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1 Introduction.

The first draft of these notes was prepared by the students in Math 735 at the University
of Wisconsin - Madison during the fall semester of 1992. The students faithfully transcribed
many of the errors made by the lecturer. While the notes have been edited and many
errors removed, particularly due to a careful reading by Geoffrey Pritchard, many errors
undoubtedly remain. Read with care.

These notes do not eliminate the need for a good book. The intention has been to
state the theorems correctly with all hypotheses, but no attempt has been made to include
detailed proofs. Parts of proofs or outlines of proofs have been included when they seemed
to illuminate the material or at the whim of the lecturer.



2 Review of probability.

A probability space is a triple (€2, F, P) where €2 is the set of “outcomes”, F is a o-algebra of
“events”, that is, subsets of Q, and P : F — [0, 00) is a measure that assigns “probabilities”
to events. A (real-valued) random wariable X is a real-valued function defined on 2 such
that for every Borel set B € B(R), we have X '(B) = {w : X(w) € B} € F. (Note that
the Borel o-algebra B(R)) is the smallest o-algebra containing the open sets.) We will
occasionally also consider S-valued random variables where S is a separable metric space
(e.g., RY). The definition is the same with B(S) replacing B(R).
The probability distribution on S determined by
ux(B) = P(X"\(B)) = PX € B}

is called the distrbution of X. A random variable X has a discrete distribution if its range is
countable, that is, there exists a sequence {z;} such that >~ P{X = x;} = 1. The expectation
of a random variable with a discrete distribution is given by

E[X] =) P{X =x;}
provided the sum is absolutely convergent. If X does not have a discrete distribution, then
it can be approximated by random variables with discrete distributions. Define X, = %
and X, = £ when £ < X < 5l and note that X, < X <X, and |X,, — X,,| < 1. Then

E[X] = lim E[X,] = lim E[X,,]

n—oo

provided E[X,] exists for some (and hence all) n. If E[X] exists, then we say that X is
integrable.

2.1 Properties of expectation.
a) Linearity: E[aX 4 bY] = aE[X] + bE[Y]
b) Monotonicity: if X > Y a.s then E[X]| > E[Y]

2.2 Convergence of random variables.

a) X, — X as. iff P{w:lim, . X, (w) = X(w)} = 1.

b) X, — X in probability iff Ve > 0, lim, .., P{|X, — X| > ¢} =0.

c) X, converges to X in distribution (denoted X,, = X) iff lim, ., P{X,, <z} = P{X <

x} = Fx(x) for all z at which Fy is continuous.
Theorem 2.1 a) implies b) implies c).
Proof. (b= c) Let € > 0. Then
P{X,<z}—-P{X<z+4+e = PX, <z, X>zx+e}-P{X<z+eX, >z}
< P{X,—X|>¢€}

and hence limsup P{X,, < z} < P{X < 2 +¢}. Similarly, liminf P{X,, < 2} > P{X <
x — €}. Since € is arbitrary, the implication follows. O
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2.3 Convergence in probability.

a) If X,, — X in probability and Y,, — Y in probability then aX,, + bY,, — aX + bY in
) p y p y
probability.

b) If @ : R — R is continuous and X,, — X in probability then Q(X,) — Q(X) in
probability.

c) If X;, — X in probability and X,, —Y,, — 0 in probability, then Y;, — X in probability.

Remark 2.2 (b) and (c¢) hold with convergence in probability replaced by convergence in
distribution; however (a) is not in general true for convergence in distribution.

Theorem 2.3 (Bounded Convergence Theorem) Suppose that X,, = X and that there exists
a constant b such that P(|X,| <b) =1. Then E[X,| — E[X].

Proof. Let {z;} be a partition of R such that Fx is continuous at each x;. Then

inP{xi <X, <z} < E[X,] < ZleP{xi < Xn < Tiga}

and taking limits we have

—Nn—00

> wPle; < X <z} < lim, E[X,)]

As max |z;41 — ;| — 0, the left and right sides converge to F[X] giving the theorem. [
Lemma 2.4 Let X >0 a.s. Then limy .., E[X A M] = E[X].

Proof. Check the result first for X having a discrete distribution and then extend to general
X by approximation. O

Theorem 2.5 (Monotone Convergence Theorem.) Suppose 0 < X,, < X and X,, — X in
probability. Then lim,, ., E[X,| = E[X].

Proof. For M >0
E[X] > E[X,] > F[X, N M] — E[X N M]

where the convergence on the right follows from the bounded convergence theorem. It follows
that
E[X A M| <liminf F[X,| <limsup F[X,| < EF[X]

n—oo n—o0o

and the result follows by Lemma 2.4. 0

Lemma 2.6 . (Fatou’s lemma.) If X,, > 0 and X,, = X, then liminf F[X,| > F[X].
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Proof. Since E[X,] > E[X,, A M] we have
liminf E£[X,] > liminf E[X,, A M] = E[X A M].
By the Monotone Convergence Theorem E[X A M| — E[X] and the lemma folllows. O

Theorem 2.7 (Dominated Convergence Theorem) Assume X, = X, Y, =Y, |X,| <Y,,
and E|Y,] — E[Y] < co. Then E[X,| — E[X].

Proof. For simplicity, assume in addition that X, +Y, = X +Y and YV, — X,, = Y —
X (otherwise consider subsequences along which (X,,Y,) = (X,Y)). Then by Fatou’s
lemma liminf F[X,, + Y,] > E[X + Y] and liminf E[Y,, — X,] > E]Y — X]. From these
observations liminf E[X,] + lim E[Y,] > E[X] + E[Y], and hence liminf F[X,| > E[X].
Similarly liminf F[—X,,] > F[—X] and limsup F[X,,] < F[X] O

Lemma 2.8 (Markov’s inequality)

P{|X| > a} < E[|X|]/a, a>0.

Proof. Note that |X| > al{x|>q}. Taking expectations proves the desired inequality. 0]

2.4 Norms.

For 1 < p < o0, L, is the collection of random variables X with E[|X|’] < oo and the
L,-norm is defined by || X||, = E[|X|P]*/P. L is the collection of random variables X such
that P{|X| < ¢} =1 for some ¢ < oo, and || X || = inf{c: P{|X| <c} =1.

Properties of norms:
1) | X =Y||, =0 implies X =Y as. .
2) |[EIXY] < |IX[LIIY]l,  5+5=1
3) X + Y, < [IXIlp + [IY]lp

Schwartz inequality. (p =¢ =
Note that

).

0 < E[(aX +bY)?] = a*E[X?] + 2abE[XY] + VE[Y?].
Assume that E[XY] <0 (otherwise replace X by —X) and take a,b > 0. Then

N =

a b
—E[X?+ —E[Y?].
2b []+m Y]

Take a = ||Y]| and b = || X]|. -
Triangle inequality. (p = %)

~E[XY] <



We have

X +Y]? = E[(X+Y)]

E[X?] +2E[XY] + E[Y?]
< X220 X Y+ 1Y)
X1+ Y]],

O

It follows that r,(X,Y) = || X —Y||, defines a metric on L,, the space of random variables
satisfying E[|X|?] < oco. (Note that we identify two random variables that differ on a set of
probability zero.) Recall that a sequence in a metric space is Cauchy if

lim 7,(X,, X,,) =0

n,Mm—00

and a metric space is complete if every Cauchy sequence has a limit. For example, in the
case p = 1, suppose {X,,} is Cauchy and let n; satisfy

1
sup. [| X — X [h = E[[Xm — X, [] < 77

m>ng 4k .
Then, with probability one, the series
X=Xn + Z(Xnk+1 - Xﬂk)
k=1

is absolutely convergent, and it follows that

lim || X, — X = 0.

2.5 Information and independence.

Information obtained by observations of the outcome of a random experiment is represented
by a sub-g-algebra D of the collection of events F. If D € D, then the oberver “knows”
whether or not the outcome is in D.

An S-valued random variable Y is independent of a o-algebra D if

P{Y e BynD)= P{Y € B}P(D),VB € B(S),D € D.
Two o-algebras Dy, Dy are independent if
P(DyN Dy) = P(Dy)P(Ds), VD, € Dy,Dsy € Ds.
Random variables X and Y are independent if o(X) and o(Y") are independent, that is, if

P({X S Bl} N {Y € BQ}) = P{X € Bl}P{Y € BQ}



2.6 Conditional expectation.

Interpretation of conditional expectation in L,.

Problem: Approximate X € Ly using information represented by D such that the mean
square error is minimized, i.e., find the D-measurable random variable Y that minimizes
E[(X —Y)?.

Solution: Suppose Y is a minimizer. For any € # 0 and any D-measurable random variable
Z € Lo

E[|X -YP]<E[|X-Y —cZ] = E[|X - Y|"] —2¢E[Z(X - Y)] +*E[Z?.
Hence 2¢E[Z(X —Y)] < e?E[Z?]. Since ¢ is arbitrary, F[Z(X —Y)] = 0 and hence
E[ZX] = E|ZY] (2.1)

for every D-measurable Z with E[Z?] < cc. O

With (2.1) in mind, for an integrable random variable X, the conditional ezpectation of
X, denoted E[X|D], is the unique (up to changes on events of probability zero) random
variable Y satisfying

A) Y is D-measurable.
B) [, XdP = [,YdP forall DeD.

Note that Condition B is a special case of (2.1) with Z = I (where I denotes the indi-
cator function for the event D) and that Condition B implies that (2.1) holds for all bounded
D-measurable random variables. Existence of conditional expectations is a consequence of
the Radon-Nikodym theorem.

The following lemma is useful in verifying Condition B.

Lemma 2.9 Let C C F be a collection of events such that 2 € C and C s closed under
intersections, that is, if D1, Dy € C, then Dy N Dy € C. If X and Y are integrable and

/ XdP = / Ydp (2.2)
D D
for all D € C, then (2.2) holds for all D € o(C) (the smallest o-algebra containing C).

Example: Assume that D = o(Dy,Ds,...,) where J;2, D; = Q, and D, N D; =
whenever ¢ # j. Let X be any F-measurable random variable. Then,

o0

E[X|D] =" %m

i=1



To see that the above expression is correct, first note that the right hand side is D-measurable.
Furthermore, any D € D can be written as D = J,_ 4, D;, where A C {1,2,3,...}. Therefore,

L E[X -Ip,] > E[X-]D.]/
———=Ip,dP = _— Ip,dP (monotone convergence thm)
.2 5wy 2P0 Jown

E[X - Ip,
= zAj —[P( B) lp(D)

:/XdP
D

Properties of conditional expectation. Assume that X and Y are integrable random
variables and that D is a sub-o-algebra of F.

1) E[E[X|D]] = E[X]. Just take D = 2 in Condition B.

2) If X > 0 then E[X|D] > 0. The property holds because Y = E[X|D] is D-measurable
and [, YdP = [, XdP > 0 for every D e D. Therefore, Y must be positive a.s.

3) ElaX + bY|D] = aE[X|D] + bE[Y|D]. It is obvious that the RHS is D-measurable,
being the linear combination of two D-measurable random variables. Also,

/(aX+bY)dP = a/XdP+b/YdP
D D D

= a/ E[X|D]dP+b/ E[Y|D]dP

D

_ /(aE[XyD] + BE[Y|D])dP

4) If X > Y then E[X|D] > E[Y|D]. Use properties (2) and (3) for Z =X —Y.
5) If X is D-measurable, then F[X|D] =

6) If Y is D-measurable and Y X is integrable, then E[Y X |D] = Y E[X|D]. First assume
that Y is a simple random variable, i.e., let {D;}:2, be a partition of Q, D; € D, ¢; € R,
for 1 <1i < oo, and define Y = Y7, ¢;Ip,. Then,

/ YXdP = / <Zci1Di> XdP
D D ;

=1

= X;c o XdP
_ ZCz E[X|D]dP

DND;

_ / <Zcizm> E[X|D)dP

=1
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= /DYE[X|D]P

For general Y, approximate by a sequence {Y,,}>°, of simple random variables, for
example, defined by
k
V,=— if E<y<tl peZ
n
Then Y,, converges to Y, and the result follows by the Dominated Convergence Theo-
rem.

7) If X is independent of D, then E[X|D] = E[X]. Independence implies that for D € D,
B[XIp) = E[X]P(D)

/ XdP = /X]de
D Q
E[XIp]

_ BlX] /Q IpdP

_ / EIX]dP
D
Since E[X] is D-measurable, E[X] = E[X|D].

8) If Dy C Dy then E[E[X|D,)|D1] = E[X|D;]. Note that if D ¢ D; then D € Ds.
Therefore,

/DXdP = /DE[X\DQ]CZP

_ / E[E[X|D,)|D,]dP,

and the result follows.

A function ¢ : R — R is convez if and only if for all x and y in R, and A in [0, 1],
d(Ax+ (1= ANy) < Ap(z) 4+ (1 — N)op(y). We need the following fact about convex functions
for the proof of the next property. Let x; < x5 and y € R. Then

dla2) = oly) . Hla1) = oy)

To— Y - rL—y

(2.3)

Now assume that x; < y < x5 and let x5 converge to y from above. The left side of (2.3) is
bounded below, and its value decreases as x5 decreases to y. Therefore, the right derivative

¢T exists at y and
P(z2) — 9(y)

-0 < ¢+<y) = leglz}-i- W < +00.

Moreover,
¢(z) 2 o(y) + ¢ (y)(z—y), VzeR (2.4)

11



9)

10)

11)

12)

13)

14)

Jensen’s Inequality. If ¢ is convex then

E[¢(X)|D] =z ¢(E[X|D)).

Define M : 2 — R as M = ¢T(E[X|D]). As measurability is preserved under compo-
sition, we can see that M is D-measurable. From (2.4),

¢(X) > ¢(E[X|D]) + M(X — E[X|D]),

and
El¢(X)|D] > E[¢(E[X|D))|D]+ E[M(X — E[X|D])|D]  Properties 3 and 4
= ¢(E[X|D])+ ME[(X — E[X|D])|D]  Property 6
= ¢(E[X|D]) + M{E|X|D] — E[EX|D]|D]}  Property 3
= ¢(E[X|D]) + M{E[X|D] — E[X|D]}  Property 8
= o(EX|D])

Let X be an Si-valued, D-measurable random variable and Y be an Ss-valued random

variable independent of D. Suppose that ¢ : S x S5 — R is a measurable function
and that ¢(X,Y") is integrable. Define

U(z) = Elp(z,Y)].
Then, E[p(X,Y)|D] = ¢(X).

Let Y be an Ss-valued random variable (not necessarily independent of D). Suppose
that  : S; x S — R is a bounded measurable function. Then there exists a
measurable ¢ : € x S; — R such that for each x € 5

Y(w,x) = Elp(z,Y)|D](w) a.s.

and
Elp(X,Y)|D](w) = ¢(w, X(w)) a.s.

for every D-measurable random variable X.

Let Y : ©Q — N be independent of the i.i.d random variables {X;}°,. Then
Y
E} Xilo(Y)] =Y - E[X)]. (2.5)

Identity (2.5) follows from Property (10) by taking ¢(X,Y)(w) = Zz/:(f) X;(w) and
noting that ¥ (y) = E[>_7_, X;] = yE[Xi].

E[[EIX|D] - E[Y[D]P]< E[IX = Y7, p

E[|[E[X|D] - E|Y|D]?] = E[FE [X —Y]||D]|P] using linearity
< FE[E[|X —Y|’|D]] using Jensen’s inequality
= E[X =Y

Let {X,,}22, be a sequence of random variables and p > 1. If lim,, ., E[|X —X,|?] =0
then lim, ., E[|E[X|D] — E[X,|D]|?] = 0.

12



3 Continuous time stochastic processes.

A continuous time stochastic process is a random function defined on the time interval
[0, 00), that is, for each w € Q, X (,w) is a real or vector-valued function (or more generally,
E-valued for some complete, separable metric space F). Unless otherwise stated, we will
assume that all stochastic processes are cadlag, that is, for each weQ, X(-,w) is a right
continuous function with left limits at each ¢ > 0. Dg[0,00) will denote the collection of
cadlag E-valued functions on [0, 00). For each € > 0, a cadlag function has, at most, finitely
many discontinuities of magnitude greater than € in any compact time interval. (Otherwise,
these discontinuities would have a right or left limit point, destroying the cadlag property).
Consequently, a cadlag function can have, at most, a countable number of discontinuities.

If X is a cadlag process, then it is completely determined by the countable family of
random variables, { X (¢) : ¢ rational}.

It is possible to define a metric on Dg[0,00) so that it becomes a complete, separable
metric space. The distribution of an E-valued, cadlag process is then defined by px(B) =
P{X () € B} for B € B(Dg[0,00)). We will not discuss the metric at this time. For our
present purposes it is enough to know the following.

Theorem 3.1 Let X be an E-valued, cadlag process. Then ux on Dgl0,00) is determined
by its finite dimensional distributions {fu, 1,4, @ 0 <t <ty < ...t, ; n > 0} where
Uty o1, (1) = P{(X (1), X (t2),..., X(t,)) € I'}, ' € B(E™).

3.1 Examples.

1) Standard Brownian Motion. Recall that the density function of a normal random variable
with expectation p and variance o? is given by

1 (z — p)?
o(x) = exp{————
o) = = exp{ = 1)
For each integer n > 0, each selection of times 0 < t; < t, < ... < t,, and vector x € R",

define the joint density function

fW(tl),W(tg),...,W(tn)($) = fo,n (331) : fo,t2 (xz - $1) et fo,tn (ZUn - an—1)-

Note that the joint densities defined above are consistent in the sense that

fW(t’l),...,W(tgl_l)(mlp s 7I‘/n71) = / fW(tl),...,W(tn))(xlu e 7$n)d$i

where (¢,...,t/ ;) is obtained from (t1,...,t,) by deleting the ith entry. The Kolmogorov
Consistency Theorem, assures the existence of a stochastic process with these finite dimen-
sional distributions. An additional argument is needed to show that the process has cadlag
(in fact continuous) sample paths.

2) Poisson Process. Again, we specify the Poisson process with parameter X\, by specify-

ing its finite dimensional distributions. Let h(u, k) = exp{—u}’,‘c—lf, that is, the Poisson(u)

13



probability of k. For t; <ty < --- <t,. Define

P{X(t1) = k1, X(t2) = ka, ..., X(ty) = kn}
h(AMty, k1) - h(A(te — 1), (ko — k1)) - . ..
0 otherwise

3.2 Filtrations.

Let o(X(s) : s < t) denote the smallest o-algebra such that X(s) is o(X(s) : s < 1)-
measurable for all s < ¢.
A collection of o-algebras {F;}, satisfying

Fs CFRCF

for all s < t is called a filtration. F; is interpreted as corresponding to the information
available at time ¢ (the amount of information increasing as time progresses). A stochastic
process X is adapted to a filtration {F;} if X(¢) is F-measurable for all ¢ > 0.

An FE-valued stochastic process X adapted to {F;} is a Markov process with respect to
{7} if

E[f(X(t+5))|F] = E[f(X(t + 5))| X ()]

for all t,s > 0 and f € B(FE), the bounded, measurable functions on F.

A real-valued stochastic process X adapted to {F;} is a martingale with respect to {F;}
if

E[X(t+ s)|F] = X(t) (3.1)

for all t,s > 0.

Proposition 3.2 Standard Brownian motion, W, is both a martingale and a Markov pro-
cess.

Proof. Let F; = o(W(s) : s <t). Then

EW(t+s)|F] = EW(t+s)—W(t)+ W(t)|F]
= E[W(t+s)—-W(H)|FR]+ EW()|F]
= E[W(t+s)— W)+ E[W(t)|F]
= E[W(tﬂft]
= W(t)

so W is an {F;}-martingale. Similarly W is a Markov process. Define T'(s)f(x) = E|[f(z +
W (s))], and note that
E[fW(t+s)|F] = Ef(W(t+s) = W)+ W(t))|F]
T(s)f(W(t))
= Ef(W(t+s)[W(t)]
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3.3 Stopping times.

A random variable 7 with values in [0, oo] is an {F;}-stopping time if
{r<tleF Vt>O0.
Let X be a cadlag stochastic process that is {F;}-adapted. Then
T, = inf{t : X(t) or X(t—) > a}

is a stopping time. In general, for B € B(R), 75 = inf{t : X (t) € B} is not a stopping time;
however, if (2, F, P) is complete and the filtration {F;} is complete in the sense that Fq
contains all events of probability zero and is right continuous in the sense that F; = Ny~ Fs,
then for any B € B(R), 75 is a stopping time.

If 7, 7,75 ... are stopping times and ¢ > 0 is a constant, then

1) 71 V1 and 7y A 75 are stopping times.

2) T4+ ¢, T Ac, and T V ¢ are stopping times.

w

)

)

) supy 7 is a stopping time.

4) If {F} is right continuous, then infy, 7, lim infy_. ., 7%, and lim sup,_, 7 are stopping
times.

Lemma 3.3 Let 7 be a stopping time and for n =1,2,..., define

kE+1 k E+1
= if — < — k=0,1,....
T TR 2n_7'< on , k=0,1,

Then {1,} is a decreasing sequence of stopping times converging to T.

Proof. Observe that
[2"1]

B 2]
2—n} ={r<——-}eF.

{m <t} ={m < 9

For a stopping time 7, define
F.={AecF:An{r <t} € F,Vt > 0}.

Then F, is a o-algebra and is interpreted as representing the information available to an
observer at the random time 7. Occasionally, one also uses

Fro=c{An{t<t}:Aec F,t >0}V F.
Lemma 3.4 If 1y and 15 are stopping times and 7y < 19, then F,, C F,.

Lemma 3.5 If X is cadlag and {F;}-adapted and T is a stopping time, then X (1) is F,-
measurable and X (1 At) is {F;}-adapted.
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3.4 Brownian motion

A process X has independent increments if for each choice of 0 < t; < ty < -+ < t,,,
X(tgyr) — X(tx), £ = 1,...,m — 1, are independent. X is a Brownian motion if it has
continuous sample paths and independent, Gaussian-distributed increments. It follows that
the distribution of a Brownian motion is completely determined by mx(t) = E[X(¢)] and
ax(t) =Var(X(t)). X is standard if mx =0 and ax(t) = t. Note that the independence of
the increments implies

Var(X(t+s) — X(t)) = ax(t + s) — ax(t),
so ax must be nondecreasing. If X is standard
Var(X(t+s)) — X(t)) = s.

Consequently, standard Brownian motion has stationary increments. Ordinarily, we will
denote standard Brownian motion by W.
If ax is continuous and nondecreasing and myx is continuous, then

X(t) = W(ax(t)) +mx(t)
is a Brownian motion with

E[X(#)] =mx(t), Var(X(t)) = ax(t).

3.5 Poisson process

A Poisson process is a model for a series of random observations occurring in time. For
example, the process could model the arrivals of customers in a bank, the arrivals of telephone
calls at a switch, or the counts registered by radiation detection equipment.

Let N(t) denote the number of observations by time t. We assume that N is a counting
process, that is, the observations come one at a time, so N is constant except for jumps of
+1. For t < s, N(s) — N(t) is the number of observations in the time interval (¢,s]. We
make the following assumptions about the model.

0) The observations occur one at a time.

1) Numbers of observations in disjoint time intervals are independent random variables,
that is, V has independent increments.

2) The distribution of N(t + a) — N(¢) does not depend on ¢.

Theorem 3.6 Under assumptions 0), 1), and 2), there is a constant X such that N(s)—N(t)
is Poisson distributed with parameter (s —t), that is,

P{N(s) = N(t) =k} = wemt).

16



If Theorem 3.6 holds, then we refer to N as a Poisson process with parameter A. If A =1,
we will call N the unit Poisson process.
More generally, if (0) and (1) hold and A(t) = E[N(t)] is continuous and A(0) = 0, then

where Y is a unit Poisson process.
Let N be a Poisson process with parameter A\, and let S, be the time of the kth obser-
vation. Then

P{Sy <t} = P{N(t) = k} =1 -

Differentiating to obtain the probability density function gives

AR >0
fs(t) = { 0 t<0.

The Poisson process can also be viewed as the renewal process based on a sequence of
exponentially distributed random variables.

Theorem 3.7 LetTy = S; and for k > 1, Ty, = S, — Sg_1. Then T1,Ts, ... are independent
and exponentially distributed with parameter X.

17



4 Martingales.
A stochastic process X adapted to a filtration {F;} is a martingale with respect to {F;} if
EX(t+s)|F]=X(t) (4.1)
for all t,s > 0. It is a submartingale if
E[X(t+5)|F] > X () (42)
and a supermartingale if

E[X(t+s)|F] < X(t). (4.3)

4.1 Optional sampling theorem and Doob’s inequalities.

Theorem 4.1 (Optional sampling theorem.) Let X be a martingale and T, be stopping
times. Then for everyt >0

E[X(t/\TQ)‘JTﬁ] == X(t/\Tl /\’/'2).
If » <00 a.s., E[|X(7)|] < oo and limy_.oc E[| X ()|l {r,>1y] = 0, then
E[X(n)|F,] =X(nn A1) .

The same results hold for sub and supermartingales with = replaced by > (submartingales)
and < (supermartingales).

Proof. See, for example, ( ), Theorem 2.2.13. O
Theorem 4.2 (Doob’s inequalities.) If X is a non-negative sub-martingale, then

P{sup X (s) >z} < E[X(1)]

s<t X

and for a > 1
Elsup X (s)*] < (a/a = 1)*E[X(t)].

s<t

Proof. Let 7, = inf{t : X(t) > z} and set 7, = t and 7y = 7,. Then from the optional
sampling theorem we have that

EX(t)|F] > X(tAT) 2 I, <n X (T2) > 2l(7,<4y as.

so we have that
E[X(t)] > xP{r, <t} = aP{sup X(s) > =}
s<t

See , Proposition 2.2.16 for the second inequality. [l
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Lemma 4.3 If M is a martingale and ¢ is convex with E[|p(M(t))|] < oo, then

15 a sub-martingale.

Proof.
Elp(M(t + 5))|F] = ¢(E[M(t + 5)|F4])
by Jensen’s inequality. O
From the above lemma, it follows that if M is a martingale then
M
Plsup |M(s)] > ) < IO (4.4
s<t x
and
[Sgltﬁ [M(s)]’] < 4E[M(t)?] (4.5)

4.2 Local martingales.

The concept of a local martingale plays a major role in the development of stochastic inte-
gration. M is a local martingale if there exists a sequence of stopping times {7,} such that
lim,_. 7, = oo a.s. and for each n, M™ = M(- A 7,,) is a martingale.

The total variation of Y up to time t is defined as

Y)=sup Y V(i) - Yt

where the supremum is over all partitions of the interval [0,¢]. Y is an F'V-process if T,(Y') <
oo for each ¢ > 0.

Theorem 4.4 (Fundamental Theorem of Local Martingales.) Let M be a local martingale,
and let § > 0. Then there exist local martingales M and A satisfying M = M + A such that
A is FV and the discontinuities of M are bounded by §.

Remark 4.5 One consequence of this theorem is that any local martingale can be decomposed
into an FV process and a local square integrable martingale. Specifically, if 4. = inf{t :
|M(t)| > ¢}, then M(-A~.) is a square integrable martingale. (Note that |M(-Av.)| < ¢+36.)

Proof. See ( ), Theorem III.13. O

19



4.3 Quadratic variation.

The quadratic variation of a process Y is defined as

Y], = lim Z(Y(ti-i-l) —Y(t;))?

max |ti+1 —t; |—>0

where convergence is in probability; that is, for every € > 0 there exists a § > 0 such that
for every partition {t;} of the interval [0, ¢] satisfying max |t;+1 — t;| < ¢ we have

P{|[Y]: - Z(Y(ti—i-l) —Y(t))?} > e} <e

If Y is FV, then [Y], = - (Y (s) = Y (s—))* = >_,, AY(s)* where the summation can be
taken over the points of discontinuity only and AY (s) = Y (s) — Y (s—) is the jump in YV at
time s. Note that for any partition of [0, ¢]

Y (Y(ti) = Y(1:))* — Y. (Y(tin) = Y(4) < L(Y).

[Y (tiy1)=Y (L:)[>e

Proposition 4.6 (i) If M is a local martingale, then [M]; exists and is right continous.
(i) If M is a square integrable martingale, then the limit

lim Z(M(tiJrl) — M(t;))*

max ‘ti+1 —ti|—>0
exists in L1 and E[(M(t)?] = E[[M],].
Proof. See, for example, ( ), Proposition 2.3 .4. O

Let M be a square integrable martingale with M(0)=0. Write M (t) = > "M (tis) —
M (t;) where 0 =ty < ... <t, =t. Then

m—1

E[M(t)*] = Z tiv1) — M(t;))?] (4.6)

ST (M (ti) = M) (M (t11) — Mt,)))

i#j
For t; < tiv1 < tj < tj+1.

El(M(tit1) — M(t:)) (M (tj41) — M(2;))] (4.7)
= E[E[(M (tit1) — M(t:))(M (1) — M(t;))|F,]]
= E[(M(tit1) — M(t))(E[M (tj1)|F,] — M ()]

=0,

and thus the expectation of the second sum in (4.6) vanishes. By the L; convergence in
Proposition 4.6
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Example 4.7 If M(t) = N(t) — A\t where N(t) is a Poisson process with parameter A, then
[M]; = N(t), and since M(t) is square integrable, the limit exists in L.

Example 4.8 For standard Brownian motion W, [W], = t. To check this identity, apply

the law of large numbers to
[nt]

E—1

n

).

w5~ w
k=1

Proposition 4.9 If M is a square integrable {F;}-martingale, Then M (t)*> — [M]; is an
{Fi}-martingale.

Remark 4.10 For exzample, if W is standard Brownian motion, then W (t)? —t is a mar-
tingale.

Proof. The conclusion follows from part (ii) of the previous proposition. For ¢,s > 0, let
{u;} be a partition of (0,4 s] with 0 =uy < u; < ... < Uy =1 < Upy1 < ... <U, =1+ 8
Then

E[M(t + s5)*|F]
= EB[(M(t+s) — M(t)*F] + M(t)?
= B(Y M) ~ M(u))?I7) + M1
= B (M) — M) + M1

= E[[M]yy — [M]|F] + M(t)?

where the first equality follows since, as in (4.7), the conditional expectation of the cross
product term is zero and the last equality follows from the L; convergence in Proposition
4.6. 0

4.4 Martingale convergence theorem.

Theorem 4.11 (Martingale convergence theorem.) Let X be a submartingale satisfying
sup; E[| X (t)|] < oo. Then lim;_., X (t) exists a.s.

Proof. See, for example, ( ), Theorem 4.2.10. O
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5 Stochastic integrals.

Let X and Y be cadlag processes, and let {t;} denote a partition of the interval [0,¢]. Then
we define the stochastic integral of X with respect to Y by

/O X(s=)dY(s) = lim > X(6)(Y (ti1) — Y(t:)) (5.1)

where the limit is in probability and is taken as max |t;;; —t;| — 0. For example, let W (t)
be a standard Brownian motion. Then

/0 W(s)dW(s) = Limy W(E)W(ti) - W(t)) (5.2)

This example illustrates the significance of the use of the left end point of [t;,¢;41] in the
evaluation of the integrand. If we replace t; by ¢;11 in (5.2), we obtain

= limz (= W)W (tis1) + %W(ti+l)2 + %W(tz)z)

+2 (%W(tm)Q - EW(ti)Q)

2
= —W ()2 + lim % D (W(tipn) = W(t)?

5.1 Definition of the stochastic integral.

Throughout, we will be interested in the stochastic integral as a stochastic process. With
this interest in mind, we will use a slightly different definition of the stochastic integral than
that given in (5.1). For any partition {¢;} of [0,00), 0 =ty < t; < t2 < ..., and any cadlag
x and y, define

St {ti} . y) = Y w(t:) (Yt Atisa) — y(E A L))

For stochastic processes X and Y, define Z = fX,dY if for each T" > 0 and each ¢ > 0,
there exists a 0 > 0 such that

Plsup|Z(t) = S(t, {t:}, X, V)| 2 ¢} <€
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for all partitions {t;} satisfying max |t;;; — ;| < 4.
If X is piecewise constant, that is, for some collection of random variables {{;} and
random variables {7;} satisfying 0 =7 <17 < ---,

X = Zgil[Ti,T¢+1) )

then

/otX<s—>dY<s> = 2 GV AT) =Y (EAT))
= Y XY (EAT) = Y(EAT)).

Our first problem is to identify more general conditions on X and Y under which [ X_dY
will exist.

5.2 Conditions for existence.

The first set of conditions we will consider require that the integrator Y be of finite variation.
The total variation of Y up to time t is defined as

Y) = supz Y (tiz1) — Y (t:))

where the supremum is over all partitions of the interval [0, ¢].

Proposition 5.1 T,(f) < oo for each t > 0 if and only if there exist monotone increasing
functions f1, fa such that f = fi — fo. If Ti(f) < 00, then f1 and fy can be selected so that
T,(f) = fi+ fo. If f is cadlag, then T,(f) is cadlag.

Proof. Note that
T(f) = f(t) =sup Y _(|f(tisr) — F(t)] = (f(tisr) — F(12)))

is an increasing function of ¢, as is T;(f) + f(¢). O

Theorem 5.2 IfY is of finite variation then [ X_dY exists for all X, [ X_dY is cadlag,
and if Y is continuous, [ X_dY is continuous. (Recall that we are assuming throughout that
X is cadlag.)

Proof. Let {t;},{s;} be partitions. Let {u;} be a refinement of both. Then there exist
ki, l;, k;, I} such that

19 "W Yy

l;

Y(tiv) =Y (t:) = ZYUJ+1 )
J=Fki
I

Ysit1) = Y(si) = ZY“JH )
j=K,



Define
t(u) =t;, U <u<t s(u) =58, S Ju< Sit1 (53)

so that
[S(t {t:}, X, Y) = S(t, {s:}, X, V)| (5.4)
=D X)) (Y (wirr At) =Y (u; A L))
=D X (s(u))(Y (i At) =Y (u; A))]
< TN () = X (@Y (i At) = Y (s A#)]:

But there is a measure py such that T;(Y) = py(0,¢]. Since |Y(b) — Y (a)| < py(a,b], the
right side of (5.4) is less than

DX () = X (s(ua)) |y (wi Aty ugn AY] = Z/(N e | X (t(u—)) = X (s(u—))|py (du)

= /( X)) = Xty )

But
lim | X (¢(u—)) — X(s(u—))[ =0,
SO
o [ X (t(u—)) = X (s(u=))|py (du) — 0 (5.5)
0.t
by the bounded convergence theorem. Since the integral in (5.5) is monotone in ¢, the
convergence is uniform on bounded time intervals. 0

Recall that the quadratic variation of a process is defined by

Y], = li Y (tip1) — Y ()%
[Y]: max‘tigritil%Z( (tiv1) = Y(4:))
where convergence is in probability. For example, if Y is a Poisson process, then [Y]; = Y ()
and for standard Brownian motion, [W]; = t.
Note that

S YV(ti) =Y (t) =Y (1) = Y(0)° = 2> Y)Y (tir1) - Y(t:))

so that .

Y], = Y(£)2 - Y(0)? — 2/ Y (s—)dY (s)
0
and [Y]; exists if and only if [Y_dY exists. By Proposition 4.6, [M], exists for any local
martingale and by Proposition 4.9, for a square integrable martingale M (t)? — [M]; is a
martingale.
If M is a square integrable martingale and X is bounded (by a constant) and adapted,
then for any partition {t;},

Y(t) = S(t {61 X, M) = Y X(8)(M(¢Atina) = M(EA L))
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is a square-integrable martingale. (In fact, each summand is a square-integrable martingale.)
This observation is the basis for the following theorem.

Theorem 5.3 Suppose M is a square integrable {F;}- martingale and X is cadlag and {F;}-
adapted. Then [ X_dM exists.

Proof. Claim: If we can prove

/tX(s—)dM(s) —lim S X () (Mt A ) — Mt A1)

for every bounded cadlag X, we are done. To verify this claim, let X (¢) = (X (¢t) Ak)V (—k)
and suppose

lim Y~ X (t:) (M (ti At) — M(t: At)) = /0 t Xy (s—)dM(s)

exists. Since [} X(s—)dM(s) = [, Xp(s—)dM(s) on {sup,, |X(s)| < k}, the assertion is
clear.

Now suppose | X (t)| < C. Since M is a square integrable martingale and | X| is bounded,
it follows that for any partition {¢;}, S(¢, {t;}, X, M) is a square integrable martingale. (As
noted above, for each i, X (t;)(M(t;x1 ANt) — M(t; At)) is a square-integrable martingale.)
For two partitions {¢;} and {s;}, define {u;}, t(u), and s(u) as in the proof of Theorem 5.2.
Recall that t(u;), s(u;) < u;, so X (t(u)) and X (s(u)) are {F,}-adapted. Then by Doob’s
inequality and the properties of martingales,

E[Sup(S(t, {ti}va M) - S(tv {Si}7X7 M))Q} (56)

tSTS AE((S(T {t:}, X, M) — S(T, {s:}, X, M))’]
= 4E[() (X (t(us)) = X (s(u))(M (uspa AT) = M(u; AT)))?]
= 4B[) (X (t(w)) = X (s(us))* (M (uipr AT) = M(u; AT))?]
= 4B (X (#(w) = X (s(ua)*([M]ugysnr = [M]ugnr)]

Note that [M] is nondecreasing and so determines a measure by pp(0,t] = [M], and it
follows that

BLY (X (0a) = X (5(0)) (M, = (M) 1)
= B[ (X(t(w) ~ X(s(0) Phian (),
(0,4]

since X (t(u)) and X (s(u)) are constant between wu; and u; 1. Now

| ( ](X(t(U)) — X(s(w)))*upny(du)| < 4C° pan (0, 1]
0.t
so by the fact that X is cadlag and the dominated convergence theorem, the right side of (5.7)
goes to zero as max |t;41 — t;| — 0 and max |s;4; — s;| — 0. Consequently, fOtX(s—)dM(s)
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exists by the completeness of L?, or more precisely, by the completeness of the space of
processes with norm

1Zllr =, [Elsup |Z(t)[?].
t<T
O

Corollary 5.4 If M is a square integrable martingale and X is adapted, then fX,dM 18
cadlag. If, in addition, M is continuous, then [ X_dM is continuous. If |X| < C for some
constant C' > 0, then [ X_dM is a square integrable martingale.

Proposition 5.5 Suppose M is a square integrable martingale and

E [/OtX(s—fd[M]s} < 0.

Then [ X_dM is a square integrable martingale with

ol <el[xera]. o

Remark 5.6 If W is standard Brownian motion, the identity becomes

(/OtX(s—)dW(s))Q =FE Uot Xz(s)ds] :

Proof. Suppose X (t) = > &1y, +,.,) is a simple function. Then

</Ot X(S—)dM(s>)2] - E Z X(ti)2<M(ti+1) _ M(tl))z}
- E| (t:)* (M., — [M]ti)]

o]

Now let X be bounded, with |X(¢)] < C, and for a sequence of partitions {tI'} with
lim,, o sup; [t — t7| = 0, define

Xo(t) = X(7), for ¢ <t <.

Then by the argument in the proof of Theorem 5.3, we have

/Otxn<s—>dM<s> ST X (Mt AEL) — M(EAL)

. /OtX(s—)dM(s)
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where the convergence is in L?. Since [ X,,_dM is a martingale, it follows that [ X_dM is

 mantingale. and
( /Otx<s—>dM<s>)2] - i |( /OtXn(s—)dM(s)f]
~ s g | [ xedon]
- B[ [ X,

The last equality holds by the dominated convergence theorem. This statement establishes
the theorem for bounded X.
Finally, for arbitrary cadlag and adapted X, define Xy (¢) = (kA X(t)) V (—k). Then

[ et — [ Xy

in probability, and by Fatou’s lemma,

imint | /Otxk<s—>dM<s>>2 > e |( /Otx<s—>dM<s>)2].
But
pin 5 | /Otxms—)dM(s)ﬂ ~ i 5| [ xis-ydon (59)
_ ]}LIEOE{/ X2(s—) A k2d [M]S]
- ©| / X4 (s < o,

E Uot X2(s—)d[M]5] >E

t 2]
(/ X(s—)dM(s))
0
Since (5.8) holds for bounded X,

o ([ s [ e )] 5.10)
([ s - x,ts-pans >)]
— | [ 1Xs) s o)
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Since

[ X5(s) — X;(s)[* < 4X(s)?,

the dominated convergence theorem implies the right side of (5.10) converges to zero as

J, k — oco. Consequently,
t t
/ Xi(s—)dM(s) — / X (s—)dM(s)
0 0

in Lo, and the left side of (5.9) converges to E[(fot X(s—)dM(s))?] giving (5.8). O

If fo —)dYi(s) and fo —)dY5(s) exist, then f(fX(s—)d(Yl(s) + Ya3(s)) exists and
is given by the sum of the other mtegrals.

Corollary 5.7 IfY = M +V where M is a {F;}-local martingale and V' is an {F;}-adapted
finite variation process, then [ X_dY exists for all cadlag, adapted X, [ X_dY is cadlag,
and if Y is continuous, [ X_dY is continuous.

Proof. If M is a local square integrable martingale, then there exists a sequence of stopping
times {7,,} such that M™ defined by M™(t) = M(t A 7,,) is a square-integrable martingale.

But for t < 7,,
/X —)dM (s /X YAM™ (s),

and hence [ X_dM exists. Linearity gives existence for any Y that is the sum of a local
square integrable martingale and an adapted FV process. But Theorem 4.4 states that
any local martingale is the sum of a local square integrable martingale and an adapted FV
process, so the corollary follows. O

5.3 Semimartingales.

With Corollary 5.7 in mind, we define Y to be an {F;}-semimartingale if and only if Y =
M +V, where M is a local martingale with respect to {F;} and V' is an {F; }-adapted finite
variation process. By Theorem 4.4 we can always select M and V' so that M is local square
integrable. In particular, we can take M to have discontinuities uniformly bounded by a
constant. If the discontinuities of Y are already uniformly bounded by a constant, it will be
useful to know that the decomposition preserves this property for both M and V.

Lemma 5.8 Let Y be a semimartingale and let 6 > sup |AY (s)|. Then there exists a local
square integrable martingale M and a finite variation process V' such that Y = M +V,

sup [ M(s) — M(s—)| < &

sup |V (s) — V(s—)| < 24.
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Proof. Let Y = M + V be a decompostion of Y into a local martingale and an FV process.
By Theorem 4.4, there exists a local martingale M with discontinuities bounded by ¢ and
an FV process A such that M = M + A. Defining V = A+ V =Y — M, we see that the
discontinuities of V' are bounded by 24. O

The class of semimartingales is closed under a variety of operations. Clearly, it is lin-
ear. It is also easy to see that a stochastic integral with a semimartingale integrator is a
semimartingale, since if we write

/X —)dY (s /X —)dM (s /X —)dV (s

then the first term on the right is a local square integrable martingale whenever M, is and
the second term on the right is a finite variation process whenever V' is.

Lemma 5.9 If V is of finite variation, then Zy(t) = fJX(S—)dV(s) is of finite variation.

Proof. For any partition {t¢;} of [a, b],

12:0) = Zofa)] = T[S0 X (t) (Vitisa) — V()|
< sup \Xs\hmZ]V 1) = V(L)

a<s<b

< sup | X(9)|(T(V) —T.(V)),

a<s<b

and hence
T,(Z) < sup | X(s)|T(V). (5.11)

0<s<t

O

Lemma 5.10 Let M be a local square integrable martingale, and let X be adapted. Then
t) = fOtX(s—)dM(s) is a local square integrable martingale.

Proof. There exist 7 < 75 < --+, 7, — 00, such that M™ = M (- AT,) is a square integrable
martingale. Define
=inf {t:|X(¢)| or | X(t—)| > n},
and note that lim,, ., 7, = 0co. Then setting X,,(t) = (X (t) An) V (—n),
tAYn
Z\(ENTw Ayn) = Xn(s—=)dM™ (s)
0
is a square integrable martingale, and hence Z; is a local square integrable martingale. [

We summarize these conclusions as

Theorem 5.11 IfY is a semimartingale with respect to a filtration {F;} and X is cadlag
and {F;}-adapted, then [ X_dY ezists and is a cadlag semimartingale.
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The following lemma provides a useful estimate on [ X_dY in terms of properties of M
and V.

Lemma 5.12 Let Y = M + V be a semimartingale where M is a local square-integrable
martingale and V' is a finite variation process. Let o be a stopping time for which E[[M]in.| =
E[M(t A 0)? < oo, and let . = inf{t : [ X (¢)| or |[X(t—)| > ¢}. Then

Plsup| [ X(u=)dy (w)] > K}

s<t 0

< P{o <t} + P{sup|X(s)| >c}+ P{ sup |/08X(u—)dM(u)|>K/2}

s<t s<tATATe
+P{ sup | X(u=)dV(u)| > K/2}
s<tATc 0
162 E[[M]iao]

< P{o <t} + P{sup|X(s)| > ¢} + 702
s<t

+ P{T{(V) > (2¢) 'K}

Proof. The first inequality is immediate. The second follows by applying Doob’s inequality
to the square integrable martingale

/ o

and observing that

sup| [ X(um)dV(w)| < Tu(V)sup | X (u).

u<s 0 u<s

5.4 Change of time variable.

We defined the stochastic integral as a limit of approximating sums

/tX(s—)dY(s) —lim > X () (Y(E A tir) = Y(EAL)),

where the t¢; are a partition of [0,00). By Theorem 5.20, the same limit holds if we replace
the t; by stopping times. The following lemma is a consequence of this observation.

Lemma 5.13 Let Y be an {F;}-semimartingale, X be cadlag and {F;} adapted, and ~ be
continuous and nondecreasing with v(0) = 0. For each u, assume ~y(u) is an {F;}-stopping
time. Then, G, = F,q) is a filtration, Y o is a {G;} semimartingale, X o~ is cadlag and
{G.}-adapted, and

7(t) t
/ X(s=)dY (s) = / X oy(s=)dY o~(s). (5.12)
0 0
(Recall that if X is {F;}-adapted, then X (1) is F, measurable).
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Proof.
/Ot Xoy(s=)dY oy(s) = HmE{X oy(t:)(Y(7(tisa A1) =Y (v(tiAD)))}
= HmX{X oy (t;) (Y (v(tig1) Ay(t) = Y ((t:) Ay())}

y(t)
_ /O X (s—)dY (s),

where the last limit follows by Theorem 5.20. That Y oy is an {F, ) }-semimartingale follows
from the optional sampling theorem. [l

Lemma 5.14 Let A be strictly increasing and adapted with A(0) = 0 and y(u) = inf{s :
A(s) > u}. Then vy is continuous and nondecreasing, and y(u) is an {F;}-stopping time.

Proof. Best done by picture. 0
For A and v as in Lemma 5.14, define B(t) = A o y(t) and note that B(t) > t.

Lemma 5.15 Let A, ~, and B be as above, and suppose that Z(t) is nondecreasing with
Z(0) =0. Then

y(t) t
/0 Z(s—)dA(s) — /0 Z oy(s—)dA o 1(s)

= [ Zortsims o)+ [ 2ol
= Zoa(B® -1~ [ (Bl) =)z on(s
—[B,Zoy]t—i—/otZo’y(s)ds
and hence

(t) t
/0 Z(s—)dA(s) < Z oy(t—)(B(t) — t) +/O Z o(s)ds.

5.5 Change of integrator.

Lemma 5.16 Let Y be a semimartingale, and let X and U be cadlag and adapted. Suppose
Z(t) = [; X(s—)dY (s) . Then

t t
/ U(s—)dZ(s) = / U(s—)X(s—)dY (s).
0 0
Proof. Let {t;} be a partition of [0, ], and define

t(S) =t ast; < s <ti41,
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so that

[ vtz = 1m0 A ) - 20 A1)

= lim) Ut /\t)/ X(s—)dY (s)

tAL;

— Y /t Ut A DX (5—)dY (5)

At;

tAt; 41
= lim E /
t

U)X )y ()
_ lim/o U (t(s—)) X (s—)dY (s)
= /tU(s—)X(s—)dY(s)

0
The last limit follows from the fact that U(t(s—)) — U(s—) as max|t;; — t;| — 0 by
splitting the integral into martingale and finite variation parts and arguing as in the proofs
of Theorems 5.2 and 5.3. 0J

Example 5.17 Let 7 be a stopping time (w.r.t. {Fi}). Then U(t) = I (t) is cadlag and
adapted, since {U(t) =1} = {7 >t} € F,. Note that

t

Y™(t)=Y({tANT)= /0 Ijo,7y(s—)dY (s)

and
/0 Tx(s—)dY(s) = /I[O,T)(s—)X(s_)dy(S)

= | X(s=)ar7s)

5.6 Localization

It will frequently be useful to restrict attention to random time intervals [0, 7] on which
the processes of interest have desirable properties (for example, are bounded). Let 7 be a
stopping time, and define Y™ by Y7 (¢) = Y(7 At) and X7~ by setting X" (t) = X (t) for
t <7and X(t) = X(r—) for t > 7. Note that if Y is a local martingale, then Y7 is a local
martingale, and if X is cadlag and adapted, then X7~ is cadlag and adapted. Note also that
if 7 =inf{t: X(t) or X(t—) > ¢}, then X"~ < c.

The next lemma states that it is possible to approximate an arbitrary semimartingale by
semimartingales that are bounded by a constant and (consequently) have bounded disconti-
nuities.
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Lemma 5.18 LetY = M +V be a semimartingale, and assume (without loss of generality)
that supg |[AM (s)| < 1. Let

A(t) = sup(IM(s)] + V()] + [M], + T(V))

and
o. = inf{t : A(t) > ¢},
and define M°¢ = M%, V¢ = V%~ and Y° = M®+ V. Then Y(t)

=Y(t) fort < o,
lime oo 0. = 00, |V < c+ 1, sup, |[AY (s)| < 2c+ 1, [M]<c+1,T(V)<ec.

Finally, note that
StnT{t:}, X, Y)=5(t{t;},X,Y"). (5.13)

5.7 Approximation of stochastic integrals.

Proposition 5.19 Suppose Y is a semimartingale X1, Xo, X3, ... are cadlag and adapted,
and
lim sup | X, (t) — X(¢)| =0

n—0o T

wn probability for each T > 0. Then

lim sup /OtXn(s—)dY(s)—/OtX(s—)dY(s) =0

n—=00 ¢T

in probability.

Proof. By linearity and localization, it is enough to consider the cases Y a square integrable
martingale and Y a finite variation process, and we can assume that |X,| < C for some
constant C'. The martingale case follows easily from Doob’s inequality and the dominated
convergence theorem, and the FV case follows by the dominated convergence theorem. [J

Theorem 5.20 Let Y be a semimartingale and X be cadlag and adapted. For each n,
let 0 = 7§ < 1 < 13 < --- be stopping times and suppose that limy_,. 7)) = 0o and
lim,, oo supy, |77 — 75| = 0. Then for each T >0

lim sup [S(F, {77}, X, Y) —/O X (s—)dY (s)| = 0.

nN=00 4T

Proof. If Y is FV, then the proof is exactly the same as for Theorem 5.2 (which is an w by
w argument). If Y is a square integrable martingale and X is bounded by a constant, then
defining 7"(u) = 7 for 7' <wu <74,

E[(S(t, {7}, X, ) - / X(s-)dY (5))
— E| / (X (7" (um)) — X(u—)d[Y].]

and the result follows by the dominated convergence theorem. The theorem follows from
these two cases by linearity and localization. 0
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5.8 Connection to Protter’s text.

The approach to stochastic integration taken here differs somewhat from that taken in

( ) in that we assume that all integrands are cadlag and do not introduce the notion
of predictability. In fact, however, predictability is simply hidden from view and is revealed
in the requirement that the integrands are evaluated at the left end points in the definition
of the approximating partial sums. If X is a cadlag integrand in our definition, then the left
continuous process X (-—) is the predictable integrand in the usual theory. Consequently,
our notation [ X_dY and

/O "X (s)dv(s)

emphasizes this connection.
( ) defines H(t) to be simple and predictable if

H(t) = Z SiI(Ti,TiH](t)?
=0

where 79 < 7 < --- are {F;}-stopping times and the ; are F,, measurable. Note that H is
left continuous. In Protter, H - Y is defined by

H-Y(t)=> &Y (ria At) =Y (1 At)).

Defining
X(t) = Zgil[ﬂ:ﬁul)(t)?

we see that H(t) = X (t—) and note that

H-Y(t) = /0 X(s—)dY (s),

so the definitions of the stochastic integral are consistent for simple functions. Protter
extends the definition H - Y by continuity, and Propositon 5.19 ensures that the definitions
are consistent for all H satisfying H(t) = X (t—), where X is cadlag and adapted.
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6 Covariation and Itd’s formula.

6.1 Quadratic covariation.

The covariation of Y7, Y, is defined by

Vi, Yalo = lim 3 (Vi(ti) = Yi(8)) (Yaltis) = Ya(t) (6.1)

where the {t;} are partitions of [0,¢] and the limit is in probability as max|t;;1 — ;| — 0.
Note that
Y1+ Y2, Y1 + Yalp = M1]e + 2[Y1, Yo]s + [Y2]e.

If Y1,Y5, are semimartingales, then [Y], Y], exists. This assertion follows from the fact that

Y1, Yo)e = hmz Yi(tin) = Ya(t)) (Ya(tin) — Ya(t:))

= hm(Z(Yﬂ i+1)Ya(tip1) = V1 (t)}@(t))
Y ) Valtinn) — V) — 3 Valt) (i) — Vi(e)

— Yi(t)Ya(t) — Va(0)Ya(0) — / Yi(s—)dYa(s) — / Ya(s—)dvi(s).

Recall that if Y is of finite variation, then [Y], = 3., (AY (s))?, where AY (s) = Y (s) —
Y(s—). -

Lemma 6.1 Let Y be a finite variation process, and let X be cadlag. Then

(X, V], =) AX(s)AY (s).

s<t

Remark 6.2 Note that this sum will be zero if X and Y have no simultaneous jumps. In

particular, if either X or'Y 1is a finite variation process and either X or 'Y s continuous,
then [X,Y] = 0.

Proof. We have that the covariation [X,Y]; is

lim O (X (ti) = X(8) (Y (ti) = Y (1)

max |t;+1—t;]—0

= lim Z (X (tiy1) — X () (Y (tig1) = Y(ts))

max |ti41—t;|—0
T T X (i)~ X (t) | >e

+ lim Z (X (tig1) — X () (Y (tig1) = Y (ts)),

max [t;+1—t;|—0
T X (i) - X (1)1 <e

where the first term on the right is approximately

D AX(s)AY(s)

s<t
|AX (s)|>e€
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plus or minus a few jumps where AX(s) = e. Since the number of jumps in X is countable,

e can always be chosen so that there are no such jumps. The second term on the right is
bounded by

€D Y (ti) = Y(t)| < L(Y),
where T;(Y") is the total variation of Y (which is bounded). O

6.2 Continuity of the quadratic variation.
Since Y a;b; < /> a2 > b7 it follows that [X, Y], < /[X]:[Y];. Observe that

(X =Y = [X],—2[X, Y]+ [Y],
(X =Y +2(X,Y], = [Y],) = [X]:=[Y]
X =Y, +2[X-Y) Y], = [X],—[Y].

Therefore,
[(X]e = Y]l < [X = Y] + 2/ [X = Y],[Y]e. (6.2)

Assuming that [Y]; < oo, we have that [X — Y], — 0 implies [X]; — [Y];.

Lemma 6.3 Let M,, n =1,2,3,..., be square-integrable martingales with lim,, ., E[(M,(t)—
M (t))?] =0 for all t. Then E [|[M,]; — [M]:]] — 0.

Proof. Since

E[M)e — M) < E([My — M],] + 2B |/[M, = ML[M],
< E[[M, — M) +2\/E[M, — M},] E [[M],],
we have the L' convergence of the quadratic variation. O

Lemma 6.4 Suppose sup,., | X,(s) — X(s)| — 0 and sup,<, |Ya(s) — Y(s)| — 0 for each
t >0, and sup,, T;(Y,) < co. Then

hm[Xn, Yn]t = [X, Y]t
Proof. Note that T;(Y) < sup,, 7;(Y,,), and recall that

(X0 Yoo =Y AX,(s)AY,(s).

s<t
We break the sum into two parts,

3 AXM@Am@wgeszm@ﬂgdxm)

s<t s<t
[AXn(s)|<e N

and

> AXL(s)AY(s).

s<t,|AXn(s)|>€
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Since AX,,(s) — AX(s) and AY,,(s) — AY(s), we have
limsup [X,,, Yl — [X, V]| = limsup| Y~ AX,(s)AY,(s) = > AX(s)AY (s)]
< (T(Ya) + T(Y)),
and the lemma follows. O

Lemma 6.5 Let Y; = M; +V,, Y," = M+ V", i =12, n=1,2,... be semimartingales

with M a local square integrable martingale and V" finite variation. Suppose that there

exist stopping times v such that v — oo as k — oo and for each t > 0,
Tim B (EA ) — Mt A50)?) =0,
and that for each t > 0 sup,,, T;(V;") < oo and
lim sup [V/"(s) — Vi(s)| = 0.

n—0oo gt
Then [Y1*,Y3']; — [Y1, Yals.
Proof. The result follows from Lemmas 6.3 and 6.4 by writing
[3/1”7 }/Qn]t = [Mlnv MQTL]t + [Mln> V2n]t + [‘/1n7 Y2n]t

Lemma 6.5 provides the proof for the following.

Lemma 6.6 Let Y; be a semimartingale, X; be cadlag and adapted, and
t
:/ Xi(s—)dYi(s) i=1,2
0

20, 2y = /0 X, (s—) X (s—)d[Yr, Vo),

Then,

Proof. First verify the identity for piecewise constant X;. Then approximate general X; by
piecewise constant processes and use Lemma 6.5 to pass to the limit. U

Lemma 6.7 Let X be cadlag and adapted and Y be a semimartingale. Then

lim Y X()(Y(ti At) = Yt AL)) / X(s (6.3)

max |t;4+1—t;|—0
Proof. Let Z(t) = [} 2Y (s—)dY(s). Observing that
(Y(tia At) =Y (t; A1) =Yt At) = Y2t At) = 2V (8) (Y (tiqa At) — Y (t; A )

and applying Lemma 5.16, we see that the left side of (6.3) equals

/X —)dY?(s) — /tQX( —)Y( /X *(s) = Z(s)) ,

and since [Y], = Y2(t) — Y2(0) — [y 2Y (s—)dY (s), the lemma follows. O
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6.3 Ito’s formula.

Theorem 6.8 Let f € C?, and let Y be a semimartingale. Then

FY(@) = f(Y(O))+/O f (Y (s=))dY(s) (6.4)

tl 1
+/0 Ef (Y(s—

(f V() = f (Y (s=)) = [/ (Y(s=)) AY (s)

S V() (AY ().

Remark 6.9 Observing that the discontinuities in [V, satisfy A[Y], = AY (s)?, if we define
the continuous part of the quadratic variation by

YT, = [Y]e = ) AY(s)’
then (6.4) becomes

fW@)=fOWDﬁAfW@#MW$ (6.5)

tl 14 C
+ [ 38 0 av;

(f V() = f (Y (s=)) = [/ (Y(5-)) AY (s))

Proof. Define 7
fly) = f@) = f'(@)(y —2) — 5" (2)(y — )?

Ly(x,y) =

(y — z)?
Then
FOY@) = FYVO)+ D f(Y(tin)) — F(Y(5:) (6.6)
= FOYV0)+ D f(Y(8)) (Y (ti) = Y (1))
+izy" D (Y (1) = V(1)
Y THY (), Y (1)) (Y (tia) = Y (#:)%.

The first three terms on the right of (6.6) converge to the corresponding terms of (6.4) by
previous lemmas. Note that the last term in (6.4) can be written

PR NIY (s)AY(s)™. (6.7)

s<t

To show convergence of the remaining term, we need the following lemma.
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Lemma 6.10 Let X be cadlag. Fore >0, let D (t) ={s <t:|AX(s)| > €}. Then

lim sup max | X (tig1) — X(t;)| <e.

max [t; 1 —t;|—0 (tistit1]NDe(t)=0

(i.e. by picking out the sub-intervals with the larger jumps, the remaining intervals have the
above property.) (Recall that AX (s) = X(s) — X(s—) )

Proof. Suppose not. Then there exist a,, < b, <t and s < t such that a, — s, b, — s,
(@n,by) N De(t) = 0 and limsup | X (b,) — X (a,)| > €. That is, suppose

llgjip (tr’tﬁrﬁgﬁ(t):@ (X (t7) — X ()" > > e
Then there exists a subsequence in (¢, ¢7%,]; » such that | X (¢} ,) — X (¢*)] > 0. Selecting a
further subsequence if necessary, we can obtain a sequence of intervals {(a,,b,|} such that
| X (a,) — X(bs)| > 0 and a,,b, — s. Each interval satisfies a,, < b, < s, s < a,, < b, or
an, < s < by. If an infinite subsequence satisfies the first condition, then X (a,) — X(s—) and
X(b,) — X (s—) so that | X (b,) — X (a,)| — 0. Similarly, a subsequence satisfying the second
condition gives | X (b,) — X (an)| — 0 since X (b,) — X(s) and X(a,) — X(s). Finally, a
subsequence satisfying the third condition satisfies | X (b,) — X (a,)| — |X(s) — X(s—)| =
|AX(s)] > d > ¢, and the contradiction proves the lemma. O

Proof of Theorem 6.8 continued. Assume f € C? and suppose f” is uniformly con-
tinuous. Let 7s(e) = sup,_, < [f(z,y). Then v;(e) is a continuous function of € and
lim_o7yf(e) = 0. Let D (t) = {s <t:|Y(s) =Y (s")| > €}. Then

D TH(Y (), Y (tig1)) (Y (tigr) = Y (t))
= Z Lp (Y (t:), Y (tie1)) (Y (tinr) = Y (£:))?

(titir1]NDe(t)#£0D
+ Z Lp (Y (t:), Y (ti1)) (Y (tic1) = Y(t:)*

(titit1]NDe(t)=0

where the second term on the right is bounded by

e(teh vy =, max V) = Y)Y tr) - Y0
and
limsup e({#:},Y) < 15 (O[Y],

max ‘ti+1 —t;]—0

It follows that

lim sup | Z LY (t:), Y (tiv)) (Y (tig1) — Y<ti>>2 - Z Lp(Y(s—),Y(s)AY (s)?|
< 29 (e)[Y];

which completes the proof of the theorem. 0
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6.4 The product rule and integration by parts.
Let X and Y be semimartingales. Then

XOY(t) = XO0)Y(0)+ Y (X(tir1)Y (i) — X(ti)y(ti))
= X(0)Y(0)+ Z X(t; (tiv1) ) + Z Y(t (tis1) — X(8:))
+ Z (tiy1) = Y(t:)) (X(tiJrl) - X(ti))

= X(O)Y(O)—l—/o X(s—)dY(s)—l—/O Y(s—)dX(s) + [X,Y]:.

Note that this identity generalizes the usual product rule and provides us with a formula for
integration by parts.

AX@%W@:X@WQ=M®ﬂ®iAW&Mﬂﬁ—ﬂjh (6.8)

Example 6.11 (Linear SDE.) As an application of (6.8), consider the stochastic differential
equation

dX = —aXdt+dY

or in integrated form,
t
‘ﬂﬂ:MM—/aX@%+Y®.
0

We use the integrating factor e®*
wW@:=X@+/<wX /X
= X(O)—/ aX(s) O‘Sds—f—/ e™*dY (s /X Jae**ds
0

which gives
t

X(t) = X(0)e™ + / e =94y (s).

Example 6.12 (Kronecker’s lemma.) Let A be positive and nondecreasing, and lim, ., A(t) =

o0o. Define C
Z(t):/o A(s_)dY(s).

If limy_,o Z(t) exists a.s., then lim;_ AL

) _
0 0 a.s.

Proof. By (6.8)




Rearranging (6.9) gives

K 1
i) =Z(t) — M/o Z(s—)dA(s) + Al

Note that the difference between the first and second terms on the right of (6.10) converges
to zero. Convergence of Z implies lim; ., jé()) = 0, so the third term on the right of (6.10)

converges to zero giving the result. 0

AY (s)
A(s—)

AA(s), (6.10)

s<t

6.5 Itd’s formula for vector-valued semimartingales.

Let Y(t) = (Yi(t),Ya(t), .Y, (t))" (a column vector). The product rule given above is a
special case of Ito’s formula for a vector-valued semimartingale Y. Let f € C*(R™). Then

Fv) = +Z / Ouf (V(5—)) dYi(s)
+Z / h0Lf (¥ (5-)) d[Y, Vi,
+D (f(Y(s) - Zakf ) AY;(s)
- Z &ﬁlf —)) AYi(s)AY(s)),
or defining
Ve, Y] = [V2, V) ZAYk (s)AYi(s), (6.11)
we have
FY@) = +Z / Ot (Y (5—)) dYi(s) (6.12)
+ OO f (Y ) d[ Yy, YiS
Z i
+ (F Y () = f(Y(s=) = D> Ot (Y(s—)) AYi(s)).
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7 Stochastic Differential Equations

7.1 Examples.

The standard example of a stochastic differential equation is an Ito equation for a diffusion
process written in differential form as

dX (1) = o(X (£))dW (t) + b(X (t))dt

or in integrated form as
X(t) = X(0) + /0 o (X (5))dV (s) + /0 b(X (s))ds (7.1)
If we define ¥ (1) = (W(1), t>T and F(X) = (#(X),b(X) ), then (7.1) can be written as

X(t):X(O)+/O F(X(s—))dY (s) . (7.2)

Similarly, consider the stochastic difference equation
X1 = X+ 0(Xn)§nt1 + b(Xn)h (7.3)

where the & are iid and h > 0. If we define Yy(t) = S0/ ¢, Va(t) = [t/h]h, and X (t) =
X[t/h]7 then

X0 = X0+ [ (X600 )y )

which is in the same form as (7.2). With these examples in mind, we will consider stochastic
differential equations of the form (7.2) where Y is an R™-valued semimartingale and F' is a
d x m matrix-valued function.

7.2 Gronwall’s inequality and uniqueness for ODEs.

Of course, systems of ordinary differential equations are of the form (7.2), and we begin our
study by recalling the standard existence and uniqueness theorem for these equations. The
following inequality will play a crucial role in our discussion.

Lemma 7.1 (Gronwall’s inequality.) Suppose that A is cadlag and non-decreasing, X is
cadlag, and that

0<X(t)<et /OtX(s—)dA(s) . (7.4)

Then
X(t) < eet®,
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Proof. Iterating (7.4), we have
t
X(t) < e—l—/ X (s—)dA(s)

< e+ eA(t // X (u—)dA(u)dA(s)

< e+eAlt)+ /0 // / X (o—)dA(o)dA(u)dA(s)

Since A is nondecreasing, it must be of finite variation, making [A]¢ = 0. Ito’s formula thus
yields

t
€A(t) - 1 _'_/ eA(sf)dA(s) + Esgt(eA(S) _ €A(S*) — eA(S*)AA(S»
0

> 1+/t )gA(s)

> 14+ A(t // AW dA(u)dA(s)
> 14+ A(t) + /0 // / A dA(v)dA(u)dA(s) .

Continuing the iteration, we see that X (¢) < eeA®. O

Theorem 7.2 (Existence and uniqueness for ordinary differential equations.) Consider the
ordinary differential equation in R?

or in integrated form, t
X(1) = X(0) + /0 F(X(s))ds. (75)

Suppose F' is Lipschitz, that is, |F(x) — F(y)| < L|lz — y| for some constant L. Then for
each xg € RY, there exists a unique solution of (7.5) with X (0) = xq.

Proof. (Uniqueness) Suppose X;(t) )+ fo i=1,2
X1 (t) = Xo(0)] < |X1(0)—X2(0)|+/0 [F(X1(s)) = FI(Xa(s))|ds

< 1X0(0) = Xa(0)] + [ LIX(s) - Xals)lds
0
By Gronwall’s inequality (take A(t) = Lt)
[ Xi1(t) = Xa(t)] < |X1(0) — Xa(0)]e"”
Hence, if X;(0) = X5(0), then X;(t) = Xa(¢). O
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7.3 Uniqueness of solutions of SDEs.

We consider stochastic differential equations of the form

X(t) = U(t) + /0 F(X(s—))dY (s). (7.6)

where Y is an R™-valued semimartingale, U is a cadlag, adapted R%valued process, and
F: R — M¥»>™,

We will need the following generalization of Lemma 5.12.

Lemma 7.3 Let Y be a semimartingale, X be a cadlag, adapted process, and T be a finite
stopping time. Then for any stopping time o for which E[[M]¢11r0] < 00,

Plswp| [ X(uo)ay(w)| > K} (7.7)

sﬁt T

16 2[; A4-7— o A4—T g
- P{o‘ ., +t} N P{ sup |X(3)| - c} n c H ]( +t)2/\ [ ] A ]
T<s<T+t K

FP{To (V) = T (V) > (20) 'K}

Proof. The proof is the same as for Lemma 5.12. The strict inequality in the second term
on the right is obtained by approximating ¢ from above by a decreasing sequence c¢,. 0

Theorem 7.4 Suppose that there exists L > 0 such that
|F(x) = F(y)| < Lz —y].
Then there is at most one solution of (7.6).

Remark 7.5 One can treat more general equations of the form
t
X(8) = Ult) + / F(X, s—)dY (s) (7.8)
0

where F' : Dgal0,00) — Dypaxm[0,00) and satisfies

sup [F'(z,s) = F(y, s)| < Lsup [x(s) — y(s)] (7.9)

s<t s<t

for all x,y € Dgal0,00) and t > 0. Note that, defining x* by x'(s) = x(s A t), (7.9) implies
that F is nonanticipating in the sense that F(x,t) = F(a',t) for all x € Dga[0,00) and all
t>0.

Proof. It follows from Lemma 7.3 that for each stopping time 7 satisfying 7 < T a.s. for
some constant 7' > 0 and ¢, > 0, there exists a constant K (¢,¢) such that
T+58

Plswp| [ X(u=)dY(u)| > K. (t,0)} <o

Sgt T
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for all cadlag, adapted X satisfying |X| < 1. (Take ¢ = 1in (7.7).) Furthermore, K, can be
chosen so that for each § > 0, lim; o K, (¢,9) = 0.

Suppose X and X satisfy (7.6). Let 7 = inf{t : |X(¢) — X(¢)| > 0}, and suppose
P{my < o0} > 0. Select r,0,t > 0, such that P{ry < r} > and LK A-(t,d) < 1. Note that
if 79 < 0o, then

X(10) = Xo(70) = /OTO(F(X(S—)) — F(X(s—))dY (s) = 0. (7.10)

Define 3
= inf{s: | X(s) — X(s)| > €}.
Noting that |X(s) — X(s)| < € for s < 7., we have
[F(X(s)) = F(X(s))| < €L,

for s < 7, and

I/0 (F(X(s—)) = F(X(s=))dY (s)| = |X(7) = X(7)| > e.
Consequently, for r > 0, letting 7] = 79 A r, we have
P{r.— 15 <t}
TO+S To+s 5
<PCsw | [ POy - [T PR )y )] > Lk (t.6))
7'()) 0

5<t/\ 'rE
< 4.

Since the right side does not depend on € and lim,_ 7. = 79, it follows that P{ry — 19 A1 <
t} < § and hence that P{my < r} < 0, contradicting the assumption on ¢ and proving that
To = 00 a.S.

O

7.4 A Gronwall inequality for SDEs

Let Y be an R™-valued semimartingale, and let F' : R? — M®*™ gatisfy |F(z) — F(y)| <
L|z —y|. For i = 1,2, let U; be cadlag and adapted and let X; satisfy

Xi(t) :Ui(t)+/0 F(Xi(s—))dY (s). (7.11)

Lemma 7.6 Let d = m = 1. Suppose that Y = M + V' where M is a square-integrable
martingale and V' is a finite variation process. Suppose that there exist 6 > 0 and R > 0
such that sup, |AM(t)] < 6, sup, |[AV ()| < 20 and T,(V) < R, and that ¢(0,R) = (1 —
12L26% — 6L*R6) > 0. Let

A(t) = 12L*[M]; + 3L*RTy(V) + t, (7.12)
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and define y(u) = inf{t : A(t) > u}. (Note that the “t” on the right side of (7.12) only

serves to ensure that A is strictly increasing.) Then

E[S;lg) |X1(s) = Xa(s)]] < . R)emE[sg& [Ui(s) — Ua(s)]7]. (7.13)
Proof. Note that
1X1(t) — X)) < 3|Ui(t) — Ua(t)]? (7.14)
+3| ; (F(X1(s—)) — F(Xa(s—)))dM(s)|?

13 / (F(Xu(s—)) — F(Xa(s—))dV(s)].

Doob’s inequality implies
t

E[sup | [ (F(Xi(s—)) — F(Xz(s—)))dM(s)|’] (7.15)

t<y(u) JO

~(u)
< 4] / |F (X, (s—)) — F(Xa(s—))[d[M]],

and Jensen’s inequality implies
t

E[sup | | (F(Xi(s—)) = F(Xa(s—)))dV (s)]] (7.16)

t<y(u) Jo

¥(w)
< PIT W) [ P (=) = F(Xasm) PAT(V))

Letting Z(t) = sup,<, | X1(s) — X2(s)|? and using the Lipschitz condition and the assumption
that T,(V') < R it follows that

E[Zoxy(uw)] < 3E[sup |Ui(s) = Us(s)[] (7.17)

s<y(u)

v(u)
+12L2E[/0 |X1(s—) — Xo(s—)|?d[M]]

v (u)
+3L2RE| /O X, (=) — Xo(s—)PdTL(V)]

< 38 qu) Uy (s) — Us(s)]]
y(u)
LB /0 Z(s—)dA(s)]
< 3E[sup |Ui(s) — Us(s)]?]

s<y(u)

FE[(Aoy(u) — u)Z or(u)] + E| / " Z o (s—)ds).
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Since 0 < A oy(u) —u < sup, AA(t) < 12L%6% + 6L*Rd, (7.12) implies

c(0, R)E[Z o y(u)] < 3E[ sup |Ui(s) — Us(s)|?] + /0“ E[Z o~(s—)]ds,

s<y(u)
and (7.13) follows by Gronwall’s inequality.

Note that the above calculation is valid only if the expectations on the right of (7.15)
and (7.16) are finite. This potential problem can be eliminated by defining 7, = inf{t :
| X1 (t)—Xo(t)| > K} and replacing v(u) by v(u)ATg. Observing that | X;(s—)—Xs(s—)| < K
for s < 7k, the estimates in (7.17) imply (7.13) with v(u) replaced by y(u) A 7. Letting
K — oo gives (7.13) as originally stated. O

Lemma 7.6 gives an alternative approach to proving uniqueness.

Lemma 7.7 Letd=m =1, and let U = Uy, = Uy in (7.11). Then there is a stopping time
o depending only on'Y such that P{oc > 0} =1 and X,(t) = Xs(t) fort € [0,0].
Proof Let 7, = inf{t > 0 : |[AY (¢)| > 6} and define Y by

~ . Y(t) t<m
Y(t) = { Y(—)  t>1.

Then Y is a semimartingale satisfying sup, |[AY (¢)| < ¢ and hence by Lemma 5.8, Y can be
written as Y = M + V where M is a local square-integrable martingale with \AM )] <4§
and V is finite variation with |AV ()] < 20. Let T = inf{t: |M(t)| > K} and, noting that
IM(t)| < K +6 for t <, we have that M™ = M(- A7) is a square-integrable martingale.
Finally, let 75 = inf{t : T,(V') > R} and define

A . V(t) t < T3
Vie) = { V(t-) t> 73

and Y = M™ + V. Note that Y satisfies the conditions of Lemma 7.6 and that Y (¢) = Y (¢)
fort <o =7 ATy A T13. Setting

3 o Xl(t) t<o
Xilt) = { X;(t—) t>o

and defining U similarly, we see that

. t .

Ul(t) —I—/ F(X;(s—))dY (s).
0

By Lemma 7.6, X;(t) = Xt 1(t) = Xt 2(t) = Xu(t) for t < 0. Since X;(0) = Xi(o—) +
F(X;(0—))AY (o), we see that X;(0) = Xs(0) as well. O

X(t)

Proposition 7.8 . Letd=m =1, and let U = Uy, = Uy in (7.11). Then X; = X3 a.s.

Proof. Let n = inf{t : X;(t) # Xa(t)}. For any T' < oo, X1(T'An) = Xo(T A n). But
“starting over” at T' A n, Lemma 7.7 implies that there is a stopping time 7 > T" A ) such
that X (t) = Xa(t) for t <7, and hence P{n > T} = 1. But T is arbitrary, son =oco. O

Remark 7.9 The proof of these results for d,m > 1 is essentially the same with different
constants in the analogue of Lemma 7.6.
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7.5 Existence of solutions.

If X is a solution of (7.6), we will say that X is a solution of the equation (U,Y, F'). Let
Y¢ be defined as in Lemma 5.18. If we can prove existence of a solution X¢ of the equation
(U,Y° F) (that is, of (7.6) with Y replaced by Y°), then since Y¢(t) = Y (¢) for t < o,
we have existence of a solution of the original equation on the interval [0,0.). For ¢ > ¢,
suppose X¢ is a solution of the equation (U,Y?,F). Define X¢(t) = X¢(t) for t < o,
and X°(t) = F(X¢(0.—))AY*(0,) for t > o.. Then X¢ will be a solution of the equation
(U, Y€, F). Consequently, if for each ¢ > 0, existence and uniqueness holds for the equation
(U,Y® F), then X¢(t) = X¢(t) for t < 0, and ¢’ > ¢, and hence, X (t) = lim,_,, X¢(t) exists
and is the unique solution of the equation (U,Y, F).

With the above discussion in mind, we consider the existence problem under the hypothe-
ses that Y = M + V with |M| + [M] + T(V) < R. Consider the following approximation:

X.(0) = X(0)
D L I L R (I e R L))

Let n,(t) = £ for £ <t < L Extend X, to all t > 0 by setting

T on

X, (t) = U(t) + /0 F(X, 0n(s—))dY (s) .

Adding and subtracting the same term yields

Xu(t) = Ut)+ / (F(X, 0 1(s—)) — F(X, (s—)))dY (s) + / F(Xa(s-))dY (s)

U(t) + Dalt) + /0 F(X(s—))dY (s).

Assume that |F(z) — F(y)| < Lz —y|, and for b > 0, let 4% = inf{t : |F(X,(t))| > b}. Then
for T > 0,

E[ sup [Du(s)P] < 2E[ sup ( / (F(X, 0 m(5-)) — F(Xa(s-)))dM(s))?

s<YBAT t<HAT

+2E[t5333T(/0t(F(Xn 0 1n(5=)) — F(Xu(s=)))dV (s))’]

< 8L2E[/OWT | X 0 11(5—) — Xn(s—)*d[M],]
+21~2L2E[/072AT | X 0 (5—) — X (=) [PdTL(V))]

= 8L2E[/OWT FA(Xy 0 ma(s=))(Y (5=) = Y (na(s—)))*d[M]]

+QRL2E[/O% F* (X, 01(5=)) (Y (5=) = Y (na(s—)))*dT(V)]
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— sL%2E| / (¥ (s—) — Y (na(s—)))2d[M].]
+2RL2b2E[/O%A (Y(s=) = Y(na(s—)))*dT(V)]

so under the boundedness assumptions on Y,

E[ sup |Da(s)"] = 0.

s<YSAT
Now assume that F' is bounded, sup |[AM(s)| < 4§, sup |[AV (s)| < 26, Ty(V) < R, and
that L, 9, and R satisfy the conditions of Lemma 7.6. Since

Xo(t) = U(t) + Du(t) + /O F(X,(5—))dY (s),

Lemma 7.6 implies {X,,} is a Cauchy sequence and converges uniformly in probability to a
solution of

X(t) = U(t) + /0 F(X(s—))dY(s) .

A localization argument gives the following theorem.

Theorem 7.10 Let Y be an R™-valued semimartingale, and let F' : R — M¥™ be bounded
and satisfy |F(x) — F(y)| < Llz —y|. Then for each X (0) there exists a unique solution of

X(t) =U(t) + /0 F(X(s—))dY (s). (7.18)

The assumption of boundedness in the above theorem can easily be weakened. For general
Lipschitz F', the theorem implies existence and uniqueness up to 7, = inf{¢ : |F(z(s)| > k}
(replace F' by a bounded function that agrees with F' on the set {z : |F(z)| < k}). The
global existence question becomes whether or not limyg 7, = 0c0? F'is locally Lispchitz if for
each k > 0, there exists an Ly, such that

|F(z) — F(y)| < Li|lr — g Viz| <k, ly| <k.

Note that if F' is locally Lipschitz, and p; is a smooth nonnegative function satisfying
pe(z) = 1 when |z| < k and pg(z) = 0 when || > k + 1, then Fy(z) = pp(z)F(x) is globally
Lipschitz and bounded.

Example 7.11 Suppose
t
X(t)=1 +/ X (s)*ds .
0
Then F(x) = x? is locally Lipschitz and local existence and uniqueness holds; however, global

existence does not hold since X hits oo in finite time.
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7.6 Moment estimates.

Consider the scalar 1t6 equation

Define 7, = inf{t : | X(¢)| > k}. Then
(X(EAT)P = |X(0)] +/0 ! 2X(s)o(X(s))dW (s)
+ /0 " 2X ($)D(X () + 02X (5)))ds .

Since ,

[ et aws) = [ ron2xe(xeas
has a bounded integrand, the integral is a martingale. Therefore,

EIX(tAm)l] = E[X(0)F] + /OtE[l[o,Tk>(2X(S)b(X(S)) +0%(X(s)))lds .
Assume (2zb(x) + 0*(z)) < K; + Ks|z|* for some K; > 0. (Note that this assumption holds
if both b(x) and o(z) are globally Lipschitz.) Then

mi(t) = E[IX(tA7)P]
= BIXOF+ [ B{lon 2X (X)) + (X)) s
< mg+ Kit + /t my(s)Kads
0
and hence

my(t) < (mg + Kit)e™".

Note that
X (AT = sty | X ()] + Tm<y | X (70)])7,

and we have
EP(r, <t) < B(IX({tAT)[?) < (mo + Kit)e?.

Consequently, as k — oo, P(1, < t) — 0 and X(t A 7,) — X(¢). By Fatou’s Lemma,
E|X(t)]* < (mo + Kit)ef.
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Remark 7.12 The argument above works well for moment estimation under other condi-

tions also. Suppose 2xb(z) + o*(z) < Ky — €|z|>. (For example, consider the equation
X(t) = X(0) — [y aX(s)ds + W (t).) Then

XM < \X(0)|2+/0 22X (s)o(X(s))dW (s)
—i—/o 668[2X(S)b(X(S>>+U2(X(8))]d8+/0 ce®| X (s)|*ds

< X0+ /0 52X (s)o (X (5))dW () + /O e K ds

< |X(0))? —{—/0 e 2X (s)o (X (s))dW (s) + %(eat - 1),
and hence K
B X (1] < E[IX(0)]] + ?1[6“ —1].
Therefore, ©
E[X(®)"] < e B[ X (0)*] + ?1(1 —e ),

which 1s uniformly bounded.
Consider a vector case example. Assume,

X(1) = X(0) + /0 o (X ())dW (s) + /0 b(X(5))ds,

where o is a d X m matrix, b is a d-dimensional vector, and W is an m-dimensional standard
Brownian motion. Then

d ¢ d
X)) = Z X2 = X (0)2 + Z/O 2X;(s)dX;(s) + Z[Xi]t .

=1

Define Z;(t) = >;", f(f oin(X(5))dWy(s) = >, Uy where Uy = fot oir(X (s))dWy(s). Then
[Zi] = Zk,l[UkH U], and

U Ul = /Otaik<x<s>>aﬂ<x<s>>d[wk,Wle

0 Yy
) { o (X()ds k=1

Consequently,
X0 = \X(0)|2+/0 2X(5) o(X(s))dW(s)

o1



n /0 2X(3) - (X () + D o5 (X ()]s

— X+ / 2 (s)" o (X (5))dW (s)

T

—1—/0 (2X(s) - b(X(s)) + trace(o(X(s))o(X(s)) ))ds .

As in the univariate case, if we assume,
22 - b(x) + trace(o(z)o(z)" ) < Ky — ela|?,

then E[|X(s)]?] is uniformly bounded.
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8 Stochastic differential equations for diffusion pro-
cesses.

8.1 Generator for a diffusion process.

Consider
X(t) = X(0) +/O o(X(s))dW (s) —i—/o b(X (s))ds,

where X is R%valued, W is an m-dimensional standard Brownian motion, o is a d x m
matrix-valued function and b is an R%valued function. For a C? function f,

The covariation satisfies
t
X0, X, t_/ ZM Doix X(s))ds:/ 05 (X (s))ds,
0

where a = ((a;;)) = o - o7, that is a; ;(x) = Y, oir(x)ox;(x). If we denote

d

Lf(x):Zb Za” )0:0; f (x

then
FXW) = FXO)+ [ X)X )W)
+ [ L s,
Since .
we have B

Z&fg‘ai,g‘ =¢loo’ e =o"¢* >0,
and hence a is nonnegative definite. Consequently, L is an elliptic differential operator. L

is called the differential generator or simply the generator for the corresponding diffusion
process.

Example 8.1 If



8.2 Exit distributions in one dimension.
If d=m =1, then
Lf(r) = gala)f"(x) + b(a) £ (2)
where
a(r) = o?(x).
Find f such that Lf(xz) = 0 (i.e., solve the linear first order differential equation for f’).
Then

f(X(1) = f(X(0) + /Ot f'(X(s5))o(X(s))dW (s)

is a local martingale. Fix a < b, and define 7 = inf{t : X(¢) ¢ (a,b)}. If sup,., | f'(z)o(x)] <
oo, then

¢
f(X({tAT)) = f(X(0)) —|—/ Lo (s)f'(X(s))o(X(s))dW (s)
0
is a martingale, and
Elf(X(tAT)IX(0) = 2] = f(z).
Moreover, if we assume sup,_,;, f(z) < co and 7 < 0o a.s. then letting t — oo we have
EIf(X(7))|X(0) = 2] = f().
Hence
fl@)P(X(7) = a|X(0) = z) + f(b) P(X(7) = b|X(0) = z) = f(x),
and therefore the probability of exiting the interval at the right endpoint is given by
f(x) = f(a)
P(X(r)=0X(0)=2) = —"7—7—=. 8.1
(X() =UX(0) = ) = Ll =2 (51)
To find conditions under which P(7 < oo) = 1, or more precisely, under which E[7] < oo,
solve Lg(z) = 1. Then

g(X (1)) = g(X(0) + / § (X () (X (5))dW () + 1,

and assuming sup,_,; |¢'(z)o(z)| < oo, we conclude that the stochastic integral in

s(X(EAT) =)+ [ XX )W () + A7
is a martingale and hence
Elg(X(tAT))|X(0) =z] = g(x) + E[t A T].

If
C = sup [g(z)] < oo,

a<z<b

then 2C' > E[t A 7], so 2C' > E|r], which implies 7 < 0o a.s. By (8.1), we also have
Elr|X(0) =2] = Elg(X(7))|[X(0) =2] - g(z)

ol f@ ) - )

70 —i@ e =@ 9@
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8.3 Dirichlet problems.

In the one-dimensional case, we have demonstrated how solutions of a boundary value prob-
lem for L were related to quantities of interest for the diffusion process. We now consider
the more general Dirichlet problem

Lf(x)=0 xeD
(8.2)

f(z)=h(x) 2x€0D
for D Cc R%.
Definition 8.2 A function f is Holder continuous with Holder exponent 6 > 0 if

|[f(z) = fy)l < Llz —yI°

for some L > 0.
Theorem 8.3 Suppose D is a bounded, smooth domain,

inf > ai(@)6gs > elé),

where € > 0, and a;j, b;, and h are Holder continuous. Then there exists a unique C?
solution [ of the Dirichlet problem (8.2).

To emphasize dependence on the initial value, let

X(t,x) =z + /Ota(X(s,x))dW(s) +/0t b(X (s, 2))ds. (8.3)
Define 7 = 7(z) = inf{t : X(t,z) ¢ D}. If fis C2 and bounded and satisfies (8.2), we have
fz) = BEIf(X(tAT,2))],
and assuming T < 0o a.s., f(z) = E[f(X(r,z))]. By the boundary condition
f(z) = E[WX(r,2))] (84)

giving a useful representation of the solution of (8.2). Conversely, we can define f by (8.4),
and f will be, at least in some weak sense, a solution of (8.2). Note that if there is a C?,
bounded solution f and 7 < oo, f must be given by (8.4) proving uniqueness of C?, bounded
solutions.

8.4 Harmonic functions.

If Af =0 (i.e., f is harmonic) on R¢, and W is standard Brownian motion, then f(z+W (t))
is a martingale (at least a local martingale).
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8.5 Parabolic equations.

Suppose u is bounded and satisfies

u = Lu

u(0,2) = f(x).

By It6’s formula, for a smooth function v(t, z),
¢
v(t, X (t)) = v(0,X(0)) + (local) martingale + / [vs(s, X (s)) + Lo(s, X(s))]ds.
0

For fixed r > 0, define
v(t,x) = u(r —t, ).

Then %v(t,x uy(r — t,x), where uy(t,z) = %u(t,x). Since uy = Lu and Lu(t,x) =
Lu(r — t,z), v(t, ( )) is a martingale. Consequently,

Elu(r —t, X(t,2))] = u(r,z),
and setting t = r, E[u(0, X (r,z))] = u(r, x), that is ,we have

u(r,z) = E[f(X(r,z))].

8.6 Properties of X (t,x).

Assume now that
lo(z) —o(y)| < K|z —y|, [b(z)—by)| < K|z —y|

for some constant K. By arguments similar to those of Section 7.6, we can obtain the
estimate

E[X(t,x) = X (6, y)"] < C(0)]x —yl". (8.5)

Consequently, we have the following

Theorem 8.4 There is a version of X (t,x) such that the mapping (t,x) — X (t,x) is con-
tinous a.s.

Proof. The proof is based on Kolmogorov’s criterion for continuity of processes indexed by
R, O
8.7 Markov property.
Given a filtration {F;}, W is called an {F;}-standard Brownian motion if

1) W is {F;}-adapted

2) W is a standard Brownian motion
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3) W(r+-)—W(r) is independent of F,.
For example, if W is an {F;}-Brownian motion, then
B (W(t+ 1) — W()|F] = ELF W)
Let W,.(t) = W(r +t) — W(r). Note that W, is an {F,;}- Brownian motion. We have

X(r+t,x)

r+t r+t
X(r,x) +/ o(X(s,x))dW(s) —I—/ b(X (s, x))ds
= X(r,z) —i—/o o(X(r+s,x))dW,(s)

+ /Ot b(X(r+ s,x))ds.

Define X, (¢,z) such that

X, (t, ) :x+/0 U(Xr(s,:c))dWr(s)—l—/O b(X,(s,x))ds.

Then X (r+t,z) = X,.(t, X (r,z)). Intuitively, X (r+t,x) = H,(X (r, z), W,.) for some function
H, and by the independence of X(r,x) and W,,
E[f(X(r+t2)|F] = Elf(H(X(r,z), W,))|F]
= u(t,X(r,x)),

where u(t, z) = E[H(z,W,)]. Hence
Ef(X(r+t,2)|F] = E[f(X(r +t,2))|X(r,2)],

that is, the Markov property holds for X.
To make this calculation precise, define
k k+1

k
na(t) = —, for — <t<
n n n

and let
X" (t, ) :x—i—/o (X" (n(s), z))dW (s) +/0 (X" (nn(s),x))ds.

Suppose that z € Cgm|[0,00). Then

H”(t,x,z):x—i-/o U(H"(nn(s),x,z))dz(s)—l—/o b(H"(nn(s),x, 2))ds

is well-defined. Note that X"(t,x) = H"(t,z, W).
We also have
X<7n + ta .’17) = Xr(t7 X(Ta 1‘))
= lim X(¢t, X (r,x))

n—oo

= lim H"(t, X (r,x), W,).

n—oo
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and it follows that
Elf(X(r+t2)|F] = lim E[f(H"( X(r,z),W;)|F]
= lim B[f(H"(t, X (r,x), W;)| X (r, z)]
— EIf(X(r+1,2)|X(r,)]

8.8 Strong Markov property.

Theorem 8.5 Let W be an {F;}-Brownian Motion and let 7 be an {F;} stopping time.
Define FJ = Frit. Then W(t) = W (T +t) — W(7) is an {F]} Brownian Motion.

Proof. Let e " .
Tn:i, when — < 7 < i :
n n n

Then clearly 7,, > 7. We claim that
ELfW (5 +8) = W(m)IF, | = EFVO)L
Measurability is no problem, so we only need to check that for A € F,
/A FW (5 4+ 1) = W(r))dP = P(A)E[F(W (1))

Observe that AN {7, = k/n} € Fi/,. Thus

LHS = ;/Am{m:km}f(mﬁ+t)—W(§))dP

n
k k
= Y PAN R = BaD BV +8) = W)
k
= > P(AN{r, = k/n})E[f(W(1))]
k
= E[f(W())]P(A).
Note also that 7., D F,. Thus
E[f(W (7, +1) = W(ma))|F7] = E[f(W(2))].
Let n — oo to get
E[f(W (T +1) = W()|F:] = E[f(W(?))]. (8.6)
Since 7 + s is a stopping time, (8.6) holds with 7 replaced by 7 + s and it follows that W,
has independent Gaussian increments and hence is a Brownian motion. 0

Finally, consider
t t
X(t+t,x)=X(7,x) +/ o(X (1 +s,2))dW,(s) —I—/ b(X (T + s,x))ds.
0 0

By the same argument as for the Markov property, we have
E[f(X (T +t,x))|F;] = u(t, X (7, x))
where u(t,x) = E|[f(t,x)]. This identity is the strong Markov property.
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8.9 Equations for probability distributions.

We have now seen several formulas and assertions of the general form:

HMW—ALHX@MS (8.7)

is a (local) martingale for all f in a specified collection of functions which we will denote
D(L), the domain of L. For example, if

dX = o(X)dW + b(X)dt

and
1

Litw) = 52“”( ) owidm,; aaxj o)+ 2 hila)

2

with
((aij(2))) = o ()" (2),
then (8.7) is a martingale for all f € C? (= D(L)). (C? denotes the C? functions with

compact support.)
Markov chains provide another example. Suppose

(D+§jnﬁ<A%MX@»d%

where {Y;} are independent unit Poisson processes. Define

Qf(@) = Bi(x) Y (flz +1) = f(x)).

l

Then .
- [arexs
0
is a (local) martlngale
Since f (X fo Lf (X(s))ds is a martingale,

E[f(X(®)] = EWX@]HﬂALﬂX®M%
ZEUMWM+AEMﬂMmMS

Let 1(I") = P{X(t) € T'}. Then for all f in the domain of L, we have the identity

/ fdv, = / Fdvy + /O t / Lfdv,ds, (8.9)

which is a weak form of the equation

d
Eljt L*Vt. (810)
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Theorem 8.6 Let Lf be given by (8.8) with a and b continuous, and let {v;} be probability
measures on R satisfying (8.9) for all f € C2(RY). If dX = o(x)dW + b(z)dt has a unique
solution for each initial condition, then P{X(0) € -} = vy implies P{X(t) € -} = 1.

In nice situations, vy(dz) = py(z)dz. Then L* should be a differential operator satisfying

/podx:/ fL*pdx.
Rd R4

Example 8.7 Let d=1. Integrating by parts, we have
o 1
IRE (§a(x)f”(ﬂf) n b<w>f’<x>) i

/ I (2 = (ale)p(a)) - b<w>p<x>) iz

The first term is zero, and integrating by parts again we have

/ 1) g (de( (@)p(z ))—b(:c)p(x)) dz

2529()

S0
. d (1d
L= 4 (5 (e - b(az)p(:c)) .
Example 8.8 Let Lf = f” (Brownian motion). Then L*p = 5p”, that is, L is self adjoint.

8.10 Stationary distributions.
Suppose [ Lfdr =0 for all f in the domain of L. Then

/fdw:/fdﬂ+/0t/Lfd7rds,

and hence v, = 7 gives a solution of (8.9). Under approprlate condltlons in particular, those
of Theorem 8.6, if P{X(0) € -} = m and f(X fo Lf(X(s))ds is a martingale for all
f € D(L), then we have P{X(t)} € -} =7, ie. misa Statlonary dlstrlbutlon for X.

Let d = 1. Assuming 7 (dz) = w(z)dz

d (1d
7 (G (@) - voyr()) =0,

(. J/

this is a constant:
let the constant be 0

so we have

d
7 (a(@)m(2)) = b(z)(2).

N | =
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Applying the integrating factor exp(— [ 2b(z)/a(z)dz) to get a perfect differential, we have

Lo L (a(ym(a) — bla)e 5 (z) = 0
a(g:)e Jz 2ab((;>)dz (ZB) - C
C x 2b(z)
W(.x) = a(x) f a( dz

Assume a(z) > 0 for all x. The condition for the existence of a stationary distribution is

o0
1 z 2b(2)
/ el a5 ¥y < 0.

a(x)

—0o0

8.11 Diffusion with a boundary.
(See Section 11.) Suppose

X() = X(0) + /O (X (5))dW (s) + /0 b(X (s))ds + A(t)

with X (¢) > 0, and that A is nondecreasing and increasing only when X (¢) = 0. Then

FX()) - / LF(X(s))ds

is a martingale, if f € C? and f'(0) = 0.

/Ooop(x)Lf(x)dx = :%p(x)a(x)f'(x)]j—/o f! (;dci( (z)p(x)) —b(x)p(:[)) dz

o0 o0

= |10 (5 o) s )|+ [ s@rpo

0 0

and hence

for p satistying

1 1
(éa'(()) — b(O)) p(0) + 5@(0)]9’(0) =0. (8.11)
The density for the distribution of the process should satisfy
d
Ept L*p,

and the stationary density satisfies

d (1d
7 (5 @(@(a) = sa)n(a) ) =0
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subject to the boundary condition (8.11). The boundary condition implies

1d

57, (a(@)m(@)) = b(z)m(z) =0

and hence
z 2b(z) dz

— L jO a(z) > 0

Example 8.9 (Reflecting Brownian motion.) Let X (t) = X (0) + oW (t) — bt + A(t), where

a =02 and b > 0 are constant. Then

so the stationary distribution is exponential.
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9 Poisson random measures

9.1 Poisson random variables

A random variable X has a Poisson distribution with parameter A > 0 (we write X ~

Poisson(\)) if for each k € {0,1,2,...}

PUNEN
P{X =k} =y

From the definition it follows that E[X] = A, Var(X) = X and the characteristic function of
X is given by ‘
E[eiHX] _ e/\(ezefl).

Since the characteristic function of a random variable characterizes uniquely its distribution,
a direct computation shows the following fact.

Proposition 9.1 If Xy, Xy, ... are independent random variables with X; ~ Poisson(\;)
and Y .21 N < 00, then
X = ZXZ» ~ Poisson (Z )\Z')
i=1 i=1

Proof. Since for each i € {1,2,...}, P(X; > 0) = 1, it follows that ¢ , X; is an increasing
sequence in k. Thus, X = > ° X, exists. By the monotone convergence theorem

=Y E[Xj]=) \ <o,
i=1 i=0
and X is finite almost surely. Fix £ > 1. Then

B[] = lim E

k—o0

zeZX] lim e(Ch ME7-1) _ (5 ) -1)

k—o0

and hence X ~ Poisson (D .o, ;). O
Suppose in the last proposition y .-, A; = co. Then

k k
P{Xgn}zgiglop{z:xign}:]}g o (ZA)exp{—Z)\j}zo.
7=1

i=1 j=1

Thus P{X < n} = 0 for every n > 0. In other words, P{X < oo} =0, and > .° X, ~
Poisson(co). From this we conclude the following result.

Corollary 9.2 If X1, Xs,... are independent random variables with X; ~ Poisson(\;) then
Z X; ~ Poisson (Z )\i>
i=1 i=1
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9.2 Poisson sums of Bernoulli random variables

A random variable Y is said to be a Bernoulli with parameter p € {0,1] (we write Y ~

Bernoulli(p)) if
P{Y =1}=p, P{Y =0} =1—p.

Proposition 9.3 Let N ~ Poisson(\), and suppose that Y1,Ys, ... are i.i.d. Bernoulli
random variables with parameter p € [0,1]. If N is independent of the Y;, then Zij\ioY; ~
Poisson(\p).

Next, we present a natural generalization of the previous fact. For j = 1,...,m, let ¢,
be the vector in R™ that has all its entries equal to zero, except for the jth which is 1.

For 6,y € R™, let
0,y) => 0.
j=1

Let Y = (Y1,...,Y,,), where the Y; are independent and s Y; ~ Poisson(A;). Then the
characteristic function of ¥ has the form

E[e!Y)] —exp{Z)\ 1—1}

Noting, as before, that the characteristic function of a R™-valued random variable determines
its distribution we have the following:

Proposition 9.4 Let N ~ Poisson(\). Suppose that Yy, Y, ... are independent R™-valued
random variables such that for all k >0 and j € {1,...,m}

P{Y, = e} = p;,

where Z;"Zl p; = 1. Define X = (Xy,...,Xp) = Zszo Yi.. If N is independent of the Y,
then Xy, ..., X, are independent random variables and X; ~ Poisson(Ap;).

Proof. Define X = (X1,...,X,,). Then, for arbitrary 8 € R™, it follows that

E¢®N] = Y F (exp {iim,e)}) - P{N =k}

k>0

‘ 2K
= Y B X

k>0
= exp{Z)\p] 1—1}

From the last calculation we see that the coordinates of X must be independent and
X; ~ Poisson(Ap;) as desired. O
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9.3 Poisson random measures

Let (E, &) be a measurable space, and let v be a o-finite measure on €. Let N (FE) be the
collection of counting measures, that is, measures with nonnegative integer values, on F.
¢ is an N (E)-valued random variable on a probability space (2, F, P) if for each w € ,
&(w,-) € N(F) and for each A € &, £(A) is a random variable with values in NU {oc}. (For
convenience, we will write £(A) instead of {(w, A).)

An N (E)-valued random variable is a Poisson random measure with mean measure v if

(i) For each A € &, £(A) ~ Poisson(v(A)).
(i) If Ay, Ag, ... € € are disjoint then £(A;),&(Asz),. .. are independent random variables.

Clearly, v determines the distribution of ¢ provided ¢ exists. We first show existence for
v finite, and then we consider v o-finite.

Proposition 9.5 Suppose that v is a measure on (E,E) such that v(E) < co. Then there
exists a Poisson random measure with mean measure v.

Proof. The case v(E) = 0 is trivial, so assume that v(F) € (0,00). Let N be a Poisson
random variable with defined on a probability space (£, F, P) with EF[N] = v(E). Let
X1, Xs,... beiid E-valued random varible such that for every A € £

v(4)

v(E)

P{X, € A} =

and assume that N is independent of the X;.
Define & by £(A) = 31 1x,(w)ea}- In other words

N
§= Z 5Xk
k=0

where, for each z € F, §, is the Dirac mass at z.

Clearly, for each w, £ is a counting measure on £. To conclude that £ is a Poisson
random measure, it is enough to check that given disjoint sets Ay,..., A,, € &£ such that
U, A = E, £(Ar), ..., £(An) are independent and £(A;) ~ Poisson(v(A;)). For this, define
the R™-valued random vectors

Z] — (l{XjeA1}7 ey 1{X36Am})

Note that, for every j > 0andi € {1,...,m}, P{Z; = ¢;} = l;((‘z"), since Ay, ..., A,, partition

E. Since N and the X; are mutually independent, it follows that /N and the Z; are also.
Finally, since

N
(E(AY), - E(AR) = > 2,
j=1
by Proposition 9.4, we conclude that &(A;),...,&(A,,) are independent random variables
and &(A;) ~ Poisson(v(A;)). O

The existence of a Poisson random measure in the o-finite case is a simple consequence
of the following kind of superposition result.
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Proposition 9.6 Suppose that vy, s, ... are finite measures defined on &£, and that v =
Yo v is o-finite. Fork =1,2,..., let & be a Poisson random measure with mean measure
Vg, and assume that &, &, ... are independent. Then § =Y} _, & defines a Poisson random
measure with mean measure v.

Proof. By Proposition 9.5, for each ¢ > 1 there exists a probability space (€;, F;, P;) and
a Poisson random measure & on (€;, F;, P;) with mean measure v;. Consider the product
space (2, F, P) where

9291X92X...
f:f1Xf2X...
P:P1XP2X...

Note that any random variable X; defined on (£2;, F;, P;) can be viewed as a random variable
on (2, F, P) by setting X;(w) = X;(w;). We claim the following:

(a) for A€ & and i > 1, (A) ~ Poisson(v;(A)).
(b) if Ay, Ag,... € £ then & (A1), & (A2), ... are independent random variables.
(c) £&(A) =27, &(A) is a Poisson random measure with mean measure v.

(a) and (b) are direct cosequences of the definitions. For (c), first note that £ is a counting
measure in & for each fixed w. Moreover, from (a), (b) and Corollary 9.2, we have that
€(A) ~ Poisson(v(A)). Now, suppose that By, Bs,... € £ are disjoint sets. Then, by (b)
it follows that the random variables & (B1),&2(B1), .., &1(Ba), &(B2), - - ., &1(Bn), & (By), - - -
are independent. Consequently, £(B1),&(Bs), ... are independet, and therefore, ¢ is a Poisson
random measure with mean v. O

Suppose now that v is a o-finite measure. By definition, there exist disjoint E; such
that £ = U, F; and v(E;) < oo for all ¢ > 1. Now, for each i > 1, consider the measure
v; defined on & by the formula v;(A) = v(A N E;). Clearly each measure v; is finite and
v =3 2, v;. Therefore, by Proposition 9.6 we have the following

Corollary 9.7 Suppose that v is a o-finite measure defined on £. Then there exists a
Poisson random measure with mean measure v.

9.4 Integration w.r.t. a Poisson random measure

Let (€2, F, P) be a probability space and (£, ) be a measurable space. Let v be a o-finite
measure on (E, &), and let £ be a Poisson random measure with mean measure v. Recall
that for each w € Q, £(w,-) is a counting measure on €. If f : F — R is a measurable
function with [ |f|dv < oo, then we claim that

w - / F (@) (w, do)

is a R-valued random variable. Consider first simple functions defined on F, that is, f =
> j—1¢ila;, wheren € N, ¢1,...,¢c, € R, and Ay,..., A, € € are such that v(A;) < oo for
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all j € {1,...,n}. Then
X5() = [ Fa)eonds) = 30 e4)

is a random variable. Note that
B = [ fav B < [ 17 (9.1
E E
with equality holding if f > 0. Recall that the spaces
Li(v) ={h: E — R: h is measurable, and / |hldv < oo}
E

and
Li(P)={X:Q — R: X is a random variable, and E[|X|] < oo}

are Banach spaces under the norms ||h|| = [, |h|dv and || X|| = E[|X]] respectively. Since
the space of simple functions defined on F is dense in L;(v), for f € Li(r), we can construct
a sequence of simple funtions f,, such that f, — f pointwise and in Ly and |f,| < |f]. It
follows that X;(w) = [, f(2)§(w,dx) is a random variable satisfying (9.1).

As convenient, we will use any of the following to denote the integral.

X; = [ faetdn) = (7.6
E
From the interpretation of Xy as an ordinary integral, we have the following.

Proposition 9.8 Let f,g € L'(v).
(a) If f < g v-a.s., then Xy < X, P-a.s.
(b) If a« € R v-a.s., then X,y = aX; P-a.s.
(c) X¢rg=Xs+ X, P-as.

For A e & let Fy = 0(&(B) : B € £,B C A). Note that if A; and A, are disjoint,
then F4, and F4, are independent, that is, if H; € F4, and Hy € Fa,, then P(H; N Hy) =
P(H,)P(H3). In the proof of the previous result, we have used the following result.

Proposition 9.9 Suppose that f,g € Li(v) have disjoint supports i.e. [.|f|-|g|dv = 0.
Then Xy and X, are independent.

Proof. Define A := {|f| > 0} and B := {|f| = 0}. Note that

Xy = / F(2)E(dz)
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is F4-measurable and

X, = [ s@ean) = [ gwstan) as

where the right side is Fg-measurable. Since F4 and Fpg are independent, it follows that

Xy and X, are independent. 0]
If v has no atoms, then the support of {(w,-) has v measure zero. Consequently, the

following simple consequence of the above observations may at first appear surprising.

Proposition 9.10 If f,g € L*(v) then
f =gv-as. if and only if X; = X, P-a.s.

Proof. That the condition is sufficient follows directly from the linearity of X; and (9.1).
For the converse, without lost of generality, we only need to prove that Xy = 0 P-a.s. implies
that f = 0 v-a.s. Since f = f* — f~ where f* = fli>0y and f~ = —flisq, it follows
that 0 = Xy = X+ — X;- a.s. Note that X;+ and X;- are independent since the support
of f* is disjoint from the support of f~. Consequently, X+ and Xy~ must be equal a.s. to
the same constant. Similar analysis demonstrates that the constant must be zero, and we
have

dv = Td “dv = B[ X s+ FEFlX—|=0.
[Emu [Ef v+/Ef v = E[Xp] + E[X,]

9.5 Extension of the integral w.r.t. a Poisson random measure

We are going to extend our definition of X; to a larger class of functions f. As motivation,
if v is a finite measure, then, as we saw in the proof of Proposition 9.5, £ = Zszl 0x, is a
Poisson random measure with mean v, whenever N ~ Poisson(v(E)) is independent of the
sequence of i.i.d. E-valued random variables X7, Xs, ... with P(X; € A) = Zggg Now, given
any measurable function f : E — R, it is natural to define

f@)é(dr) =) f(Xx),

E k=0

and we want to ensure that this definition is consistent.

Proposition 9.11 If f : E — R is a simple function then for all a,b > 0

P{|Xf|Zb}§%/E|f|/\adl/+<1—exp{—a‘1/E|f\/\adV})

Proof. First, notice that

P{|Xf| > b} < P{X\fl > b} < P{lell{mga} > b} + P{X\f|1{|f|>a} >0}
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But, by the Markov inequality,

1 1
P{X\f|l\f|ga > b} < 5 /{|f<a} |f|d7/ < E /E(|f| N a)dy.

On the other hand, since P{Xs1,., > 0} = P{{([f] > a) > 0} and &{|f] > a} ~
Poisson(v{|f| > a}), we have

PE(f] > a) >0} =1— el <1 —exp{—al/ |f] /\ady},
E

giving the desired result. U
Consider the vector space

Lig(v) ={f: E—Rst. |f|Al€ Li(v)}.

Notice that L;(v) C Ly o(v). In particular, L, o(r) contains all simple functions defined on
E whose support has finite ¥ measure. Moreover, if v is a finite measure then this vector
space is simple the space of all measurable functions. Given f,g € Ljo(v), we define the
distance between f and g as

d(f,g)sz\f—ngdV-

The function d defines a metric on Ly o(r). Note that d does not come from any norm;
however, it is easy to check that

(a) d(f —g.p—q) =d(f —p,q—9)
(b) d(f —g,0)=d(f,9)

Before considering the next simple but useful result, note that

[1siavar - /{ o Wl > 1)

Hence, a function f belongs to L; ¢(v) if and only if both terms in the right side of the last
equality are finite.

Proposition 9.12 Under the metric d, the space of simple functions is dense in Lyo(v).
Moreover, for every f € Lio(v), there ezists a sequence of simple functions {f,}, such that
|ful < |f| for every n, and {f.} converges pointwise and under d to f.

Proof. Let f € L;o(v). First, suppose that f > 0, and define

n2"—1

fa(z) = Z Liko-n<perrz—ny + Tnan<yy- (9.2)
k=0
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Then {f,} is a nonnegative increasing sequence that converges pointwise to f and the
range(f,) is finite for all n. Consequently,

/ fndv = / fndv —|—/ fn < / fdv+n2"v{f > 1} < o0,
E {r<1} {r>1} {f<1y

and for each n,
0<(f=fu)ANLZ(fAL) € Li(v).

Therefore, since lim, _..(f — fu) A1 = 0, by the bounded convergence theorem we can
conclude that lim, . d(f, f,) = 0.

For arbitrary f € Lyo(v), write f = f* — f~. Define f and f, as in (9.2), and set
fn=fF—f.. Since L1 (v) is linear and d is a metric,

d(f, fo) < d(f fD) +d(f~ f7)

and the proposition follows. [l

Suppose that f € L o(v). By Proposition 9.12 there exist a sequence of simple functions
{fn} such that {f,} converges to f under d. But, from Proposition 9.11 with a = 1, we see
that for all n,m and b > 0,

1 —

and we conclude that the sequence {Xy,} is Cauchy in probability. Therefore, there exists
a random variable X such that
X f= lim X frs

n—o0

where the last limit is in probability. As we showed in Section 9.4, this limit does not depend
on the sequence of simple functions chosen to converge to f. Therefore, for every f € L; o(v),
X is well-define and the definition is consistent with the previous definition for f € L;(v).

Before continuing, let us consider the generality of our selection of the space Ljo(v).
From Proposition 9.11, we could have considered the space

Li.(v):={f:E—=R:|f|ha€ L' (v)}
for some value of a other than 1; however, L ,(v) = L1 o(v) and the corresponding metric
df.9) = [ (17 = gl n oy
E
is equivalent to d.

Proposition 9.13 If f € Ly ¢(v), then for all § € R

B[] = exp { [E (0@ _ 1) u(d:c)}
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Proof. First consider simple f. Then, without loss of generality, we can write f =
Yo cily, withv(A;) <ooforallj € {1,...,n}and Ay, ..., A, disjoints. Since £(A;),...,£(An)

j=1
are independent and £(A;) ~ Poisson(v(A;)), we have that

E[eX1] = H E (e%¢4)) = oV (Aj)(e7e 1)
j=1 j=1
= exp {Z(ewcﬂ' - 1)1/(Aj)}
j=1

= exp {/ 0@ _q V(dx)}
E

The general case follows by approximating f by simple functions { f,,} as in Proposition 9.12
and noting that both sides of the identity

E[e"*m] = exp {/ 0@ _ 1 V(dx)}
B

converge by the bounded convergence theorem. 0

9.6 Centered Poisson random measure

Let £ be a Poisson random measure with mean v. We define the centered random measure
for £ by .

E(A) = £(A) — v(A4), A €& (A) <.
Note that, for each K € € with v(K) < co and almost every w € €, the restriction of &(w, -)

to K is a finite signed measure.
In the previous section, we defined [}, f(z)&(dx) for every f € Lyo(v). Now, let f =

Z?Zl cjl4; be a simple function with v(A4;) < co. Then, the integral of f with respect to 13

is the random variable X; (sometimes we write [ f (2)€(dx)) defined as

n

%y = [ 1@stan) = [ fawtdn) = (€4 - vid)

Jj=1

Note that E[X,] = 0.
Clearly, from our definition, it follows that for simple functions f, g, and «, 5 € R that

Xaf+ﬁg = OéXf + ﬁX'g

Therefore, the integral with respect to a centered Poisson random measure is a linear func-
tion on the space of simple functions. The next result is the key to extending our def-
inition to the space L*(v) = {h : E — R : his measurable, and [, h*dv < oo}, which
is a Banach space under the norm ||kl = (/, h2du)1/2. Similarly, L*(P) = {X : Q —
R : X is a random variable, and [, X*dP < co} is a Banach space under the norm || X||; =
{BIX?]}2.
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Proposition 9.14 If f is a simple function, then E[X’?] = [, frdv.

Proof. Write f = 377 | ¢;14,, where A;,..., A, are disjoint sets with v(4;) < oco. Since
£(A1),...,&(A,) are independent and £(A;) ~ Poisson(v(A;)), we have that

BEIX}] = E(Zchcxf(Aj)—u(Am(s(Ai)—u(Ai)))

j=1 i=1

= Y GE[L(A)) — v(A))
j=1
= Y (4
j=1
= / fdv
E
) O
The last proposition, shows that X determines a linear isometry from L?(v) into L*(P).
Therefore, since the space of simple functions is dense in L?(v), we can extend the definition

of X ;toall f € L?(v). As in Section 9.4, if (f,) is a sequence of simple functions that
converges to f in L?*(v), then we define

Xf = hm an.

n—oo

where the limit is L?(P). Clearly, the linearity of X over the space of simple functions is
inherited by the limit. Also, for every f € L?(v), we have that

E[X7] = /E fdv

and )
E[X¢] =0.
Before continuing, note that if f is a simple function, then E|X;| < 2 [ | fldv. This

inequality is enough to extend the definition of X to the space L'(v), where the simple
functions are also dense. Since v is not necessarly finite, the spaces L'(v) and L*(v) are
not necessarily comparable. This slitghtly different approach will in the end be irrelevant,
because the space in which we are going to define X contains both Ly(r) and Ly (v).

Now, we extend the definition of X ¢ to a larger class of functions f. For this purpose,
consider the vector space

Loa(v) ={f: E—R:[fPAlfl € L'(v)},

or equivalently, let
(I)(Z) = 221[071}(2) + (22 — ]->1[1,oo)<z)

Then
Lyy(v) = La(v) = {f : E = R: &(|f]) € L'(v)}.
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Note that Li(v) C Le(v) and Lo(v) C Le(v). In particular, Le(v) contains all the simple
functions defined on E whose support has finite measure. Since ® is convex and nondecreas-
ing and ®(0) =0, Le(v) is an Orlicz space with norm

||f||q>=inf{c;/E¢(!f!

c
As in Proposition 9.12; that the space of simple functions with support having finite
measure is dense in Lg(v). The proof of this assertion follows by the same argument as in
Proposition 9.12.

)dv < 1}.

Proposition 9.15 The space of simple functions is dense in Lg(v). Moreover, for every
[ € Lo(v) there exists a sequence of simple functions { f,}, such that |f,| < |f| for every n,
and {f.} converges pointwise and || - ||o to f.

Proof. Take f, = f7 — f as constructed in the proof of Proposition 9.12. . O
Again the key to our extension is an inequality that allows us to define X as a limit in
probability instead of one in Ly(P).

Proposition 9.16 If f : E — R is a simple function with support having finite measure,
then .
ENIX¢l] < 3] flle

Proof. Fix a > 0. Then, for ¢ > 0 and 0 < a < 1,

E“Xf” < CEHXc*lfl +CEHXVc*lfl

{emlifI>1} H

< c\/E[|Xclf1{c1f|§1}|2+20/U|C‘1f|1{c1|f>1}dV

{emlifI<1y H

< c\// C2f21{01|f|S1}M(dU)+20/ e L i1y
U U

< c\//U@(c1|f\)du+20/(]q)(c_1\f])dy

Taking ¢ = || f|e, the right side is bounded by 3|| f||o. O
Now, suppose that f € Lg(rv). Then by Proposition 9.15 there exists a sequence {f,} of
simple functions that converges to f in || - ||¢. But, from Proposition 9.16, it follows that for
alln,m > 1
3||fn B meCD

P{IXy, = Xyl 2 a} < =5

Therefore, the sequence {f( 7.} is Cauchy in probability, and hence, there exists a random
variable X ¢ such that
X §= nll_{glo X 4, in probability.
As usual, the definition does not depend on the choice of { f,}. Also, note that the definition
of X; for functions f € L?(v) is consistent with the definition for f € Lg(v).
We close the present section with the calculation of the characteristic function for the
random variable X £
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Proposition 9.17 If f € Lg(v), then for all 0 € R

E[e*X1] = exp { /E (@) — 1 — if(2)) y(d:v)} (9.3)

Proof. First, from Proposition 9.13, (9.3) holds for simple functions. Now, let f € Lg(v),
and let {f,} be as in Proposition 9.15. Since X; = lim, .o X}, in probability, without
lossing generality we can assume that {Xy, ) converges almost surely to Xy on Q. Hence,

for every 0 € R, lim, .., E[¢?%m] = E[¢?Xs]. On the other hand, since {f,} converges
pointwise to f, it follows that for all # € R,

lim (e — 1 —if,) =€ —1—if.

n—oo

But, there exists a constant £ > 0 such that
€7 =1 —iful S k- (12> Alfal) S K- (FPALF) € LY (dv),

and the result follows by the dominated convergence theorem. 0

9.7 Time dependent Poisson random measures

Let (U,U, 1) be a measurable space where p is a o-finite measure, and define
A={Aecl: u(A) < oo}.

Let B[0,00) be the Borel o-algebra of [0,00), and denote Lebesgue measure on B0, c0) by
m. Then, the product measure p X m is o-finite on U x B0, 00) and therefore, by Corollary
9.7, there exists a Poisson random meaure Y, with mean measure p x m. Denote the
corresponding centered Poisson random measure by Y.

Fora A € U and t > 0, we write Y (A,t) instead of Y (A x [0,¢]). Similarly, we write
Y (A, t) instead of Y (A x [0,]).

Proposition 9.18 For each A € A, Y(A,-) is a Poisson process with intensity ji(A). In
particular, Y (A, -) is a martingale.

Proof. Fix A € A. Clearly, the process Y (A,-) satisfies the following properties almost
surely: (i) Y(A,0) =0 (ii) Y(A,t) ~ Poisson(u(A)t) (iii) Y (A, -) has cadlag nondecreasing
sample paths with jumps of size one. Hence, to conclude that Y (A,-) is a Poisson process,
it is enough to check that Y (A,t;) — Y (A, to),...,Y(A,t,) — Y(A,t,_1) are independent
random variables, whenever 0 = t; < ... < t,. But

Y(A t;) = Y(A i) = Y(A X (tim1, t])

for every ¢ € {1,...,n}, and the sets A X (to,t1],..., A X (t,_1,t,] are disjoint in U x [0, 00).
Consequently, the random variables are independent, and hence Y (A, ) is a Poisson random
process with intensity p(A). O
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Proposition 9.19 If Ay, Ay, ... € A are disjoint sets, then the processes Y (Ay,-),Y (Ag,-), ...
are independent.

Proof. Fix n > 1 and let 0 =ty < ... < t,. Note that, fori =1,...,nand j = 1,.

the random variables Y (A;, ;) — Y (A;,t;_1) are independent because the sets A; x (t;_1, ]

are disjoint, and the independence of Y (A1, ), Y (As,-),... follows. O
For each t > 0, define the o-algebra

FY =0(Y(As)st. Ac Aand s € [0,t]) CF

By definition, Y (A, ) is {F} }-adapted process for all A € A. In addition, by Proposition
9.19, forall A e A and 5,0 >0, Y(A,t+5)—Y(A,t) is independen of F. This independence
will play a central role in the definition of the stochastic integral with respect to Y. More
generally, we will say that Y is compatible with the filtration {FY } if Y is adapted to {F} }
and Y (A,t +s) — Y(A,t) is independent of F for all A € U, and s.t > 0.

9.8 Stochastic integrals for time-dependent Poisson random mea-
sures

Let Y be as in Section 9.7, and assume that Y is compatible with the filtration {F;}. For
(RS LL()(,U,). define

Y(p,t) = / e(u)Y (du x ds)
U x[0,t]
Then Y (¢, -) is a process with independent increments and, in particular, is a {F; }-semimart-

ingale. Suppose &1, ..., &, are cadlag, {F; }-adapted processes and that o1, ..., ¢ € L1 ().
Then

= &(t)en(u) (9.4)
k=1
is a cadlag, Ly o(u)-valued process, and we define
mo ot
Ty(t) = / Z(u,5=)Y (dux ds) = Y / Eu(s—)dY (0, 5). (9.5)
Ux[0,1] = Jo
Lemma 9.20 Let Y = ). dw,s,)- Then for Z given by (9.4) and Iz by (9.5), with proba-
bility one,
=Y "> 1g(8)&(Si—) Z Lo, (5:) Z (Ui, Si—),
k=1 i
and hence,

I7(t) < iz (1) (9.6)

Proof. Approximate ¢ by ¢f = @rl{jpi>e, € > 0. Then Y ({u : |pr(u)| > €} x [0,¢]) < oo
a.s. and with ¢, replaced by ¢f, the lemma follows easily. Letting e — 0 gives the desired
result. 0J
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Lemma 9.21 Let Z be given by (9.4) and Iz by (9.5). If E[fo[o q | Z (u, s)|p(du)ds] < oo,
then

Bl (1)] = /U Bzt s)atdds

and

Bll(1)]] < / E{|Z(u, 5) Ju(du)ds

U x[0,t]

Proof. The identity follows from the martingale properties of the Y (;, -), and the inequality
then follows by (9.6). O

With reference to Proposition 9.11, we have the following lemma.

Lemma 9.22 Let Z be given by (9.4) and Iz by (9.5). Then for each stopping time T,
1
P{sup|Iz(s)| > b} < P{r <t} + —E[/ | Z (u, s)| A\ ap(du)ds]
s<t b Juxion

+1— E[exp{—a‘l/ |Z (u, $)| A ap(du)ds}]

U x[0,tAT]
Proof. First, note that

P{Slilf 1I7(s)] > b} < P{r <t} + P{sup |Iz(s)| > b}.

s<tAT
By (9.6),

P{sup |Iz(s)| = b} < P{ljz/(tAT) > b} < P{liz11;5c., tAT) 2 D3+ P{L 1211 ,.., (EAT) > OF.

s<tAT

But, by the Markov inequality,

1
P{I|Z\1{\z\ga}(t/\7—) > b} < _/U 0 }E[|Z<u>3)|1{IZ(u,s)ISa,SST}]M(du>dS
x[0,t

IN

1
o / \Z(u, )| A ap(du)ds].
U x[0,tAT]

On the other hand,

P{I‘Z‘l{‘zm}(t AT) >0} = P{Y({(u,s): |Z(u,s—)| >a,s <T1}) >0}

_E {1 _ exp {_/Otu{u 1 Z(u, )] > a}dsH

giving the desired result.

O

Lemma 9.22 gives the estimates necessary to extend the integral to cadlag and adapted,
Ly o(p)-valued processes.
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Theorem 9.23 If Z is a cadlag, adapted Ly o(p)-valued processes, then there exist Z, of
the form (9.4) such that sup,<r [;;1Z(u,t) — Zy(u, t)| A 1pu(du) — 0 in probability for each
T > 0, and there exists an adapted, cadlag process Iz such that sup,. [I7(t) — Iz, (t)] — 0
in probability. -

Remark 9.24 We define
/ Z(u,s—)Y (du x ds) = I4(t).
U x[0,t]

The estimate in Lemma 9.22 ensures that the integml 18 well defined.

Now consider Y. For Y E Lo, Y o, t fo 0. du X ds) is a martingale. For Z
given by (9.4), but with ¢, € Lg, deﬁne

0 :/U Pl () EZ/O Eu(5—)dV (0, 5). (9.7)

Then I is a local martingale with

(), = /U sy )

Note that if Z has values in Lg, then Z2 has values in Lyy.

Lemma 9.25 If E[f(f Jo Z%(u, s)p(du)ds] < oo, then I is a square integrable martingale

with
BIR(1)] = B l /U oy Zlm Y ds)] _E [ /0 t /U Z2(u, s),u(du)ds]

Lemma 9.26 Let Z be given by (9.4) and Iz by (9.5). Then for each stopping time T,
N 16 4 tAT
P{sup|Iz(s)| > a} < P{r <t}+ — V-FE O(|Z(u, s)|)pu(du)ds
s<t a a 0 U
Proof. As before,
P{sup |4(s)| = a} < P{r <t} + P{sup |1,(5)| = o}

s<t s<tAT

Fix a > 0. Then
P{sup |Iz(s)] >a} < P{sup |121{‘Z‘<1}( s)| >27'a} + P{ sup |[~Z1{\Z\>1}(S)| >27'a}

s<tAT s<tAT

16 A
< QE / / |Z(U,, S)‘21{\Z(u,s)\§1}:u’<du)
a 0 U
4 tAT
2Bl [ 12zt
S—\/ E{/ / (1Z(u, s)]) du)d].
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Remark 9.27 Lemma 9.20 gives the estimates needed to extend the definition of
/ Z(u,s—)Y (du x ds)
U x[0,t]

to all cadlag and adapted, Lo (p)-valued processes Z .

Lemma 9.28 If Z is cadlag and adapted with values in Li(u), then
t
/ Z(u,s—)Y (du x ds) = / Z(u,s—)Y (du x ds) — / / Z(u, s)p(du)ds
Ux[0,t] Ux[0.4] o Ju

Lemma 9.29 If E[fot S Z%(u, s)p(du)ds] < oo, then I, is a square integrable martingale
with

E[IZ(t) =F VUXM Z%(u, s—)Y (du x ds)} =F [/Ot/UZ%u, s)u(du)ds}

78



10 Limit theorems.

10.1 Martingale CLT.

Definition 10.1 [ : Dg[0,00) — R is continuous in the compact uniform topology if

sup [,(t) — ()] — 0,
t<T

for every T > 0, implies f(x,) — f(x).

Definition 10.2 A sequence of cadlag stochastic processes {Z,} converges in distribution
to a continuous stochastic process Z (denoted Z, = 7 ), if

E[f(Zn)] — Elf(Z)]

for every bounded f that is continuous in the compact uniform topology.

Example 10.3 Consider g € Cy(R), h € C(R?) and z : [0,00) — R?, where Cy(R) is the
space of all bounded continuous function on R. Define

F(x) = g(sup h(z(s))).

s<27

Then F is continous in the compact uniform topology, Note that if x,, — x in the compact
uniform topology, then h o x, — hox in the compact uniform topology.

Example 10.4 In the notation of the last example,

s also continuous in the compact uniform topology.
Theorem 10.5 Let {M,} be a sequence of martingales. Suppose that

lim Elsup |M,(s) — M,(s—)|] =0 (10.1)

n—00 s<t

and
[M,]; — c(t) (10.2)

for each t > 0, where c(t) is continuous and deterministic. Then M, = M =W oc.

Remark 10.6 If
lim E[|[M,]: — c(t)|] =0, vt > 0, (10.3)

n—oo

then by the continuity of ¢, both (10.1) and (10.2) hold. If (10.2) holds and lim,,_,o E[[M,]:] =
c(t) for each t > 0, then (10.3) holds by the dominated convergence theorem.

Proof. See ( ), Theorem 7.1.4. O
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Example 10.7 If M,, = W oc¢, then

P{sup M,,(s) <z} — P{supW(c(s)) < x} = P{sup W(u) < z}.

s<t s<t u<c(t)

Corollary 10.8 (Donsker’s invariance principle.) Let & be iid with mean zero and variance

2. Let
[nt]

1
M) = =3¢
Then M, is a martingale for every n, and M, = cW.

Proof. Since M, is a finite variation process, we have

(Me]: = Z(AMn(S))Z

where the limit holds by the law of large numbers. Consequently, (10.2) is satisfied. Note
that the convergence is in Ly, so by Remark 10.6, (10.1) holds as well. Theorem 10.5 gives
M, = W(o?). O

Corollary 10.9 (CLT for renewal processes.) Let & be iid, positive and have mean m and
variance o%. Let

k
N(t) = max{k : Z@ < t}.

Then

Proof. The renewal theorem states that

N(t 1
XYW Ly
t m
and
No Lo
t m’ o

Let S;, = Zlf &, M(k) = Sy —mk and Fy, = 0{&,...,&}. Then M is an {F;}-martingale
and N(t) + 1 is an {F} stopping time. By the optional sampling theorem M (N(t) + 1) is
a martingale with respect to the filtration {Fy 41}
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Note that
M,(t) = —M(N(nt)+1)/(mv/n)
N(nt)+1 _ SN(nt)+1 —nt B nt
vn my/n my/n
N(nt)\/—ﬁnt/m % B %ﬁ (Swoysr — nt)

So asymptotically Z, behaves like M,,, which is a martingale for each n. Now, for M,, we
have

sup [M(s) = My(s=)| = _max [& —m|/my/n

s<t k<N(nt)+1
and )
N(nt)+1
1 , to?
[Ma]e = p— ; & — m|” — oy
Since
1 to?
E(MJ] = o EN(i) +1] - 7
Remark 10.6 applies and Z,, = W(i‘fb—;) O

Corollary 10.10 Let N(t) be a Poisson process with parameter A and

Define

Then X, = \"'W.

Proof. Note that

where

is a martingale. Thus
X(nt) 1—(=1)N0D) M)
N W W

One may apply the martingale CLT by observing that [M,]; = N(nt)/(nA?) and that the
jumps of M, are of magnitude 1/(Ay/n). O
The martingale central limit theorem has a vector analogue.

Xn(t) =

81



Theorem 10.11 (Multidimensional Martingale CLT). Let {M,} be a sequence of R%-valued
martingales. Suppose

lim Elsup |M,(s) — M,(s—)|] =0 (10.4)
n—oo SSt
and -
(M, Myl — ci (1) (10.5)

for allt > 0 where, C' = ((¢;;)) is deterministic and continuous. Then M, = M, where M
is Gaussian with independent increments and E[M(t)M (t)T] = C(t).

Remark 10.12 Note that C(t) — C(s) is nonnegative definite for t > s > 0. If C is
differentiable, then the derivative will also be nonnegative definite and will, hence have a
nonnegative definite square root. Suppose C(t) = o(t)* where o is symmetric. Then M can
be written as

M'(t):/0 o(s)dW (s)

where W is d-dimenstonal standard Brownian motion.

10.2 Sequences of stochastic differential equations.

Let {&} be iid with mean zero and variance o%. Suppose X is independent of {&,} and

b(X
X]c+1 = Xk + O'(Xk)gk_\/-i_ﬁl + (nk‘)

Define X,,(t) = Xpug, Wa(t) = 1/y/n 20 &, and V,,(t) = [n]/n. Then

X, () = X, (0) + /0 o (X (5—))dWn(s) + /0 b(Xo(5—))dVi(s)

By Donsker’s theorem, (W,,,V,,) = (cW, V), with V() =t.
More generally we have the following equation:

X () = X(0) + en(t) + /0 (X (5—))dWo(5) + / b(X, (5—))dVis(s) (10.6)

Theorem 10.13 Suppose in 10.6 W, is a martingale, and V,, is a finite variation pro-
cess. Assume that for each t > 0, sup, E[[W,]:] < oo and sup,, E[T:(V,)] < oo and that
(W, Vi, en) = (W, V,0), where W is standard Brownian motion and V (t) = t. Suppose that
X satisfies

X(t) = X(0) —I—/ o(X(s))dW (s) —I—/ b(X(s))ds (10.7)
0 0
and that the solution of (10.7) is unique. Then X, = X.

Proof. See ( ). O
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10.3 Approximation of empirical CDF.

Let & be ii.d and uniform on [0, 1], let N,(t) = >°,_; Ije,11(t), where 0 < t < 1. Define
Fr=0(Ny(u); u<t). Fort <s <1, we have

EN()IF] = E[Na(t) + Nu(s) = Nu(t)|57]
= Nu(t) + E[Nu(s) = Na()I 7]
= NAt) + (0= Nu(0))(s — /(1 1).

It follows that

is a martingale.

Define F),(t) = N’;l(t) and B, (t) = v/n(F,(t) — 1) = N"i? "t Then
Bu(t) = —=(N.(t)=nt
= %(M(%Lnt \/_/ 1—5 —nt)

= Mn(t)—/o fnT@S)ds.

where = ote that nlt = Fn(t) and by the law of large numbers, nlt — .
here M, Mf()N hat [M,], = F, d by the law of 1 bers, [M,

Since F,(t ) < 1, the convergence is in L; and Theorem 10.5 implies M,, = W. Therefore,
B, = B where

B(t):W(t)—/O %ds

at least if we restrict our attention to [0,1 — €] for some € > 0. To see that convergence is
on the full interval [0, 1], observe that

B[ 1B, [ BN, VIR, [P,

1—s 1—5 1—e l—3s

which is integrable. It follows that for any 0 > 0, sup,, P{sup; <.« [Bn(1) — Bn(s)| > 0} —
0. This uniform estimate ensures that B,, = B on the full interval [0, 1]. The process B is
known as Brownian Bridge.

10.4 Diffusion approximations for Markov chains.

Let X be an integer-valued process and write

0) + > INi(t)
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where the N; are counting processes, that is, N; counts the number of jumps of X of size
[ at or before time t. Assume that X is Markov with respect to {F;}, and suppose that
P(X(t+h) =j|X(t) =1i) = ¢;jh +o(h) for i # j. If we define 5(r) = ¢y, then

E[Ni(t + h) — Ni(t)|F) = ax@),x @)+l + o(h) = Bi(X(t)) + o(h) .

Our first claim is that M;(t) = N, fo G1(X(s))ds is a martingale (or at least a local
martingale). If we define 7;(n) = nf{t Ni(t) = } then for each n, M;(- A 7i(n)) is a
martingale.

Assume everything is nice, in particular, for each [, assume that M;(t) is an {F;}-
martingale. Then

0)+ 3N = X(O)+ () + 31 [ ACK6)ds

If >, /l|Bi(x) < oo, then we can interchange the sum and integral. Let b(z) = >, [5i(z), so

we have
0)+ZlMl(t)+/ b(X (s))ds .

Note that [M]t N (t) and [Ml, Mk]t = [Nl, Nk]t = (. Therefore E[Nl fO 6[ ]
and E[[M];] = E[Ni(t)] = E[(M;(t))?] holds. Consequently,

B[ 1Mi(t)) ZF (M, (t _Z/Zl%
so if

B[ S EAK ()] < o

then " IM(t) is a square integrable martingale. If we only have Y I1?3(z) < oo for each
z and Y, Nj(t) < oo a.s., then let 7. = inf{¢, > I?5,(t) > ¢} and assume that 7. — oo as
c — 00. Then ), IM;(t) is a local martingale.

Now consider the following sequence: X, (t) = X,,(0) + ZIN u where, for example, we
can take X, (t) = @ and NI'(t) = Ny(n*t) with X and N deﬁned as before. Assume

M (1) = %(Nﬁ(t) - [ e

N

is a martingale, so we have [M}']; = and E[[M]']):] = fo B (X, (s))ds].
For simplicity, we assume that supn sup, O"(z) < oo and that only finitely many of the
B are nonzero. Define b,(x) =n)_,3]'(z). Then we have

0

Xoa(t) = X, (0) + > 1M} (t) + /t by (Xn(s))ds
l
Assume:
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n 2
where the convergence in 1-3 is uniform on bounded intervals. By our assumptions, L2 (CL7 ) N

n2
0, so by Doob’s inequality. It follows that [M]'):
fo B (Xn(s))ds.
Deﬁne Wi(t) = ft dM”( ). Then

0 ﬁ"(X

M” t 1 . -
/61 _/OWdMl(S)thzul(t)—l—t.

Note that u}'(t) is a martingale, and

B (7] = B / o Al
g [ Ao

”2@ (Xn(s)?
t ds
- 1), e

Consequently, under the above assumptions, [W}"]; — t and hence W}* = W;, where W, is a
standard Brownian motlon

By definition, M (t) = [7 /B (X, (s—))dW}(s),
Xn(t):Xn(0)+Zl/O ,/5;(Xn(s—)>dvvl”(s)+/o b (X, (3))ds .

Let

en(t) = Xn(O)—X(0)+Z/O W/ B (Xn(s=)) = VAKX (s=)))dW) (s)

n / (ba(Xa(s)) — (X (s))ds

which converges to zero at least until X, (¢) exits a fixed bounded interval. Theorem 10.13
gives the following.

Theorem 10.14 Assume 1-4 above. Suppose the solution of
t t
)+ 301 [ VACEENAWiGs) + [ Hx(s))ds
7 0 0

exists and is unique. Then X, = X.
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10.5 Convergence of stochastic integrals.

Theorem 10.15 Let Y,, be a semimartingale with decomposition Y, = M, + V,. Suppose
for each t > 0 that sup,, | Xy(s) — X(s)| — 0 and sup,,; |Y,(s) — Y (s)| — 0 in probability
as n — oo, and that sup,, E[M,(t)?] = sup, E[[M,];] < oo and sup,, E[T}(V,)] < oo. Then

for each T' > 0
t

t

sup| [ X, (s)dY,(s) —/ X(s)dY(s)] — 0
<7 Jo 0

i probability.

Proof. See ( ). O
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11  Reflecting diffusion processes.

11.1 The M/M/1 Queueing Model.

Arrivals form a Poisson process with parameter A, and the service distribution is exponential
with parameter pu. Consequently, the length of the queue at time t satisfies

Q(t) = Q0) + Ya(At) — Yalu /O Lawoyds)

where Y, and Yj are independent unit Poisson processes. Define the busy period B(t) to be

t
B(t) = / Iiq)>0yds
0
Rescale to get
t
X,(t) = Qn )
vn
Then X, (t) satisfies
Ya(A\unt) 1

t
— . Y n I s ds).
+ NG NG a(np /0 (Xn(s)>0}d5)

For a unit Poisson process Y, define Y (u) = Y (u) — v and observe that

1 -~ 1 -~ ¢
—Y,(n\,t) — —=Y, " I B d
+ Tn (nAnt) NG a(np /0 (Xn(s)>0}d5)

t
FVn(An — i)t + \/ﬁﬂn/ Ix, (s)=0yds
0

Xn (t) = Xn(o)

We already know that if A\, — X and p, — p, then

W) = %ifa(mnt):»ﬁwl(t)

V() = EW(1)),

vn

where W7 and W, are standard Brownian motions. Defining

Cp = \/ﬁ()‘n — fin)
A (t) Vi (t — Ba(t)),

Wi (t)

we can rewrite X, (t) as
X, (t) = Xn(0) + W2(t) = W (By(t)) + et + Ap(2).

Noting that A,, is nondecreasing and increases only when X, is zero, we see that (X, A,)
is the solution of the Skorohod problem corresponding to X,,(0) + W (t) — W} (By(t)) + cat,
that is, the following:
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Lemma 11.1 For w € Dg|0,00) with w(0) > 0, there exists a unique pair (x,\) satisfying
z(t) = w(t) + A(t) (11.1)

such that A(0) = 0, z(t) > OVt, and X is nondecreasing and increases only when x = 0. The
solution is given by setting A(t) = 0V sup,,(—w(s)) and defining x by (11.1).

Proof. We leave it to the reader to check that A(t) = 0V sup,,(—w(s)) gives a solution. To
see that it gives the only solution, note that for ¢ < 7y = inf{s : w(s) < 0} the requirements
on A imply that A(t) = 0 and hence z(t) = w(t). For t > 7y, the nonnegativity of = implies

A(t) > —w(t),

and A(t) nondecreasing implies
A(t) > sup(—w(s)).

s<t

If ¢ is a point of increase of A, then x(¢) = 0, so we must have

A(t) = —w(t) < sup(—w(s)). (11.2)

s<t

Since the right side of (11.2) is nondecreasing, we must have A(t) < sup,<,(—w(s)) for all
t > 719, and the result follows. O

Thus in the problem at hand, we see that A,, is determined by
An(t) = 0V (= inf(X5(0) + Wi (s) = Wi (s) = Wi (Bn(s)) + cns))
Consequently, if
X (0) + W2(t) — WI(Bn(t)) + cut
converges, so does A,, and X,, along with it. Assuming that ¢, — ¢, the limit will satisfy

X(t) = X(0) 4+ VAWL(t) — VAW (t) + ct + A(t)
A(t) = 0Vsup(—(X(0) + VA(Wi(s) — Wa(s)) + ct)).

s<t

Recalling that \/X(Wl — W53) has the same distribution as v2AW, where W is standard
Brownian motion, the limiting equation can be simplified to

X(@t) = X(0)+ V2AW(t) +ct + A(t)
X(t) > 0 Vi,

where A is nondecreasing and A increases only when X (¢) = 0.
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11.2 The G/G/1 queueing model.

Let 11,72, ... be i.i.d. with n; > 0 and
1
Eln]
The n; represent interarrival times. The service times are denoted &;, which are also i.i.d.
and positive with

The arrival process is
A(t) = max{k : ©%_n;, <t}

and the service process is
S(t) = max{k : ¥¥_ & < t}.
The queue-length then satisfies

mw=mm+mw—alfwmﬂm»

Following the approach taken with the M/M/1 queue, we can express the G/G/1 queue
as the solution of a Skorohod problem and use the functional central limit theorem for the
renewal processes to obtain the diffusion limit.

11.3 Multidimensional Skorohod problem.

We now consider a multidimensional analogue of the problem presented in Lemma 11.1. Let
D be convex and let n(x) denote the unit inner normal at x € 9D. Suppose w satisfies
w(0) € D. Consider the equation for (x, \)

t
o(t) = wlt) + [ n(a()dxe)
0
z(t)eD VYt >0,
where A is nondecreasing and increases only when x(t)edD.

Proof of Uniqueness. Let

m®=w®+lnm@MMﬁ

Assume continuity for now. Since ); is nondecreasing, it is of finite variation. It6’s formula
yields
t
2(z1(s) — wa(s))d(@1(s) — @2(s))
t

2(z1(s) — wa(s))n(z1(s))dA:(s)

(z1(t) — 22(2))* =

S— S—

_/O 2(z1(s) — wa(s))n(x2(s))dNa(s)

IA
o
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where the inequality follows from the fact that )\; increases only when x; is on the boundary
and convexity implies that for any z € 9D and y € D, n(x) - (y — x) > 0. Consequently,
uniqueness follows.

If there are discontinuities, then

21 (t) — 22t = /Otz(xl(s—>—x2(s—)-n(m(s))dAl(s)
-/ 2(aa(5=) — 2a(s-)) - Aa()dNals) + 11 — w3l
_ / 91 (5-) — als—)(ea ()5
-/ (5 — za(s-)n(aa(s) dals)
123 (A (s) — Aza(s)) (s () Ada(s) — n(a(s)) Ad(5))

s<t

—[£B1 - $2]t

— /0 2(x1(5) — 22(8))n(21(s))dA1 ()
—/0 2(z1(s) — wa(s))n(xa(s))dAa(s) — [z1 — w2;

S 07

so the solution is unique.

Let W be standard Brownian motion, and let (X, \) satisfy

X(t)=W(t) + /Otn(X(s))d)\(s) , X(t)eD, Vit >0
A nondecreasing, and A increasing only when XedD. 1to’s formula yields
FX®) = / V(X / LAF(X(5))ds
+ / H(X(5))V F(X())N(5).
Assume n(z) - Vf = 0 for zedD. If we solve
U = %Au

subject to the Neumann boundary conditions



we see that u(r — ¢, X (t)) is a martingale and hence
E[f(X(t,2))] = u(t, v).

Similarly, we can consider more general diffusions with normal reflection corresponding to
the equation

X(t) :X<O)+/o U(X(s))dW(s)+/0 b(X(s))ds—l—/O (X (s))dA(s)

subject to the conditions that X (t)eD V¥t > 0, X is nondecreasing and increases only when
X (t)edD. To examine uniqueness, apply 1t6’s formula to get

X1(s) = Xa(s)? = /0t2<X1<s> — Xa(5)" (0(X,(5)) — o Xo()))dWV (s) (11.3)
_|_/Ot(X1(s) — Xa(s)) - (b(X1(s)) — b(Xa(s)))ds
[ trace(o(X,(5) = S0 060 (6) — o (Xals))) s
i / 200(5) — Xals) - X ()5
_ / 9(X(s) — Xa(s)) - 1(Xa5))dAals).

The last two terms are negative as before, and assuming that ¢ and b are Lipschitz, we can
use Gronwall’s inequality to obtain uniqueness just as in the case of unbounded domains.
Existence can be proved by an iteration beginning with

and then letting

X1 (2) :X(O)—I—/0 a(Xn(s))dW(s)—i-/O b(Xn(s))ds—i—/o N(Xn(s))dAni1(8).

An analysis similar to (11.3) enables one to show that the sequence {X,} is Cauchy.

11.4 The Tandem Queue.

Returning to queueing models, consider a simple example of a queueing network, the tandem
queue:

Qu(t) = Q1(0) + Ya(M) — Yiu (s / Tiarr01ds)

t
Q2(t) = Q2(0) + Ydl(m/ Iq, (s)>01ds) — de(uz/ Iqu(s)>01ds)
0 0
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If we assume that

A Yy = A
aa=vn(\"—u)  —a
¢ =vnlpy —py) = o

and renormalize the queue lengths to define

X{'(t) = 7 = X7(0) + Wi (t) + 't — Wi ( ; [{Xf(s)>0}d5>

t
+v/npy / Iixp(s)=01ds
0
t t
XS(t)ZXS(OHWﬁ(/ I{Xf<s>>0}d8)—W£§(/ Iixp(s)>01ds)
0 0

t

t
+cyt — \/ﬁlﬂf/ Iixp(=0yds + \/ﬁﬂg/ Iixp(s)=0yds,
0 0

we can obtain a diffusion limit for this model. We know already that X' converges in
distribution to the X; that is a solution of

Xi(t) = X1(0) + AW (t) — AWa(t) + ext + Ay (2) -
For X7, we use similar techniques to show X7 converges in distribution to X, satisfying
Xo(t) = Xo(0) + AWo(t) — AW3(t) + cot — Ay (t) + As(2),
or in vector form
X(t) = X(0) + < 3 —)\A _0)\) %; - ( 2 >t+ ( _11 )Al(t)+ ( ?)Ag(t)
3

where A; increases only when X; = 0 and A, increases only when X, = 0.
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12 Change of Measure

Let (2, F, Q) be a probability space and let L be a non-negative random variable, such that
E9[L] = /LdQ =1

Define P(I') = fr LdQ where I' € F. P is a probability measure on F. This makes P
absolutely continuous with respect to @ (P << @) and L is denoted by
dP

12.1 Applications of change-of-measure.

Maximum Likelihood Estimation: Suppose for each a € A,

P,(T) :/FLadQ

and

La = H(Oé,Xl,XQ, PN Xn)
for random variables X1,...,X,. The maximum likelihood estimate & for the “true” pa-
rameter oy € A based on observations of the random variables X1, ..., X, is the value of «

that maximizes H (o, X1, Xo,... X,).
For example, let

X, (t) = X(0) +/0 o(Xa(s))dW (s) —i—/o b(Xa(s), a)ds,

We will give conditions under which the distribution of X, is absolutely continuous with
respect to the distribution of X satisfying

X(t) = X(0) + /0 o (X (5))dWV (s) . (12.1)
Sufficiency: If dP, = L,d(@) where
L.(X,)Y)=H.,(X)G(Y),

then X is a sufficient statistic for a.

Finance: Asset pricing models depend on finding a change of measure under which the
price process becomes a martingale.

Stochastic Control: For a controlled diffusion process

X(t) = X(0) —i—/o o(X(s))dW (s) —i—/o b(X (s),u(s))ds

where the control only enters the drift coefficient, the controlled process can be obtained
from an uncontrolled process satisfying (12.1) via a change of measure.
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12.2 Bayes Formula.

Assume dP = LdQ on (9, F). Note that EF[X] = E?[XL]. We want to derive the
corresponding formula for conditional expectations.
Recall that Y = E[Z|D] if

1) Y is D-measurable.
2) Foreach D € D, [, YdP = [, ZdP.

Lemma 12.1 (Bayes Formula)

EQ[ZL|D]
ER[L|D].

Proof. Clearly the right side of (12.2) is D-measurable. Let D € D. Then

ER[ZL|D] EQ[ZL|D]
/DEQ[Lm].dP - /D B[z “

Q
/D —EECE[ZLﬁg | gelLiplaq

= / E“[ZL|D)dQ

= /DZLdQ:/DZdP

which verifies the identity. ([l

EP[Z|D] = (12.2)

For real-valued random variables with a joint density X,Y ~ fxy(z,y), conditional
expectations can be computed by

2 yfxy(z,y)dy

fx (@)
For general random variables, suppose X and Y are independent on (2, F,Q). Let L =
H(X,Y)>0,and E[H(X,Y)] = 1. Define

vw(l) = Q{Y el}
dP = H(X,Y)dQ.

Elg(Y)|X = 2] =

Bayes formula becomes

P [ 9y H(X, y)vy (dy)
Erlglx] = [ H(X, y)vy (dy)

The left side is equal to
ERlg(Y)H(X,Y)|X]
EQ[H(X,Y)|X] ~

and the independence of X and Y gives the identity by Property 10 of the Section 2.6.
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12.3 Local absolute continuity.

Let (€2, F) be a measurable space, and let P and @ be probability measures on F. Suppose

D, C D,.1 and that for each n, P|p, << Q|p,. Define L, = % . Then {L,} is
Dy

a nonnegative {D,, }-martingale on (2, F,Q) and L = lim, .., L, satisfies E9?[L] < 1. If

ER[L] = 1, then P << @ on D =/, D,,. The next proposition gives conditions for this

absolute continuity in terms of P.

Proposition 12.2 P << Q on D if and only if P{lim, oL, < co} = 1.

Proof. We have
P{sup L, < K} = [ Itup,_ L.<k)LndQ.

n<N

The dominated convergence theorem implies

P{supL, < K} = LdQ.

{sup,, Ln<K}

Letting K — oo we see that F¢[L] = 1. O

12.4 Martingales and change of measure.

(See ( ), Section I11.6.) Let {F;} be a filtration and assume that P|z << Q|
and that L(t) is the corresponding Radon-Nikodym derivative. Then as before, L is an
{Fi}-martingale on (Q, F, Q).

Lemma 12.3 Z is a P-local martingale if and only if LZ is a Q-local martingale.

Proof. Note that for a bounded stopping time 7, Z(7) is P-integrable if and only if L(7)Z(7)
is Q-integrable. By Bayes formula, E¥[Z(t+h)—Z(t)|F] = 0 if and only if EQ[L(t+h)(Z(t+
h) — Z(t))|F:] = 0 which is equivalent to

EC[L(t+R)Z(t + h)|F] = EC[L(t + h)Z(t)|F) = L(t)Z(t).

[
Theorem 12.4 If M is a QQ-local martingale, then
t
1
Z(t) = M(t) — ——d|L, M|, 12.3
(1) = 310) = [ rdr. ] (123)
is a P-local martingale. (Note that the integrand is ﬁ, not ﬁ)

Proof. Note that LM — [L, M] is a @-local martingale. We need to show that LZ is a
Q-local martingale. But letting V' denote the second term on the right of (12.3), we have

lﬁﬂ@:LwM@—MJm—AV@ﬂM@7

and both terms on the right are ()-local martingales. 0
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12.5 Change of measure for Brownian motion.

Let W be standard Brownian motion, and let ¢ be an adapted process. Define

L(t) = expf / E(s)dW (s) — / €2(s)ds)
Lt)=1+ /Otf(s)L(s)dW(s).

Then L(t) is a local martingale.
For independent standard Brownian motions W7, ..., W,,, and adapted processes {&;},

10 = el [ &ave) -3 3 [ s

and note that

is the solution of .
L) =1+ Y [ &EILEWG),
—Jo

Assume EC[L(t)] = 1 for all t > 0. Then L is a martingale. Fix a time T, and restrict
attention to the probability space (2, Fr, Q). On Fr, define dP = L(T)dQ.
Fort < T, let A€ F;. Then

P(A) = E9[ILL(T)] = E°[LaE°[L(T)|F]

= EC[L4L(1)]
——
has no dependence on T

(crucial that L is a martingale)

Claim: W;(t) fo &(s)ds is a standard Brownian motion on (2, Fp, P). Since W;
is continous and [W]t — t a.s., it is enough to show that W is a local martlngale (and hence
a martingale). But since W; is a Q-martingale and [L, W], fo &i(s)L(s)ds, Theorem 12.4

gives the desired result. Since [W;, W], = [W;, W,], = 0 for i # 7, the W are independe.
Now suppose that

X(t) = X(0)+ /OtU(X(S))dW(S)

and set
€(s) = b(X(s)).

Note that X is a diffusion with generator $02(z)f”(z). Define

) = expl / b ()W (s) — 3 / (X (s))ds},
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and assume that E9[L(T)] =1 (e.g., if b is bounded). Set dP = L(T)dQ on (2, Fr). Define
W (t) = W(t) — [y b(X(s))ds. Then

X(t) = X(0)+ /0 o (X (s))dW (s) (12.4)

so under P, X is a diffusion with generator

%aQ(x)f”(x) +o(@)b(z) f'(x). (12.5)

We can eliminate the appriori assumption that E9[L(T)] = 1 by defining 7, = inf{t :
fot b?(X(s))ds > n} and defining dP = L(T A 7,)dQ on Frp,,. Then on (2, Frasr,, P), X
is a diffusion with generator (12.5) stopped at time 7" A 7,. But if there is a unique (in
distribution) such diffusion and fot b*(X (s))ds is almost surely finite for this diffusion, then
we can apply Proposition 12.2 to conclude that P << @) on Fp, that is, E[L(T)] = 1.

12.6 Change of measure for Poisson processes.

Let N be an {F;}-unit Poisson process on (2, F,Q), that is, N is a unit Poisson process
adapted to {F;}, and for each ¢, N(t 4+ -) — N(t) is independent of F;. If Z is nonnegative
and {F;}-adapted, then

L(#) = exp {/Ot In Z(s—)dN(s) — /Ot(Z(s) - 1)ds}
e 20 =1+ [ (Z(-) - DL ) -9

and is a Q local martingale. If E[L(T)] = 1 and we define dP = L(T)dQ@ on Fr, the
fo s)ds is a P-local martingale.
If Ny, .. N are independent unit Poisson processes and the Z; are nonneagative and

{ft}—adapted

t
Hexp {/ In Z;(s—)dN;(s) — / (Zi(s) — 1)ds}
0
satisfies .
L(t)=1 +/ (Zi(s—) — 1)L(s—)d(N;(s) — s).
0
Let J[0,00) denote the collection of nonnegative integer-valued cadlag functions that are

constant except for jumps of +1. Suppose that A; : J[0,00)™ % [0,00) — [0,00),i=1,...,m
and that X\;(z,s) = \j(x(- A s), s) (that is, A; is nonanticipating). For N = (Ny,..., Ny,), if
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we take Z;(t) = \;(V,t) and let 7,, = inf{¢ : >, N;(¢) = n}, then defining dP = L(7,)d@ on
F.., N on (Q,F. ,P) has the same distribution as the solution of

Ni(t) = Yi( / "M, 5)ds)

where the Y; are independent unit Poisson process and 7, = inf{t : 3. N;(t) = n}.
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13 Finance.

Consider financial activity over a time interval [0, 7] modeled by a probability space (2, F, P).
Assume that there is a “fair casino” or market such that at time 0, for each event A € F, a
price Q(A) > 0 is fixed for a bet or a contract that pays one dollar at time 7" if and only if
A occurs. Assume that the market is such that an investor can either buy or sell the policy
and that Q(€2) < oco. An investor can construct a portfolio by buying or selling a variety
(possibly countably many) of contracts in arbitrary multiples. If a; is the “quantity” of a
contract for A; (a; < 0 corresponds to selling the contract), then the payoff at time T is

Zai]Ai'

i

We will require that ). |a;|Q(A;) < oo so that the initial cost of the portfolio is (unambigu-
ously)

Z%‘Q(Ai)-

)

The market has no arbitrage if no combination (buying and selling) of countably policies
with a net cost of zero results in a positive profit at no risk. That is, if > |a;|Q(A4;) < oo,

Z aiQ(Az'> =0,

and
ZaiIAi >0 a.s.,

(2

Za’i]Ai =0 a.s.

The no arbitrage requirement has the following implications.

then

Lemma 13.1 Assume that there is no arbitrage. If P(A) =0, then Q(A) =0. IfQ(A) =0,
then P(A) = 0.

Proof. Suppose P(A) =0 and Q(A) > 0. Then construct a portfolio by buying one unit of
Q) and selling Q(2)/Q(A) units of A. Then the net cost is

QY oy —
Q0) - 5@ =0
and the payoftf is 0
ot

which contradicts the no arbitrage assumption.

Now suppose Q(A) = 0. Construct a portfolio by buying one unit of A. The cost of the
portfolio is Q(A) = 0 and the payoff is I, > 0. So by the no arbitrage assumption, I, = 0
a.s., that is, P(A) = 0. O
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Lemma 13.2 If there is no arbitrage and A C B, then Q(A) < Q(B).

Proof. Suppose Q(B) < Q(A). Construct a portfolio by buying one unit of B and selling
Q(B)/Q(A) units of A. Then the net cost of the portfolio is

Q(B)
Q(B)— =—*Q(A) =
(B) - G
and the payoff is
Q(B) Q(B)
Ig———=I4=1p_ 1——2)I, >
P T g =t
which is strictly positive on B. But Q(A) > 0 implies P(A) > 0, so there is a postive payoff
with positive probability contradicting the no arbitrage assumption. 0

Theorem 13.3 If there is no arbitrage, Q must be a measure on F that is equivalent to P.

Proof. Let A, A,, ... be disjoint and for A = U2, A;, suppose that Q(A) < p =", Q(4;).
Then buy one unit of A and sell Q(A)/p units of A; for each i. The net cost is zero and the
net payoff is
A
Iy — 2 Z I @ ))IA.

p

Note that Q(A;) > 0 implies P(AZ-) > 0 and hence P(A) > 0, so the right side is > 0 a.s.
and is > 0 with positive probability, contradicting the no arbtrage assumption. It follows

that Q(A) = p
If Q(A) > p, then sell one unit of A and buy Q(A)/p units of A; for each i. O

Theorem 13.4 [f there is no arbitrage, Q << P and P << Q. (P and Q) are equivalent.)

Proof. The result follows form Lemma 13.1. |

If X and Y are random variables satisfying X <Y a.s., then no arbitrage should mean

QX ) < Q(Y).
It follows that for any Q-integrable X, Q(X) = [ XdQ.

13.1 Assets that can be traded at intermediate times.

Let {F;} represent the information available at time ¢. Let B(t) be the price of a bond at
time ¢ that is worth $1 at time 7' (e.g. B(t) = e""~%), that is, at any time 0 < ¢t < T
B(t) is the price of a contract that pays exactly $1 at time 7. Note that B(0) = Q(f2), and
define Q(A) = Q(A)/B(0).

Let X () be the price at time ¢ of another tradeable asset. For any stopping time 7 < T,
we can buy one unit of the asset at time 0, sell the asset at time 7 and use the money
received (X (7)) to buy X(7)/B(7) units of the bond. Since the payoff for this strategy is
X(1)/B(7), we must have
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Lemma 13.5 If E[Z(7)] = E[Z(0)] for all bounded stopping times T, then Z is a martingale.
Corollary 13.6 If X is the price of a tradeable asset, then X/ B is a martingale on (2, F, Q)

Consider B(t) = 1. Let W be a standard Brownian motion on (Q, F, P) and F, = F}V,
0 <t <T. Suppose X is the price of a tradeable asset given as the unique solution of

t t
X(t) = X(0) +/ o(X(s))dW (s) +/ b(X (s))ds.
0 0
For simplicity, assume o (X (¢)) > 0 for all ¢ > 0. Then
]:tX = ]:twv

since, setting

we have .
1
Wt :/ ————dM (s).
0=, s ™)
Suppose Q (= @ since B(0) = 1) is a pricing measure and

_ dQ |-7:T
dp ’]'—T

L= L(T)

Then L(t) = E[L(T)|F], 0 <t < T is a martingale and

W@:W@-Aﬁ%wmm

is a Brownian motion on (€2, F, Q).

Theorem 13.7 (Martingale Representation Theorem.) Suppose M is a martingale on (Q, F, P)
with respect to the filtration generated by a standard Brownian motion W. Then there exists
an adapted, measurable process U such that fot U?%(s)ds < oo a.s. for eacht >0 and

M@:M@+AU@M%)

Note that the definition of the stochastic integral must be extended for the above theorem
to be valid. Suppose U is progressive and statisfies

¢
/|U(s)|2ds<oo a.s.
0

for every t > 0. Defining U(s) = U(0), for s < 0, set
t
Un(t) = n/ U(s)ds.
t—L
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Note that U, is continuous and adapted and that

/ |U(s) (s)|*ds — 0.
[ v

P{sup,, | J3 Un(8)AW () — f§ Un($)AW (s)| > €} < P{o < t} LU0l UnIEd]

€

It follows that the sequence

is Cauchy in probability,

and
t

/0 U(s)dW(s) = lim [ U,(s)dW(s).

n—oo 0

Let .
L(t)=1 +/ U(s)dW(s).

Then [L, W], = [, U(s)ds and

X(1) = X(0) + /0 o (X ())dVV (s) + /O (U(ﬁS»U(s)er(X(s))) ds.

Lemma 13.8 If M s a continuous local martingale of finite variation, then M is constant
m time.

Proof. We have
(M(t) — M(0))* = /0 2(M(s) — M(0))*dM (s) + [M];

Since [M]; = 0, (M(t) — M(0))* must be a local martingale and hence must be identically
Z€r0. 0J

Since X must be a martingale on (Q, F, Q), the lemma implies

U(s) + b(X(s)) = 0.

It follows that

L) =1- /0 gii((((g))L(s)dW(s),

Ho=ent [ im0 -3 ()

W(t) = W(t) + /0 z(();i?)))ds

SO
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and

Note that E[L(t)] =1 if

Q{/Otm‘mo}:l-

a(X(s))

For example, if

X(t) =z0+ /t o X (s)dW(s) + /t bX (s)ds,

that is,
1
X(t) = xoexp{ocW(t) — 50225 + bt},
then ; L
L(t) = —-Wi(t) — =—t}.
(1) = exp{ LW (1) — £ L51)

Under dQ = L(T)dP, W(t) = W(t) + bt is a a standard Brownian motion and

BT = [ flavexploy = 50°T) e Hdy

How reasonable is the assumption that there exists a pricing measure ()7 Start with a
model for a collection of tradeable assets. For example, let

X(t) = X(0) + /0 (X (8))dW (s) + /0 b(X (s))ds

or more generally just assume that X is a vector semimartingale. Allow certain trading
strategies producing a payoff at time 7"

V) =v(0)+ Y [ Hlsax)
— Jo
Arbitrage exists if there is a trading strategy satisfying
Y(T) = Z/t Hi(s—)dX;(s) >0 a.s.
— Jo
with P{Y(T") > 0} > 0.

13.2 First fundamental “theorem”.

Theorem 13.9 (Meta theorem) There is no arbitrage if and only if there exists a probability
measure () equivalent to P under which the X; are martingales.

Problems:
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e What trading strategies are allowable?
e The definition of no arbitrage above is, in general, too weak to give theorem.

For example, assume that B(t) = 1 and that there is a single asset satisfying

X(t) = X(0) +/0 o X (s)dW(s) —{—/0 bX (s)ds = X(0) —i—/o o X (s)dW(s).

Let T'=1 and for some stopping time 7 < T, let

1
oX(t)(1—1)’
and H(t) =0 for t > 7. Then for t < T,

[ reaxe) = [ Fave =w[ s

where W is a standard Brownian motion under Q Let
7 =inf{u: W(u) =1}, / (—ds =T.
0

Then with probability 1,

H(t) = 0<t<r,

/O 1 H(s)dX(s) = 1.

Admissible trading strategies: The trading strategy denoted {z, Hy,..., Hy} is admis-
sible if for

t
V(t)=z+ Z/ Hi(s—)dX;(s)
there exists a constant a such that

inf V(t) > —a, a.s.
0<t<T

No arbitrage: If {0, Hy, ..., H;} is an admissible trading strategy and ) _, fOT H;(s—)dX;(s) >
0 a.s., then >, [§ H;(s—)dX;(s) =0 a.s.

No free lunch with vanishing risk: If {0, H,..., H}} are admissible trading strategies
and

T
lim [0 :/ H(s—)dX;(8)|| s = 0,
- Jo

n—oo

then .
> [ Esaxs) - o
— Jo

in probability.

Theorem 13.10 (Delbaen and Schachermayer). Let X = (Xy,...,X4) be a bounded semi-
martingale defined on (Q, F, P), and let F; = (X (s),s < t). Then there exists an equivalent
martingale measure defined on Fr if and only if there is no free lunch with vanishing risk.
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13.3 Second fundamental “theorem?”.

Theorem 13.11 (Meta theorem) If there is no arbitrage, then the market is complete if and
only if the equivalent martingale measure is unique.

Problems:

e What prices are “determined” by the allowable trading strategies?

e Specifically, how can one “close up” the collection of attainable payoffs?

Theorem 13.12 If there exists an equivalent martingale random measure, then it is unique
if and only if the set of replicable, bounded payoffs is “complete” in the sense that

T
{z 4+ / H;(s—)dX,(s) : H; simple} N Loo(P)
—Jo
is weak® dense in Loo(P, Fr),

For general B, if we assume that after time 0 all wealth V' must either be invested in the
assets {X;} or the bond B, then the number of units of the bond held is

V() = >, Hit) Xi(?)
B(t) ’

and

Vo=V + Y [ meix ¢ [ EEBEEIRED gpy

Applying It6’s formula, we have

Vi) V() )
B~ <o>+;/o B(s—) i)

~

which should be a martingale under Q.
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14 Filtering.

Signal:

Observation:

Change of measure

P2 b = 1= [ X)LV ()
. /0 02X (5)) Lo(s)dY (s) + /0 "0 TR2(X (5)) Lo(s)ds
= el [ X)) - [ 0w
= exp{— Ota 2h(X(s))dY(s)+%/Otoz_QhQ(X(s))ds}.
Define

(%

V(t) = Vi) + /t MX ) g

W and V are independent Brownian motions under @. Therefore X and Y = aV are
independent under ().

Therefore
dP|f_t = = = " _ 1 PP
0l = L(t) = Lo(t)” = exp{ @ h(X(s))dY (s) 2/0 a~2h2(X (s))ds}
and

Set L(t, X,Y) = L(t).

EQ[f(X(t))L<t7X7 Y)“/,:‘ty] _ ff(x(t))L(tﬁx7Y>ﬂX(dx>
E[L(t, X.Y)|F}] JL(t 2. )px (d)

EV[f(X ()7 ] =

Let ¢ be the measure-valued process determined by

(@(1), f) = BO[f(X()L(t)|F].

We want to derive a differential equation for ¢.
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FX@)LE) = f(X(O))Jr/Otf(X(S))dL(S)

" / L(s)o (X (s)) f/(X (s))dW (s) + / L(s)Lf(X(s))ds

0

— F(X(0)) + / F(X(5))L(s)a2h(X (s))dY (s)
—l—/o L(s)a(X(s))f’(X(s))dW(s)+/O L(s)Lf(X(s))ds.

Lemma 14.1 Suppose X has finite expectation and is H-measurable and that D is indepen-
dent of GV 'H. Then
E[X|G Vv D] = E[X|G].

Proof. It is sufficient to show that for G € G and D € D,
/ E[X|GldP = XdP.
DNG DNG

But the independence assumption implies

/ E[X|GldP = FEl|IplcE[X|G]

= E[Ip|E[IcE[X|G]]
= FE[p|E[lsX]
— B[IpleX]

= XdP.
DNG

O

Lemma 14.2 Suppose that Y has independent increments and is compatible with {F;}.
Then for {F;}-progressive U satisfying fot E[|U(s)|]ds < o0

EQ[/O U(s)ds|fg”]:/0 EQU(s)|FY]ds.

Proof. By the Fubini theorem for conditional expectations

9| / U(s)ds| 7] = / EQ[U(s)|FY Jds.

The identity then follows by Lemma 14.1 and the fact that Y (r) — Y'(s) is independent of
U(s) for r > s. O
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Lemma 14.3 Suppose that Y is an R%-valued process with independent increments that is
compatible with {F;} and that there exists p > 1 and ¢ such that

|/ s)dY (s <cE/\U )Pdsr", (14.1)

for each M"™*4_valued, {F;}-predictable process U such that the right side of (14.1) is finite.
Then for each such U,

ol /0 U(s)dY (s)| FY] = /0 E[U(s)|FY]dY (s). (14.2)

Proof. If U = >, &1,y 4 With 0 = g < -+ < t,, and &, F,-measurable, (14.2) is
immediate. The lemma then follows by approximation. 0

Lemma 14.4 Let Y be as above, and let {F;} be a filtration such that Y is compatible
with {F}. Suppose that M is an {F;}-martingale that is independent of Y. If U is {F;}-

predictable and
t
Bll [ Uts)am(s)] < .
0

5| / U(s)dM(s)|F)] =

then

Applying the lemmas, we have the Zakai equation:
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15

7.

Problems.

. Let N be a nonnegative integer-valued random variable with E[N]| < oco. Let &, &, ...

be iid with mean m and independent of N. Show, using the definition of conditional
expectation, that

N
E[Y  &|N] = mN.
k=1

. Let {Fi} be a discrete-time filtration, let {&} be iid such that & is Fj-measurable

and (&gy1, Ekta, - - ) 1s independent of Fy, and let 7 be an {Fj }-stopping time.

(a) Show that ({,11,& 19, ..) is independent of F,.

(b) Show that if the assumption that the {} are identically distributed is dropped,
then the assertion in part a is no longer valid.

. Let &, &, . .. be positive, iid random variables with E[¢;] = 1, and let F, = 0(&;,1 < k).

Define .
M, =]]4
i=1

Show that {M} is a {F }-martingale.

. Let N(t) be a counting process with E[N(t)] < oo, and let &, &, ... be positive, iid

random variables with E[{;] = 1 that are independent of N. Define M (t) = Hfi(f) &;.
Show that M is a martingale. (Justify your answer using the properties of conditional
expectations.)

Let Y be a Poisson process with intensity A, and let &1, &, ... be iid with mean m and
variance o2 that are independent of Y. Define

0
X(t) =) &
k=1

Show that X has stationary, independent increments, and calculate E[X(t) — X (s)]
and Var(X(t) — X(s)).

Let 7 be a discrete stopping time with range {t1,ts,...}. Show that

WE

E[Z’f}] = E[Z|Ek]]{7':tk} .

B
Il

1

(a) Let W denote standard Brownian motion, and let {¢;} be a partition of the interval
0,¢]. What is im Y [W (t;41) — W(t;)|? as max |t;41 — t;| — 07
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10.

11.

12.

(c) Use the limits in part a) and b) to directly calculate f(f W?2(s—)dW (s) from the
definition of the stochastic integral.

Let 0 <73 <71 < --- be {F}-stopping times, and for k = 1,2,..., let & be F,-
measurable. Define

X<t) = Z gk[[Tk’Tk+1)(t)7
k=1

and show that X is {F;}-adapted

t

(a) For each n > 0, show that M,(t) = [, W(s—)"dW (s) is square integrable and
that M, is a martingale. (You do not need to explicitly compute M,.)

(b) Show that Z(t) = fot eV W (s) is a local martingale. (It is not a martingale,
since it is not integrable.) In particular, find a sequence of stopping times 7,, such
that Z(- A 7,,) is a martingale.

Let Y be a Poisson process with intensity A.

(a) Find a cadlag process U such that
t
e~V =1 +/ U(s—)dY (s) (15.1)
0

(b) Use (15.1) and the fact that Y () — M is a martingale to compute E[e=®Y®].
(¢) Define

t
Z(t) = / e~ Yy (s).
0
Again use the fact that Y (¢)— At is a martingale to calculate E[Z(t)] and Var(Z(t)).

Let N be a Poisson process with parameter A, and let X;, X,,... be a sequence of
Bernoulli trials with parameter p. Assume that the X, are independent of N. Let

N(t)
M(t) =) X;.
k=1

What is the distribution of M (¢)?

Let N be a Poisson process with parameter A. For ¢ < s:

(a) What is the covariance of N(t) and N(s)?
(b) Calculate the probability that P{N(t) =1, N(s) = 1}.

(c) Give an event in terms of S; and Sy that is equivalent to the event {N(t) =
1, N(s) = 1}, and use the calculation in part 12b to calculate the joint density
function for S} and Ss.
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13. Let Y be a continuous semimartingale. Solve the stochastic differential equation
dX = aXdt+bXdY, X(0) = zg

Hint: Look for a solution of the form X (¢) = Aexp{Bt+ CY (¢t) + D[Y];} for some set
of constants, A, B, C, D.

14. Let W be standard Brownian motion and suppose (X,Y) satisfies

X(t)=z+ /tY(s)ds

v =y- [ Xops+ [ eX(s)awes)

where ¢ # 0 and z? + y?> > 0. Assuming all moments are finite, define m,(t) =
E[X(t)%], ma(t) = E[X(#)Y (t)], and m3(t) = E[Y(t)?]. Find a system of linear differ-
ential equations satisfied by (mq, mq, m3), and show that the expected “total energy”
(E[X(t)? + Y (t)?]) is asymptotic to ke for some k > 0 and A > 0.

15. Let X and Y be independent Poisson processes. Show that with probability one, X
and Y do not have simultaneous discontinuities and that [X, Y], = 0, for all £ > 0.

16. Two local martingales, M and N, are called orthogonal if [M, N, = 0 for all ¢ > 0.

(a) Show that if M and N are orthogonal, then [M + N|; = [M]; + [N],.

(b) Show that if M and N are orthogonal, then M and N do not have simultaneous
discontinuities.

(c¢) Suppose that M, are pairwise orthogonal, square integrable martingales (that is,
ny Mmlt = . OO: n .
[M,,, M,,]: = 0 for n # m). Suppose that >~ E[[M,];] < oo for each t. Show

that .
M = Z M,,
k=1

converges in L? and that M is a square integrable martingale with [M] = >~ [M].

17. Let Xy, X5... and Y}, Ys, ... be independent, unit Poisson processes. For A\; > 0 and
¢, € R, define

M(t) = eu(Yi(Ast) — Xe(At))

(a) Suppose > i\, < oo. Show that for each T > 0,
lim  Efsup(M,(t) — M,,(t))*] =0
T

n,m—00 t<
and hence we can define
M(t) = Z ek (Yie(Axt) — Xi(Art))

k=1
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(b) Under the assumptions of part (a), show that M is a square integrable martingale,
and calculate [M].

18. Suppose in Problem 17 that > ci\; < oo but Y |cxgAx| = oo. Show that for ¢ >
0,7:(M) = oo a.s. (Be careful with this. In general the total variation of a sum is not
the sum of the total variations.)

19. Let W be standard Brownian motion. Use Ito’s Formula to show that

is a martingale. (Note that the martingale property can be checked easily by direct
calculation; however, the problem asks you to use Ito’s formula to check the martingale

property.)

20. Let N be a Poisson process with parameter A. Use [to’s formula to show that
M(t) = exNO-AE =1

is a martingale.

21. Let X satisfy
X(t)=z+ /t o X (s)dW(s) + /t bX (s)ds
0 0
Let Y = X2

(a) Derive a stochastic differential equation satisfied by Y.
(b) Find E[X(t)?] as a function of .

22. Suppose that the solution of dX = b(X)dt + o(X)dW, X(0) = z is unique for each
x. Let 7 = inf{t > 0 : X(¢) ¢ (o, )} and suppose that for some a < z < g,
P{r <00, X(7) =a|X(0)} =2} >0 and P{r < 00, X(7) = [|X(0) =2} >0.

(a) Show that P{r < T,X(7) = «|X(0) = x} is a nonincreasing function of =z,
a<x<pf.

(b) Show that there exists a 7' > 0 such that

irzlfmax{P{T <T,X(r)=a|X(0) =z}, P{r<T,X(1) =06|X(0)=2}} >0

(c) Let v be a nonnegative random variable. Suppose that there exists a 7' > 0 and a
p < 1 such that for each n, P{y > (n+ 1)T|y > nT'} < p. Show that E[y] < occ.

(d) Show that E[r] < co.
23. Let dX = —bX%dt + cXdW, X(0) > 0.

(a) Show that X (t) > 0 for all ¢ a.s.
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24.

25.

26.

27.

(b) For what values of b and ¢ does lim;_,., X(t) =0 a.s.?

Let dX = (a — bX)dt + vXdW, X(0) > 0 where a and b are positive constants. Let
7=1inf{t > 0: X(t) =0}.

(a) For what values of a and b is P{T < o0} =17

(b) For what values of a and b is P{1T = o0} = 17

Let M be a k-dimensional, continuous Gaussian process with stationary, mean zero,
independent increments and M (0) = 0. Let B be a k x k-matrix all of whose eigenvalues
have negative real parts, and let X satisfy

X(t) :az—l—/tBX(s)ds+M(t)

Show that sup, E[| X (t)|"] < oo for all n. (Hint: Let Z(t) = CX(t) for a judiciously
selected, nonsingular C', show that Z satisfies an equation of the same form as X, show
that sup, E[|Z(t)|"] < 0o, and conclude that the same must hold for X.)

Let X (t,z) be as in (8.3) with o and b continuous. Let D C R? be open, and let 7(z)
be the exit time from D starting from z, that is,

7(x) = inf{t : X(t,z) ¢ D}.
Assume that h is bounded and continuous. Suppose zy € 9D and

lim Plr(z) <¢] =1,V¥e > 0.

T—T0

Show that
lim P[|X(7(z),z) — x| > €] = 0Ve > 0,

T—x0

and hence, if f is defined by (8.4), f(z) — h(xo), as © — xo.

(Central Limit Theorem for Random Matrices) Let A, As, ... be independent, iden-
tically distributed, matrix-valued random variables with expectation zero and finite
variance. Define

[nt]

Yo (t) = %ZAk
X0 = (I+ %Alw T %Az) (It %Am

Show that X, satisfies a stochastic differential equation driven by Y,,, conclude that
the sequence X,, converges in distribution, and characterize the limit.

113



In Problems 28 and 29, assume that d = 1, that ¢ and ( are continuous, and that

X(t) = X(0) +/0 o(X(s))dW (s) —i—/o b(X(s))ds

Recall that Lf(z) = so(x)?f"(z) + b(z) f'(z).

28. Let a < 3, and suppose that there is a function f that is C* and satisfies Lf(z) > § > 0
on [a, f]. Define 7 = inf{t : X(¢) ¢ («, 5)}. Show that E[r] < occ.

29. Let o < (3, and suppose that inf e 5 o(2)? > 0. Define 7 = inf{t : X(¢) ¢ (o, )}
Show that E[r] < oc.

In Problems 30 through 33, let X be real-valued and satisfy dX = o(X)dW + b(X)dt where
o is bounded and strictly positive, and suppose that v(z) = z? satisfies Lv < K — ev for
some € > 0. Let 7o = inf{t : X(¢) < 0}.

30. Show that if F[X(0)?] < oo, then E[r] < oo.
31. Assume that F[X(0)?] < co. Show that if f is twice continuously differentiable with

bounded first derivative, then

i & [ Lp(X(s))ds = 0
0

t—o00

where convergence is in L2 (Convergence is also almost sure. You can have 2 points
extra credit if you show that.)

32. Show that for every bounded continuous g, there exists a constant ¢, such that

1 t
lim — [ ¢g(X(s))ds =¢,

t—oo t 0

Hint: Show that there exists ¢, and f such that Lf = g — ¢,. Remark. In fact, under
these assumptions the diffusion process has a stationary distribution 7 and ¢, = [ gdr.

33. Show that if f is twice continuously differentiable with bounded first derivative, then
1 [t
W,(t) = %/0 Lf(X(s)ds
converges in distribution to aWW for some constant «.

Ornstein Unlenbeck Process. (Problems 34-40.) The Ornstein-Uhlenbeck process was
originally introduced as a model for the velocity of “physical” Brownian motion,

AV = —\Vdt + odW |
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where o, A > 0. The location of a particle with this velocity is then given by

Explore the relationship between this model for physical Brownian motion and the usual
mathematical model. In particular, if space and time are rescaled to give

X, (t) = ——X (nt),

vn
what happens to X,, as n — 00?

34. Derive the limit of X,, directly from the stochastic differential equation. (Note: No
fancy limit theorem is needed.) What type of convergence do you obtain?

35. Calculate E[V(t)*]. Show (without necessarily calculating explicitly), that if E[|V(0)]*] <
00, then supy<;.o B[]V (1)[F] < o0.

36. Compute the stationary distribution for V. (One approach is given Section 9. Can
you find another.)

37. Let g be continous with compact support, and let ¢, = [ gdr, where 7 is the stationary
distribution for V. Define
1 nt
2t) = (| oV(s)ds = nCy).
v Jo !
Show that Z,, converges in distribution and identify the limit.
38. Note that Problem 34 is a result of the same form as Problem 37 with g(v) = v, so the

condition that g be continuous with compact support in Problem 37 is not necessary.
Find the most general class of ¢’s you can, for which a limit theorem holds.

39. Consider X (t) = X(0) + fot V(s)ds with the following modification. Assume that
X (0) > 0 and keep X (t) > 0 by switching the sign of the velocity each time X hits
zero. Derive the stochastic differential equation satisfied by (X, V) and prove the
analogue of Problem 34. (See Lemma 11.1.)

40. Consider the Ornstein-Unlenbeck process in R?
dV = =\Vdt + ocdW

where W is now d-dimensional Brownian motion. Redo as much of the above as you
can. In particular, extend the model in Problem 39 to convex sets in R%.

41. Let X be a diffusion process with generator L. Suppose that h is bounded and C?

with A > € > 0 and that LA is bounded. Show that
_ h(X(1) " Lh(X(s))
10 = 0“1 [, e

is a martingale with E[L(t)] = 1.
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42.

43.

44.

45.

46.

For = > 0, let t
X(t)==x —i—/o o(X(s))dW (s)

and 7 = inf{t : X(¢) = 0}. Give conditions on o, as general as you can make them,
that imply E[7] < oco.

Let X (t) = X(0) + W (t) where W = (W, Ws) is two-dimensional standard Brownian
motion. Let Z = (R, ©) be the polar coordinates for the point (Xi, Xs). Derive a
stochastic differential equation satisfied by Z. Your answer should be of the form

Z(t) = Z(0) +/O a(Z(s))dW (s) +/0 b(Z(s))ds.
Assume that d = 1. Let

X(t,x):x—i—/o U(X(s,x))dW(s)—l—/O b(X (s, x))ds,

where ¢ and b have bounded continuous derivatives. Derive the stochastic differential
equation that should be satisfied by

Y(t,x) = %X(t, x)

if the derivative exists and show that
1
Y(t,x) = }lLir% E(X(t,x +h)— X(t, z))

exists in L? where Y is the solution of the derived equation.

Let N be a unit Poisson process and let

W, (t) = % /Om(—nN(S)ds

(Recall that W,, = W where W is standard Brownian motion.) Show that there exist
martingales M,, such that W,, = M,, +V,, and V,, — 0, but T;(V,,) — oc.

Let W, be as in Problem 45. Let ¢ have a bounded, continuous derivative, and let
t
Xn(t) = / o (X, (s))dW,(s).
0

Show that X, = X for some X and identify the stochastic differential equation satisfied
by X. Note that by Problem 45, the conditions of Theorem 10.13 are not satisfied for

X, (1) = /0 o (X (5—))dM(s) + /0 o (X, (5—))dVia(s). (15.2)

Integrate the second term on the right of (15.2) by parts, and show that the sequence
of equations that results, does satisfy the conditions of Theorem 10.13.

116



Central limit theorem for Markov chains. (Problems 47-54.) Let &, &;,... be an
irreducible Markov chain on a finite state space {1, ..., d}, let P = ((p;;)) denote its transition
matrix, and let 7 be its stationary distribution. For any function A on the state space, let

mh denote ) . m;h(i).
47. Show that

i
L

f(&n) = D _(Pf(&) — (&)

0

b
Il

is a martingale.

48. Show that for any function h, there exists a solution to the equation Pg = h — mh,
that is, to the system

Zpijg(j) —g(i) = h(i) — wh.

49. The ergodic theorem for Markov chains states that
1 n
lim — E h(&) = mh.
n—oo N,
k=1

Use the martingale central limit theorem to prove convergence in distribution for

[nt]
Walt) = = > (h(&s) —7h)

50. Use the martingale central limit theorem to prove the analogue of Problem 49 for a
continuous time finite Markov chain {¢(¢),¢ > 0}. In particular, use the multidimen-
sional theorem to prove convergence for the vector-valued process U, = (U}, ... U%)
defined by

1 nt
Ukt) = —/ (Ige(s)=ky — mx)ds
N {&(s)=Fk}
51. Explore extensions of Problems 49 and 50 to infinite state spaces.

Limit theorems for stochastic differential equations driven by Markov chains

52. Show that W, defined in Problem 49 and U, defined in Problem 50 are not “good”
sequences of semimartingales, in the sense that they fail to satisfy the hypotheses of
Theorem 10.13. (The easiest approach is probably to show that the conclusion is not
valid.)

53. Show that W,, and U, can be written as M,, + Z, where {M,} is a “good” sequence
and Z, = 0.

54. (Random evolutions) Let & be as in Problem 50, and let X, satisfy

Xo(t) = VnF (X, (s),(ns)).
Suppose Y. F(z,i)m; = 0. Write X,, as a stochastic differential equations driven by

U,, give conditions under which X,, converges in distribution to a limit X, and identify
the limit.
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95.

96.

57.

28.

99.

(a) Let W be a standard Brownian motion, let o;, i = 1,2, be bounded, continuous
functions, and suppose that

Xi(t) = Xi(0) + /O ()X, (s)dW (s), i=1,2.

Apply Itd’s formula to find an SDE satisfied by Z = X; Xs.
(b) Let W; and W, be independent standard Brownian motions. Let

Yi(t) = Y;(0) —I—/O oi(s)Yi(s)dWi(s), i=1,2.

Find an SDE satisfied by U = Y1Y,, and show that U is a martingale.

Suppose the price X of a tradeable asset is the unique solution of

X(t)=X(0)+ Y(/O A(X (s))ds) — /o w(X(s))ds, (15.3)

where Y is a unit Poisson process, X (0) is independent of Y, Y and X (0) are defined
on (2, F, P), and A and p are bounded and strictly positive. Let F; = o(X(s) : s < 1).
Find a measure @) equivalent to P such that {X(¢),0 < ¢ < T} is a martingale under
@ and X (0) has the same distribution under @) as under P.

Suppose that p: R — R is Lipshitz.

(a) Show that the solution of (15.3) is unique.
(b) Let u be cadlag. Show that

z(t) = u(t) — /0 p(x(s))ds (15.4)

has a unique solution and that x is cadlag.

(¢) Let I'(t,u) = =(t), where z is the unique solution of (15.4). Show that I is
nonanticipating in the sense that I'(¢,u) = I'(¢,u'), t > 0, where u'(s) = u(s A t).

(Extra credit) Show that @) in Problem 56 is unique. (You might begin by showing
that the distribution of X is the same under any () satisfying the conditions of the
problem.)

Let a, 8 € (0,00)%, and let X = (X1, X;) satisfy

X(t) = X(0) + aYi( / (X (5))ds) — BY( / Ma(X (5))ds),

0

where Y] and Y5 are independent, unit Poisson processes independent of X (0); Y7, Y2, X(0)
are defined on (Q, F, P); a and 3 are linearly independent; and 0 < € < A\j, Ay < €1,
for some € > 0. Show that there exists a probability measure () equivalent to P under
which X is a martingale and X (0) has the same distribution under ) as under P.
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