
X(τ)/B(τ), we must have

X(0) =

∫
X(τ)

B(τ)
dQ =

∫
B(0)X(τ)

B(τ)
dQ̂.
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Lemma 13.5 If E[Z(τ)] = E[Z(0)] for all bounded stopping times τ , then Z is a martingale.

Corollary 13.6 If X is the price of a tradeable asset, then X/B is a martingale on (Ω,F , Q̂).

Consider B(t) ≡ 1. Let W be a standard Brownian motion on (Ω,F , P ) and Ft = FW
t ,

0 ≤ t ≤ T . Suppose X is the price of a tradeable asset given as the unique solution of

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds.

For simplicity, assume σ(X(t)) > 0 for all t ≥ 0. Then

FX
t = FW

t ,

since, setting

M(t) = X(t)−X(0)−
∫ t

0

b(X(s))ds,

we have

W (t) =

∫ t

0

1

σ(X(s))
dM(s).

Suppose Q̂ (= Q since B(0) = 1) is a pricing measure and

L = L(T ) =
dQ̂ |FT

dP |FT

.

Then L(t) = E[L(T )|Ft], 0 ≤ t ≤ T is a martingale and

W̃ (t) = W (t)−
∫ t

0

1

L(s)
d[L,W ]s

is a Brownian motion on (Ω,F , Q̂).

Theorem 13.7 (Martingale Representation Theorem.) Suppose M is a martingale on (Ω,F , P )
with respect to the filtration generated by a standard Brownian motion W . Then there exists
an adapted, measurable process U such that

∫ t

0
U2(s)ds <∞ a.s. for each t > 0 and

M(t) = M(0) +

∫ t

0

U(s)dW (s).

Note that the definition of the stochastic integral must be extended for the above theorem
to be valid. Suppose U is progressive and statisfies∫ t

0

|U(s)|2ds <∞ a.s.

for every t > 0. Defining U(s) = U(0), for s < 0, set

Un(t) = n

∫ t

t− 1
n

U(s)ds.
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Note that Un is continuous and adapted and that∫ t

0

|U(s)− Un(s)|2ds→ 0.

It follows that the sequence ∫ t

0

Un(s)dW (s)

is Cauchy in probability,

P{sups≤t |
∫ t

0
Un(s)dW (s)−

∫ t

0
Um(s)dW (s)| > ε} ≤ P{σ ≤ t}+

4E[
∫ t∧σ
0 |Un(s)−Um(s)|2ds]

ε2
,

and ∫ t

0

U(s)dW (s) ≡ lim
n→∞

∫ t

0

Un(s)dW (s).

Let

L(t) = 1 +

∫ t

0

U(s)dW (s).

Then [L,W ]t =
∫ t

0
U(s)ds and

X(t) = X(0) +

∫ t

0

σ(X(s))dW̃ (s) +

∫ t

0

(
σ(X(s))

L(s)
U(s) + b(X(s))

)
ds.

Lemma 13.8 If M is a continuous local martingale of finite variation, then M is constant
in time.

Proof. We have

(M(t)−M(0))2 =

∫ t

0

2(M(s)−M(0))2dM(s) + [M ]t

Since [M ]t = 0, (M(t) −M(0))2 must be a local martingale and hence must be identically
zero. �

Since X must be a martingale on (Ω,F , Q̂), the lemma implies

σ(X(s))

L(s)
U(s) + b(X(s)) = 0.

It follows that

L(t) = 1−
∫ t

0

b(X(s))

σ(X(s))
L(s)dW (s),

so

L(t) = exp{−
∫ t

0

b(X(s))

σ(X(s))
dW (s)− 1

2

∫ t

0

(
b(X(s))

σ(X(s))

)2

ds},

W̃ (t) = W (t) +

∫ t

0

b(X(s))

σ(X(s))
ds,
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and

X(t) = X(0) +

∫ t

0

σ(X(s))dW̃ (s).

Note that E[L(t)] = 1 if

Q̂{
∣∣∣∣∫ t

0

b(X(s))

σ(X(s))

∣∣∣∣ <∞} = 1.

For example, if

X(t) = x0 +

∫ t

0

σX(s)dW (s) +

∫ t

0

bX(s)ds,

that is,

X(t) = x0 exp{σW (t)− 1

2
σ2t+ bt},

then

L(t) = exp{ b
σ
W (t)− 1

2

b2

σ2
t}.

Under dQ̂ = L(T )dP , W̃ (t) = W (t) + b
σ
t is a a standard Brownian motion and

EQ̂[f(X(T ))] =

∫ ∞

−∞
f(x0 exp{σy − 1

2
σ2T )

1√
2πT

e−
y2

2T dy.

How reasonable is the assumption that there exists a pricing measure Q? Start with a
model for a collection of tradeable assets. For example, let

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds

or more generally just assume that X is a vector semimartingale. Allow certain trading
strategies producing a payoff at time T :

Y (T ) = Y (0) +
∑

i

∫ t

0

Hi(s−)dXi(s)

Arbitrage exists if there is a trading strategy satisfying

Y (T ) =
∑

i

∫ t

0

Hi(s−)dXi(s) ≥ 0 a.s.

with P{Y (T ) > 0} > 0.

13.2 First fundamental “theorem”.

Theorem 13.9 (Meta theorem) There is no arbitrage if and only if there exists a probability
measure Q equivalent to P under which the Xi are martingales.

Problems:
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• What trading strategies are allowable?

• The definition of no arbitrage above is, in general, too weak to give theorem.

For example, assume that B(t) ≡ 1 and that there is a single asset satisfying

X(t) = X(0) +

∫ t

0

σX(s)dW (s) +

∫ t

0

bX(s)ds = X(0) +

∫ t

0

σX(s)dW̃ (s).

Let T = 1 and for some stopping time τ < T , let

H(t) =
1

σX(t)(1− t)
, 0 ≤ t < τ,

and H(t) = 0 for t ≥ τ . Then for t < τ ,∫ t

0

H(s)dX(s) =

∫ t

0

1

1− s
dW̃ (s) = Ŵ (

∫ t

0

1

(1− s)2
ds),

where Ŵ is a standard Brownian motion under Q̂. Let

τ̂ = inf{u : Ŵ (u) = 1},
∫ τ

0

1

(1− s)2
ds = τ̂ .

Then with probability 1, ∫ 1

0

H(s)dX(s) = 1.

Admissible trading strategies: The trading strategy denoted {x,H1, . . . , Hd} is admis-
sible if for

V (t) = x+
∑

i

∫ t

0

Hi(s−)dXi(s)

there exists a constant a such that

inf
0≤t≤T

V (t) ≥ −a, a.s.

No arbitrage: If {0, H1, . . . , Hd} is an admissible trading strategy and
∑

i

∫ T

0
Hi(s−)dXi(s) ≥

0 a.s., then
∑

i

∫
T
0Hi(s−)dXi(s) = 0 a.s.

No free lunch with vanishing risk: If {0, Hn
1 , . . . , H

n
d } are admissible trading strategies

and

lim
n→∞

‖0 ∧
∑

i

∫ T

0

Hn
i (s−)dXi(s)‖∞ = 0,

then

|
∑

i

∫ T

0

Hn
i (s−)dXi(s)| → 0

in probability.

Theorem 13.10 (Delbaen and Schachermayer). Let X = (X1, . . . , Xd) be a bounded semi-
martingale defined on (Ω,F , P ), and let Ft = σ(X(s), s ≤ t). Then there exists an equivalent
martingale measure defined on FT if and only if there is no free lunch with vanishing risk.
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13.3 Second fundamental “theorem”.

Theorem 13.11 (Meta theorem) If there is no arbitrage, then the market is complete if and
only if the equivalent martingale measure is unique.

Problems:

• What prices are “determined” by the allowable trading strategies?

• Specifically, how can one “close up” the collection of attainable payoffs?

Theorem 13.12 If there exists an equivalent martingale random measure, then it is unique
if and only if the set of replicable, bounded payoffs is “complete” in the sense that

{x+
∑

i

∫ T

0

Hi(s−)dXi(s) : Hi simple} ∩ L∞(P )

is weak∗ dense in L∞(P,FT ),

For general B, if we assume that after time 0 all wealth V must either be invested in the
assets {Xi} or the bond B, then the number of units of the bond held is

V (t)−
∑

iHi(t)Xi(t)

B(t)
,

and

V (t) = V (0) +
∑

i

∫ t

0

Hi(s−)dXi(s) +

∫ t

0

V (s−)−
∑

iHi(s−)Xi(s−)

B(s−)
dB(s).

Applying Itô’s formula, we have

V (t)

B(t)
=
V (0)

B(0)
+
∑

i

∫ t

0

Hi(s−)

B(s−)
dXi(s),

which should be a martingale under Q̂.
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14 Filtering.

Signal:

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds

Observation:

Y (t) =

∫ t

0

h(X(s))ds+ αV (t)

Change of measure

dQ|Ft

dP |Ft

= L0(t) = 1−
∫ t

0

α−1h(X(s))L0(t)dV (s)

= 1−
∫ t

0

α−2h(X(s))L0(s)dY (s) +

∫ t

0

α−1h2(X(s))L0(s)ds

= exp{−
∫ t

0

α−1h(X(s))dV (s)− 1

2

∫ t

0

α−2h2(X(s))ds}

= exp{−
∫ t

0

α−2h(X(s))dY (s) +
1

2

∫ t

0

α−2h2(X(s))ds}.

Define

Ṽ (t) = V (t) +

∫ t

0

h(X(s))

α
ds.

W and Ṽ are independent Brownian motions under Q. Therefore X and Y = αṼ are
independent under Q.

Therefore

dP |Ft

dQ|Ft

= L(t) = L0(t)
−1 = exp{

∫ t

0

α−2h(X(s))dY (s)− 1

2

∫ t

0

α−2h2(X(s))ds}

and

L(t) = 1 +

∫ t

0

α−2h(X(s))L(s)dY (s).

Set L(t,X, Y ) = L(t).

EP [f(X(t))|FY
t ] =

EQ[f(X(t))L(t,X, Y )|FY
t ]

EQ[L(t,X, Y )|FY
t ]

=

∫
f(x(t))L(t, x, Y )µX(dx)∫

L(t, x, Y )µX(dx)

Let φ be the measure-valued process determined by

〈φ(t), f〉 = EQ[f(X(t))L(t)|FY
t ].

We want to derive a differential equation for φ.
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f(X(t))L(t) = f(X(0)) +

∫ t

0

f(X(s))dL(s)

+

∫ t

0

L(s)σ(X(s))f ′(X(s))dW (s) +

∫ t

0

L(s)Lf(X(s))ds

= f(X(0)) +

∫ t

0

f(X(s))L(s)α−2h(X(s))dY (s)

+

∫ t

0

L(s)σ(X(s))f ′(X(s))dW (s) +

∫ t

0

L(s)Lf(X(s))ds.

Lemma 14.1 Suppose X has finite expectation and is H-measurable and that D is indepen-
dent of G ∨ H. Then

E[X|G ∨ D] = E[X|G].

Proof. It is sufficient to show that for G ∈ G and D ∈ D,∫
D∩G

E[X|G]dP =

∫
D∩G

XdP.

But the independence assumption implies∫
D∩G

E[X|G]dP = E[IDIGE[X|G]]

= E[ID]E[IGE[X|G]]

= E[ID]E[IGX]

= E[IDIGX]

=

∫
D∩G

XdP.

�

Lemma 14.2 Suppose that Y has independent increments and is compatible with {Ft}.
Then for {Ft}-progressive U satisfying

∫ t

0
E[|U(s)|]ds <∞

EQ[

∫ t

0

U(s)ds|FY
t ] =

∫ t

0

EQ[U(s)|FY
s ]ds.

Proof. By the Fubini theorem for conditional expectations

EQ[

∫ t

0

U(s)ds|FY
t ] =

∫ t

0

EQ[U(s)|FY
t ]ds.

The identity then follows by Lemma 14.1 and the fact that Y (r) − Y (s) is independent of
U(s) for r > s. �
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Lemma 14.3 Suppose that Y is an Rd-valued process with independent increments that is
compatible with {Ft} and that there exists p ≥ 1 and c such that

E[|
∫ t

0

U(s)dY (s)|] < cE[

∫ t

0

|U(s)|pds]p−1

, (14.1)

for each Mm×d-valued, {Ft}-predictable process U such that the right side of (14.1) is finite.
Then for each such U ,

E[

∫ t

0

U(s)dY (s)|FY
t ] =

∫ t

0

E[U(s)|FY
s ]dY (s). (14.2)

Proof. If U =
∑m

i=1 ξiI(ti−1,ti] with 0 = t0 < · · · < tm and ξi, Fti-measurable, (14.2) is
immediate. The lemma then follows by approximation. �

Lemma 14.4 Let Y be as above, and let {Ft} be a filtration such that Y is compatible
with {Ft}. Suppose that M is an {Ft}-martingale that is independent of Y . If U is {Ft}-
predictable and

E[|
∫ t

0

U(s)dM(s)|] <∞,

then

E[

∫ t

0

U(s)dM(s)|FY
t ] = 0.

Applying the lemmas, we have the Zakai equation:

〈φ(t), f〉 = 〈φ(0), f〉+

∫ t

0

〈φ(s), Lf〉ds

+

∫ t

0

〈φ(s), α−2fh〉dY (s)
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15 Problems.

1. Let N be a nonnegative integer-valued random variable with E[N ] <∞. Let ξ1, ξ2, . . .
be iid with mean m and independent of N . Show, using the definition of conditional
expectation, that

E[
N∑

k=1

ξk|N ] = mN.

2. Let {Fk} be a discrete-time filtration, let {ξk} be iid such that ξk is Fk-measurable
and (ξk+1, ξk+2, . . .) is independent of Fk, and let τ be an {Fk}-stopping time.

(a) Show that (ξτ+1, ξτ+2, . . .) is independent of Fτ .

(b) Show that if the assumption that the {ξk} are identically distributed is dropped,
then the assertion in part a is no longer valid.

3. Let ξ1, ξ2, . . . be positive, iid random variables with E[ξi] = 1, and let Fk = σ(ξi, i ≤ k).
Define

Mk =
k∏

i=1

ξi.

Show that {Mk} is a {Fk}-martingale.

4. Let N(t) be a counting process with E[N(t)] < ∞, and let ξ1, ξ2, . . . be positive, iid

random variables with E[ξi] = 1 that are independent of N . Define M(t) =
∏N(t)

i=1 ξi.
Show that M is a martingale. (Justify your answer using the properties of conditional
expectations.)

5. Let Y be a Poisson process with intensity λ, and let ξ1, ξ2, . . . be iid with mean m and
variance σ2 that are independent of Y . Define

X(t) =

Y (t)∑
k=1

ξk

Show that X has stationary, independent increments, and calculate E[X(t) − X(s)]
and V ar(X(t)−X(s)).

6. Let τ be a discrete stopping time with range {t1, t2, . . .}. Show that

E[Z|Fτ ] =
∞∑

k=1

E[Z|Ftk ]I{τ=tk} .

7. (a) LetW denote standard Brownian motion, and let {ti} be a partition of the interval
[0, t]. What is lim

∑
|W (ti+1)−W (ti)|3 as max |ti+1 − ti| → 0?

(b) What is lim
∑
W (ti) ((W (ti+1)−W (ti))

2 − (ti+1 − ti)) as max |ti+1 − ti| → 0?
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(c) Use the limits in part a) and b) to directly calculate
∫ t

0
W 2(s−)dW (s) from the

definition of the stochastic integral.

8. Let 0 ≤ τ1 ≤ τ2 ≤ · · · be {Ft}-stopping times, and for k = 1, 2, . . ., let ξk be Fτk
-

measurable. Define

X(t) =
∞∑

k=1

ξkI[τk,τk+1)(t),

and show that X is {Ft}-adapted

9. (a) For each n > 0, show that Mn(t) =
∫ t

0
W (s−)ndW (s) is square integrable and

that Mn is a martingale. (You do not need to explicitly compute Mn.)

(b) Show that Z(t) =
∫ t

0
eW (s−)4dW (s) is a local martingale. (It is not a martingale,

since it is not integrable.) In particular, find a sequence of stopping times τn such
that Z(· ∧ τn) is a martingale.

10. Let Y be a Poisson process with intensity λ.

(a) Find a cadlag process U such that

e−αY (t) = 1 +

∫ t

0

U(s−)dY (s) (15.1)

(b) Use (15.1) and the fact that Y (t)− λt is a martingale to compute E[e−αY (t)].

(c) Define

Z(t) =

∫ t

0

e−αY (s−)dY (s).

Again use the fact that Y (t)−λt is a martingale to calculate E[Z(t)] and V ar(Z(t)).

11. Let N be a Poisson process with parameter λ, and let X1, X2, . . . be a sequence of
Bernoulli trials with parameter p. Assume that the Xk are independent of N . Let

M(t) =

N(t)∑
k=1

Xk.

What is the distribution of M(t)?

12. Let N be a Poisson process with parameter λ. For t < s:

(a) What is the covariance of N(t) and N(s)?

(b) Calculate the probability that P{N(t) = 1, N(s) = 1}.
(c) Give an event in terms of S1 and S2 that is equivalent to the event {N(t) =

1, N(s) = 1}, and use the calculation in part 12b to calculate the joint density
function for S1 and S2.
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13. Let Y be a continuous semimartingale. Solve the stochastic differential equation

dX = aXdt+ bXdY, X(0) = x0

Hint: Look for a solution of the form X(t) = A exp{Bt+CY (t) +D[Y ]t} for some set
of constants, A,B,C,D.

14. Let W be standard Brownian motion and suppose (X,Y ) satisfies

X(t) = x+

∫ t

0

Y (s)ds

Y (t) = y −
∫ t

0

X(s)ds+

∫ t

0

cX(s−)dW (s)

where c 6= 0 and x2 + y2 > 0. Assuming all moments are finite, define m1(t) =
E[X(t)2], m2(t) = E[X(t)Y (t)], and m3(t) = E[Y (t)2]. Find a system of linear differ-
ential equations satisfied by (m1,m2,m3), and show that the expected “total energy”
(E[X(t)2 + Y (t)2]) is asymptotic to keλt for some k > 0 and λ > 0.

15. Let X and Y be independent Poisson processes. Show that with probability one, X
and Y do not have simultaneous discontinuities and that [X, Y ]t = 0, for all t ≥ 0.

16. Two local martingales, M and N , are called orthogonal if [M,N ]t = 0 for all t ≥ 0.

(a) Show that if M and N are orthogonal, then [M +N ]t = [M ]t + [N ]t.

(b) Show that if M and N are orthogonal, then M and N do not have simultaneous
discontinuities.

(c) Suppose that Mn are pairwise orthogonal, square integrable martingales (that is,
[Mn,Mm]t = 0 for n 6= m). Suppose that

∑∞
k=1E[[Mn]t] < ∞ for each t. Show

that

M ≡
∞∑

k=1

Mn

converges in L2 and thatM is a square integrable martingale with [M ] =
∑∞

k=1[Mk].

17. Let X1, X2 . . . and Y1, Y2, . . . be independent, unit Poisson processes. For λk > 0 and
ck ∈ R, define

Mn(t) =
n∑

k=1

ck(Yk(λkt)−Xk(λkt))

(a) Suppose
∑
c2kλk <∞. Show that for each T > 0,

lim
n,m→∞

E[sup
t≤T

(Mn(t)−Mm(t))2] = 0

and hence we can define

M(t) =
∞∑

k=1

ck(Yk(λkt)−Xk(λkt))
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(b) Under the assumptions of part (a), show that M is a square integrable martingale,
and calculate [M ].

18. Suppose in Problem 17 that
∑
c2kλk < ∞ but

∑
|ckλk| = ∞. Show that for t >

0, Tt(M) = ∞ a.s. (Be careful with this. In general the total variation of a sum is not
the sum of the total variations.)

19. Let W be standard Brownian motion. Use Ito’s Formula to show that

M(t) = eαW (t)− 1
2
α2t

is a martingale. (Note that the martingale property can be checked easily by direct
calculation; however, the problem asks you to use Ito’s formula to check the martingale
property.)

20. Let N be a Poisson process with parameter λ. Use Ito’s formula to show that

M(t) = eαN(t)−λ(eα−1)t

is a martingale.

21. Let X satisfy

X(t) = x+

∫ t

0

σX(s)dW (s) +

∫ t

0

bX(s)ds

Let Y = X2.

(a) Derive a stochastic differential equation satisfied by Y .

(b) Find E[X(t)2] as a function of t.

22. Suppose that the solution of dX = b(X)dt + σ(X)dW , X(0) = x is unique for each
x. Let τ = inf{t > 0 : X(t) /∈ (α, β)} and suppose that for some α < x < β,
P{τ <∞, X(τ) = α|X(0)} = x} > 0 and P{τ <∞, X(τ) = β|X(0) = x} > 0 .

(a) Show that P{τ < T,X(τ) = α|X(0) = x} is a nonincreasing function of x,
α < x < β.

(b) Show that there exists a T > 0 such that

inf
x

max{P{τ < T,X(τ) = α|X(0) = x}, P{τ < T,X(τ) = β|X(0) = x}} > 0

(c) Let γ be a nonnegative random variable. Suppose that there exists a T > 0 and a
ρ < 1 such that for each n, P{γ > (n+ 1)T |γ > nT} < ρ. Show that E[γ] <∞.

(d) Show that E[τ ] <∞.

23. Let dX = −bX2dt+ cXdW , X(0) > 0.

(a) Show that X(t) > 0 for all t a.s.
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(b) For what values of b and c does limt→∞X(t) = 0 a.s.?

24. Let dX = (a − bX)dt +
√
XdW , X(0) > 0 where a and b are positive constants. Let

τ = inf{t > 0 : X(t) = 0}.

(a) For what values of a and b is P{τ <∞} = 1?

(b) For what values of a and b is P{τ = ∞} = 1?

25. Let M be a k-dimensional, continuous Gaussian process with stationary, mean zero,
independent increments andM(0) = 0. Let B be a k×k-matrix all of whose eigenvalues
have negative real parts, and let X satisfy

X(t) = x+

∫ t

0

BX(s)ds+M(t)

Show that suptE[|X(t)|n] < ∞ for all n. (Hint: Let Z(t) = CX(t) for a judiciously
selected, nonsingular C, show that Z satisfies an equation of the same form as X, show
that suptE[|Z(t)|n] <∞, and conclude that the same must hold for X.)

26. Let X(t, x) be as in (8.3) with σ and b continuous. Let D ⊂ Rd be open, and let τ(x)
be the exit time from D starting from x, that is,

τ(x) = inf{t : X(t, x) /∈ D}.

Assume that h is bounded and continuous. Suppose x0 ∈ ∂D and

lim
x→x0

P [τ(x) < ε] = 1,∀ε > 0.

Show that
lim

x→x0

P [|X(τ(x), x)− x0| > ε] = 0∀ε > 0,

and hence, if f is defined by (8.4), f(x) → h(x0), as x→ x0.

27. (Central Limit Theorem for Random Matrices) Let A1, A2, . . . be independent, iden-
tically distributed, matrix-valued random variables with expectation zero and finite
variance. Define

Yn(t) =
1√
n

[nt]∑
k=1

Ak

Xn(t) = (I +
1√
n
A1)(I +

1√
n
A2) · · · (I +

1√
n
A[nt])

Show that Xn satisfies a stochastic differential equation driven by Yn, conclude that
the sequence Xn converges in distribution, and characterize the limit.
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In Problems 28 and 29, assume that d = 1, that σ and β are continuous, and that

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds

Recall that Lf(x) = 1
2
σ(x)2f ′′(x) + b(x)f ′(x).

28. Let α < β, and suppose that there is a function f that is C2 and satisfies Lf(x) ≥ δ > 0
on [α, β]. Define τ = inf{t : X(t) /∈ (α, β)}. Show that E[τ ] <∞.

29. Let α < β, and suppose that infx∈(α,β) σ(x)2 > 0. Define τ = inf{t : X(t) /∈ (α, β)}.
Show that E[τ ] <∞.

In Problems 30 through 33, let X be real-valued and satisfy dX = σ(X)dW + b(X)dt where
σ is bounded and strictly positive, and suppose that v(x) = x2 satisfies Lv ≤ K − εv for
some ε > 0. Let τ0 = inf{t : X(t) ≤ 0}.

30. Show that if E[X(0)2] <∞, then E[τ0] <∞.

31. Assume that E[X(0)2] < ∞. Show that if f is twice continuously differentiable with
bounded first derivative, then

lim
t→∞

1

t

∫ t

0

Lf(X(s))ds = 0

where convergence is in L2. (Convergence is also almost sure. You can have 2 points
extra credit if you show that.)

32. Show that for every bounded continuous g, there exists a constant cg such that

lim
t→∞

1

t

∫ t

0

g(X(s))ds = cg

Hint: Show that there exists cg and f such that Lf = g − cg. Remark. In fact, under
these assumptions the diffusion process has a stationary distribution π and cg =

∫
gdπ.

33. Show that if f is twice continuously differentiable with bounded first derivative, then

Wn(t) ≡ 1√
n

∫ nt

0

Lf(X(s)ds

converges in distribution to αW for some constant α.

Ornstein Unlenbeck Process. (Problems 34-40.) The Ornstein-Uhlenbeck process was
originally introduced as a model for the velocity of “physical” Brownian motion,

dV = −λV dt+ σdW ,
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where σ, λ > 0. The location of a particle with this velocity is then given by

X(t) = X(0) +

∫ t

0

V (s)ds.

Explore the relationship between this model for physical Brownian motion and the usual
mathematical model. In particular, if space and time are rescaled to give

Xn(t) =
1√
n
X(nt),

what happens to Xn as n→∞?

34. Derive the limit of Xn directly from the stochastic differential equation. (Note: No
fancy limit theorem is needed.) What type of convergence do you obtain?

35. Calculate E[V (t)4]. Show (without necessarily calculating explicitly), that if E[|V (0)|k] <
∞, then sup0≤t<∞E[|V (t)|k] <∞.

36. Compute the stationary distribution for V . (One approach is given Section 9. Can
you find another.)

37. Let g be continous with compact support, and let cg =
∫
gdπ, where π is the stationary

distribution for V . Define

Zn(t) =
1√
n

(

∫ nt

0

g(V (s))ds− nCgt).

Show that Zn converges in distribution and identify the limit.

38. Note that Problem 34 is a result of the same form as Problem 37 with g(v) = v, so the
condition that g be continuous with compact support in Problem 37 is not necessary.
Find the most general class of g’s you can, for which a limit theorem holds.

39. Consider X(t) = X(0) +
∫ t

0
V (s)ds with the following modification. Assume that

X(0) > 0 and keep X(t) ≥ 0 by switching the sign of the velocity each time X hits
zero. Derive the stochastic differential equation satisfied by (X,V ) and prove the
analogue of Problem 34. (See Lemma 11.1.)

40. Consider the Ornstein-Unlenbeck process in Rd

dV = −λV dt+ σdW

where W is now d-dimensional Brownian motion. Redo as much of the above as you
can. In particular, extend the model in Problem 39 to convex sets in Rd.

41. Let X be a diffusion process with generator L. Suppose that h is bounded and C2

with h ≥ ε > 0 and that Lh is bounded. Show that

L(t) =
h(X(t))

h(X(0))
exp{−

∫ t

0

Lh(X(s))

h(X(s))
ds}

is a martingale with E[L(t)] = 1.
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42. For x > 0, let

X(t) = x+

∫ t

0

σ(X(s))dW (s)

and τ = inf{t : X(t) = 0}. Give conditions on σ, as general as you can make them,
that imply E[τ ] <∞.

43. Let X(t) = X(0) +W (t) where W = (W1,W2) is two-dimensional standard Brownian
motion. Let Z = (R,Θ) be the polar coordinates for the point (X1, X2). Derive a
stochastic differential equation satisfied by Z. Your answer should be of the form

Z(t) = Z(0) +

∫ t

0

σ(Z(s))dW (s) +

∫ t

0

b(Z(s))ds.

44. Assume that d = 1. Let

X(t, x) = x+

∫ t

0

σ(X(s, x))dW (s) +

∫ t

0

b(X(s, x))ds,

where σ and b have bounded continuous derivatives. Derive the stochastic differential
equation that should be satisfied by

Y (t, x) =
∂

∂x
X(t, x)

if the derivative exists and show that

Y (t, x) ≡ lim
h→0

1

h
(X(t, x+ h)−X(t, x))

exists in L2 where Y is the solution of the derived equation.

45. Let N be a unit Poisson process and let

Wn(t) =
1√
n

∫ nt

0

(−1)N(s)ds

(Recall that Wn ⇒ W where W is standard Brownian motion.) Show that there exist
martingales Mn such that Wn = Mn + Vn and Vn → 0, but Tt(Vn) →∞.

46. Let Wn be as in Problem 45. Let σ have a bounded, continuous derivative, and let

Xn(t) =

∫ t

0

σ(Xn(s))dWn(s).

Show thatXn ⇒ X for someX and identify the stochastic differential equation satisfied
by X. Note that by Problem 45, the conditions of Theorem 10.13 are not satisfied for

Xn(t) =

∫ t

0

σ(Xn(s−))dMn(s) +

∫ t

0

σ(Xn(s−))dVn(s). (15.2)

Integrate the second term on the right of (15.2) by parts, and show that the sequence
of equations that results, does satisfy the conditions of Theorem 10.13.
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Central limit theorem for Markov chains. (Problems 47-54.) Let ξ0, ξ1, . . . be an
irreducible Markov chain on a finite state space {1, ..., d}, let P = ((pij)) denote its transition
matrix, and let π be its stationary distribution. For any function h on the state space, let
πh denote

∑
i πih(i).

47. Show that

f(ξn)−
n−1∑
k=0

(Pf(ξk)− f(ξk))

is a martingale.

48. Show that for any function h, there exists a solution to the equation Pg = h − πh,
that is, to the system ∑

j

pijg(j)− g(i) = h(i)− πh.

49. The ergodic theorem for Markov chains states that

lim
n→∞

1

n

n∑
k=1

h(ξk) = πh.

Use the martingale central limit theorem to prove convergence in distribution for

Wn(t) =
1√
n

[nt]∑
k=1

(h(ξk)− πh) .

50. Use the martingale central limit theorem to prove the analogue of Problem 49 for a
continuous time finite Markov chain {ξ(t), t ≥ 0}. In particular, use the multidimen-
sional theorem to prove convergence for the vector-valued process Un = (U1

n, . . . , U
d
n)

defined by

Uk
n(t) =

1√
n

∫ nt

0

(I{ξ(s)=k} − πk)ds

51. Explore extensions of Problems 49 and 50 to infinite state spaces.

Limit theorems for stochastic differential equations driven by Markov chains

52. Show that Wn defined in Problem 49 and Un defined in Problem 50 are not “good”
sequences of semimartingales, in the sense that they fail to satisfy the hypotheses of
Theorem 10.13. (The easiest approach is probably to show that the conclusion is not
valid.)

53. Show that Wn and Un can be written as Mn + Zn where {Mn} is a “good” sequence
and Zn ⇒ 0.

54. (Random evolutions) Let ξ be as in Problem 50, and let Xn satisfy

Ẋn(t) =
√
nF (Xn(s), ξ(ns)).

Suppose
∑

i F (x, i)πi = 0. Write Xn as a stochastic differential equations driven by
Un, give conditions under which Xn converges in distribution to a limit X, and identify
the limit.
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55. (a) Let W be a standard Brownian motion, let σi, i = 1, 2, be bounded, continuous
functions, and suppose that

Xi(t) = Xi(0) +

∫ t

0

σi(s)Xi(s)dW (s), i = 1, 2.

Apply Itô’s formula to find an SDE satisfied by Z = X1X2.

(b) Let W1 and W2 be independent standard Brownian motions. Let

Yi(t) = Yi(0) +

∫ t

0

σi(s)Yi(s)dWi(s), i = 1, 2.

Find an SDE satisfied by U = Y1Y2, and show that U is a martingale.

56. Suppose the price X of a tradeable asset is the unique solution of

X(t) = X(0) + Y (

∫ t

0

λ(X(s))ds)−
∫ t

0

µ(X(s))ds, (15.3)

where Y is a unit Poisson process, X(0) is independent of Y , Y and X(0) are defined
on (Ω,F , P ), and λ and µ are bounded and strictly positive. Let Ft = σ(X(s) : s ≤ t).
Find a measure Q equivalent to P such that {X(t), 0 ≤ t ≤ T} is a martingale under
Q and X(0) has the same distribution under Q as under P .

57. Suppose that µ : R → R is Lipshitz.

(a) Show that the solution of (15.3) is unique.

(b) Let u be cadlag. Show that

x(t) = u(t)−
∫ t

0

µ(x(s))ds (15.4)

has a unique solution and that x is cadlag.

(c) Let Γ(t, u) = x(t), where x is the unique solution of (15.4). Show that Γ is
nonanticipating in the sense that Γ(t, u) = Γ(t, ut), t ≥ 0, where ut(s) = u(s ∧ t).

58. (Extra credit) Show that Q in Problem 56 is unique. (You might begin by showing
that the distribution of X is the same under any Q satisfying the conditions of the
problem.)

59. Let α, β ∈ (0,∞)2, and let X = (X1, X2) satisfy

X(t) = X(0) + αY1(

∫ t

0

λ1(X(s))ds)− βY2(

∫ t

0

λ2(X(s))ds),

where Y1 and Y2 are independent, unit Poisson processes independent ofX(0); Y1, Y2, X(0)
are defined on (Ω,F , P ); α and β are linearly independent; and 0 < ε ≤ λ1, λ2 ≤ ε−1,
for some ε > 0. Show that there exists a probability measure Q equivalent to P under
which X is a martingale and X(0) has the same distribution under Q as under P .
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