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Abstract

Using a controlled Jackson network as the primary example, stochastic control
problems are formulated as martingale problems and the optimal solutions are char-
acterized as the solutions of infinite dimensional linear programs. Assuming a heavy
traffic scaling, the analogous linear program for a singular control problem is derived,
and the solution of the linear program is shown to give the stochastic model minimizing
the long-run average cost.

1 The model.

We consider a controlled Jackson network with m stations, external arrival rates v1, . . . , vm

service rates u1, . . . , um, and routing probabilities pij. We assume that the routing proba-
bilities are fixed but that we can control the arrival and service rates subject, perhaps, to
certain constraints.

We can formulate the model as the solution of a system of stochastic equations:

Q(t) = Q(0) + Yi(
∫ t

0
Vi(s)ds) +

m∑
j=1

Yji(pji

∫ t

0
I{Qj(s)>0}Uj(s)ds)

−
m∑

j=1

Yij(pij

∫ t

0
I{Qi(s)>0}Ui(s)ds),

where {Yi} and {Yij} are independent, unit Poisson processes, {Vi} are the controlled arrival
rates, and {Ui} are the controlled service rates.
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The generator of the model has the form

Af(q, u, v) =
m∑

i=1

vi(f(q + ei)− f(q)) +
m∑

i=1

uipi0I{qi>0}(f(q − ei)− f(q))

+
m∑

i,j=1

uipijI{qi>0}(f(q + ej − ei)− f(q)),

where, for i = 1, . . . ,m, ei denotes the vector with ith component 1 and all others 0. Take
the domain of A, D(A), to be the collection of bounded functions on Zm

0 , Z0 = {0, 1, 2, . . .},
and assume that there is a constant such that the controlled rates must satisfy Ui, Vi ≤ K.
Then, assuming the Ui and Vi are nonanticipating in an appropriate sense, any solution of
the system of equations has the property that for every f ∈ D(A),

f(Q(t))−
∫ t

0
Af(Q(s), U(s), V (s))ds (1.1)

is a martingale with respect to a filtration independent of f .
We require

0 ≤ vi ≤ K, 0 ≤ ui∑
i

αkiui ≤ 1, k = 1, . . . , k0 (1.2)

and ∑
i

βlivi ≥ 1, l = 1, . . . , l0, (1.3)

where αki, βli ≥ 0. We assume that for each i, there exists at least one k such that αki > 0,
and, hence, ui ≤ 1/αki. Let P = ((pij))1≤i,j≤m be the matrix of transition probabilities where
pij is the probability that a customer of class i moves to class j after completing service.
pi0 = 1 − ∑m

j=1 pij is the probability that the customer leaves the system. We assume that
the system is open so that

(I − P )−1 =
∞∑

k=0

P k

exists.
Let 1 be the vector all of whose components are ones. We can write the constraints in

(1.2) and (1.3) as αu ≤ 1 and βv ≥ 1, where α is the matrix with rows αk = (αk1, . . . , αkm),
k = 1, . . . , k0, and β is the matrix with rows βl = (βl1, . . . , βlm). Define

Γβ = {v ∈ [0, K]m : βv ≥ 1}, Γα = {u ∈ [0,∞)m : αu ≤ 1},

that is, Γβ is the collection of admissible external arrival rates and Γα is the collection of
admissible service allocations.

In some examples, it may be more natural to state arrival constraints as equalities rather
than inequalities. For example, the external arrival rate into a queue may be fixed. Ordi-
narily, however, replacing some of the inequalities by equalities will not affect the analysis.

This model includes the Markov version of the model considered by Laws [8]. In his
model, job types have fixed routes, so pij is 0 or 1, but models with more general routing
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probabilities can be reformulated as models with fixed routes. In his model, a finite collection
of servers allocate effort among disjoint collections Jk of job classes, which, in our notation,
gives constraints of the form ∑

i∈Jk

ui

µi

≤ 1, k = 1, . . . , k0,

that is, for i ∈ Jk, ui/µi is the fraction of the effort of server k that is devoted to job class i.
The model also includes special cases of the Markov, continuous time analog of the model

considered by Martins and Kushner [10]. Some of their examples allow control of the {pij}.

1.1 Example: Two queues with alternate routing.

(See [10].) Assume that there are two queues that can serve customers at maximum rates
µ1 and µ2 respectively. There are three arrival streams with rates κ1, κ2, and κ3. All traffic
from the first stream enters queue I, all traffic from the second stream enters queue II, and
the traffic from the third stream can be routed to either queue. The constraints become

v1 ≥ κ1, v2 ≥ κ2, v1 + v2 ≥ κ1 + κ2 + κ3

and
u1 ≤ µ2, u2 ≤ µ1.

Of course, these inequalities can be normalized to be of the form above by dividing through
by the right side.

1.2 Example: Two queues with reassignable server.

(See [1, 4, 12].) Assume that there are two queues with arrival rates κ1 and κ2 and two servers.
The first server can only serve customers in the first queue and serves these customers at rate
µ1. The second server can serve customers in the second queue at rate µ2 and/or customers
in the first queue at rate µ3. More precisely, if the second server allocates a fraction θ of
its effort to the second queue and the remaining fraction (1 − θ) to the first queue, then it
serves customers in the second queue at rate θµ2 and customers in the first queue at rate
(1− θ)µ3. The constraints then become

v1 ≥ κ1, v2 ≥ κ2

and
u1 ≤ µ1 + µ3, u2 ≤ µ2,

u1

µ3

+
u2

µ2

≤ µ1

µ3

+ 1.

Again, the inequalities can be normalized by dividing through by the right side.

1.3 Example: Two types of work and two servers.

Assume that there are two types of work that arrive in the system at rates κ1 and κ2. There
are two servers. The first server can process Type 1 work at rate µ1 and Type 2 work at rate
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µ2. The second server can process Type 1 work at rate µ3 and Type 2 work at rate µ4. The
work can by allocated to the servers in any manner. The system has four customer classes
and the corresponding constraints are

v1 + v3 ≥ κ1, v2 + v4 ≥ κ2

u1

µ1

+
u2

µ2

≤ 1,
u3

µ3

+
u4

µ4

≤ 1 .

2 Conditions for stability.

Let λj(v) be the total arrival rate at node j assuming that the external arrival rates are
given by the vector v. Then

λj(v) = vj +
∑

i

λi(v)pij, (2.4)

that is
λ(v) = (I − P T )−1v,

where P T denotes the transpose of the matrix P = ((pij))1≤i,j≤m. Assume that there exists
v ∈ Γβ such that ∑

i

αkiλi(v) < 1, k = 1, . . . , k0.

Then there is an allocation of effort that stabilizes the system. For example, select ui > λi(v)
satisfying ∑

i

αkiui ≤ 1, k = 1, . . . , k0.

Recall that if we fix the arrival rates and the service allocations at v and u, then the stationary
expectations become

E[Qi] =
λi(v)

ui − λi(v)
.

2.1 Linear program for long-run average costs.

Let c(q, u, v) be a nonnegative, lower semicontinuous function. The long-run average cost
problem is to select U and V to minimize

J(U, V ) = lim sup
t→∞

E
[
1

t

∫ t

0
c(Q(s), U(s), V (s))ds

]
.

Note that for bounded f , the fact that (1.1) is a martingale implies

lim
t→∞

E
[
1

t

∫ t

0
Af(Q(s), U(s), V (s))ds

]
= 0.

Define

µt(C ×D) = E
[
1

t

∫ t

0
IC(Q(s))ID(U(s), V (s))ds

]
.
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If finiteness of J(U, V ) implies tightness of {µt}, for example, if c(q, u, v) =
∑m

i=1 qi (recall
that Γα and Γβ are compact), then any limit point µ satisfies∫

Zm
0 ×Γα×Γβ

Af(q, u, v)µ(dq × du× dv) = 0, f ∈ D(A), (2.5)

and ∫
Zm
0 ×Γα×Γβ

c(q, u, v)µ(dq × du× dv) ≤ J(U, V ).

Consequently, we formulate the following linear programming problem: Minimize∫
Zm
0 ×Γα×Γβ

c(q, u, v)µ(dq × du× dv) (2.6)

subject to (2.5).
The relationship between controlled Markov processes and linear programming was recog-

nized by Manne [9] in the context of finite Markov chains and developed by Stockbridge [11]
for general Markov processes.

Theorem 2.1 Suppose that for each K > 0,

{µ :
∫

E×F
c(q, u, v)µ(dq × du× dv) ≤ c̄, µ satisfies (2.5)} (2.7)

is compact and is nonempty for c̄ sufficiently large. Then there exists a solution of the linear
programming problem.

It is not immediately obvious that the solution of the linear programming problem cor-
responds to the optimal solution of the stochastic control problem. The next result, which
is a consequence of more general theorems in [6] or [2], ensures that it does.

Theorem 2.2 Let µ ∈ P(Zm
0 × Γα × Γβ) satisfy (2.5), and suppose µ(dq × du × dv) =

µ0(dq)η(q, du × dv). Then there exists a stationary solution of the controlled martingale
problem for A such that U(s) =

∫
Γα uη(Q(s), du× Γβ), V (s) =

∫
Γβ

vη(Q(s), Γα × dv), and

E[
∫

h(Q(s), U(s), V (s))] =
∫

h(q, u, v)µ(dq × du× dv),

for every bounded, measurable h. In particular, the long-run average cost is given by (2.6).

Remark 2.3 The general results in [11, 2, 6] require the use of relaxed controls. Relaxed
controls are not needed here because the control enters the generator linearly.

3 Heavy traffic limit.

There are two approaches to defining what is meant by a heavy traffic limit for the controlled
system. One, which we will refer to as the perturbed rate model, is to fix nominal external
arrival rates γi and then to require that the controlled external arrival and service rates be
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small perturbations of the nominal external arrival and total arrival rates. In terms of a
scaling parameter n, we write

vi = γi −
1√
n

v0
i , ui = λi(γ) +

1√
n

u0
i , (3.8)

where

(u0, v0) ∈ F n ≡ {(u0, v0) : λ(γ) +
1√
n

u0 ∈ Γα, γ − 1√
n

v0 ∈ Γβ}. (3.9)

The magnitudes of v0 and u0 are constrained by penalizing the deviations from γ and λ(γ).
For example, take the running cost to be

c(q, u, v) =
1√
n

m∑
i=1

qi +
m∑

i=1

(|v0
i |+ |u0

i |).

This approach is essentially the same as that taken in [10, 3].
The second approach, which we will refer to as the constrained rate model, is to assume

that the constraints asymptotically determine unique nominal arrival rates. (See, for exam-
ple, [8, 5, 4, 1, 12].) To formulate a version of this approach, we keep the pij and αki fixed
and let the βn

li vary with a normalizing parameter n. We assume that βn
li decreases to a limit

βli such that there is a unique γ ∈ Γβ satisfying λ(γ) ∈ Γα. Uniqueness implies that for
i = 1, . . . ,m, we must have ∑

{k:αk·λ(γ)=1}
αk(I − P T )−1ei > 0, (3.10)

and
γi = 0 or

∑
{l:βl·γ=1}

βli > 0. (3.11)

In addition, assume that for some b > 0,

βli ≤ βn
li ≤ (1 +

b√
n

)βli (3.12)

(in particular, βli = 0 if and only if βn
li = 0) and

lim
n→∞

√
n(βn

li − βli) = β0
li. (3.13)

3.1 Asymptotic stability.

If we fix v0 and u0 in (3.8), then the stationary expectation satisfies

1√
n

E[Qi] =
λi(γ − 1√

n
v0)

√
n(λi(γ) + 1√

n
u0

i − λi(γ − 1√
n
v0)

→ λi(γ)

u0
i + λi(v0)

,

where λ(v0) = (I−P T )−1v0. Consequently, for the perturbed rate model, we have asymptotic
stability if we can select (u0, v0) ∈ F n so that u0 + λ(v0) > 0.
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Next, consider the constrained rate model. By the assumptions on βn
li, β0

li ≥ 0. If β0 > 0,
then there exists a sequence γn ∈ Γβn such that γn → γ and∑

i

αkiλi(γ
n) < 1, k = 1, . . . , k0,

for each n. More generally, suppose that there exists c > 0 and v∗ ∈ [0,∞)m such that

βv∗ ≤ β0γ + c(βγ − 1), v∗ ≤ cγ, (3.14)

and that there exists ε > 0 such that

αλ(v∗) ≥ εαλ(γ). (3.15)

Without loss of generality, we can assume β0v∗ ≤ c1. Note that if β0 > 0, then the existence
of v∗ satisfying (3.14) and (3.15) is immediate. (Take v∗ = εγ, for ε > 0 sufficiently small.)

By (3.13), there exists ρn < 1 satisfying ρn → 1 and

√
n(βn − β) ≥ ρnβ

0.

For n > c2, define

γn = (1 +
c

n
)γ − ρn√

n
v∗.

Then

βnγn = (βn − β)((1 +
c

n
)γ − ρn√

n
v∗) + (1 +

c

n
)βγ − ρn√

n
βv∗

≥ ρn√
n

β0((1 +
c

n
)γ − ρn√

n
v∗)− ρn√

n
β0γT + (1 +

c

n
− ρn√

n
c)βγ +

ρn√
n

c1

=
cρn

n3/2
β0γ − ρ2

n

n
β0v∗ + (1 +

c

n
− ρn√

n
c)βγ +

ρn√
n

c1

≥ (1− ρn√
n

c)βγ +
ρn√
n

c1

≥ 1,

so γn ∈ Γβn . We have

λ(γn) = (I − P T )−1((1 +
c

n
)γ − ρn√

n
v∗) = (1 +

c

n
)λ(γ)− ρn√

n
λ(v∗),

and by (3.15), for n sufficiently large,

c

n
αλ(γ) <

ρn√
n

αλ(v∗).

It follows that
αλ(γn) ≤ 1− ρn√

n
αλ(v∗) +

c

n
λ(γ) < 1,
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that is, the nth system is stable. In particular, we can take the service allocation to be of
the form

un = λ(γn) +
δn

√
n
1, (3.16)

where
δn = min

k
{ρnαk · λ(v∗)− c√

n
αk · λ(γ)} → δ = min

k
αk · λ(v∗).

Furthermore,
lim

n→∞

√
n(λ(γ)− λ(γn)) = λ(v∗).

Consequently, defining

Zn(t) =
Qn(nt)√

n
,

if we fix the external arrival rates as γn and the allocation policy as in (3.16), then the
stationary means of Zn satisfy

E[Zn
i ] =

λi(γ
n)

δn
→ λi(γ)

δ
. (3.17)

3.2 Limiting linear program.

We derive the limiting linear program for the perturbed rate model. The constrained rate
model is more delicate and is a subject for future research.

Adding and subtracting partial derivatives where convenient, the generator for Zn can
be written

Anf(z, u0, v0)

=
m∑

i=1

(γi −
1√
n

v0
i )n(f(z +

1√
n

ei)− f(z)− 1√
n

∂if(z))

+
m∑

i=1

(λi(γ) +
1√
n

u0
i )pi0n(f(z − 1√

n
ei)− f(z) +

1√
n

∂if(z))

+
m∑

i,j=1

(λi(γ)− 1√
n

u0
i pijn(f(z +

1√
n

(ej − ei))− f(z)− 1√
n

(∂jf(z)− ∂if(z)))

−
m∑

i=1

v0
i ∂if

−
m∑

i=1

u0
i (∂if(z)−

m∑
j=1

pij∂jf(z))

−
∑

i

(λi(γ) +
1√
n

u0
i )I{zi=0}pi0n(f(z − 1√

n
ei)− f(z))

−
∑
i,j

(λi(γ) +
1√
n

u0
i )I{zi=0}pijn(f(z +

1√
n

(ej − ei))− f(z))

= Ln
0f(z, u0, v0) + (|u0|+ |v0|)B0f(z, u0/(|u0|+ |v0|), v0/(|u0|+ |v0|))

+
m∑

i=1

(
√

nλi(γ) + u0
i )I{zi=0}Ci,nf(z),
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where |u0| = ∑m
i=1 |u0

i | and

B0f(z, u, v) = −(v + (I − P T )u) · ∇f(z)

and

Ci,nf(z) = −pi0

√
n(f(z − 1√

n
ei)− f(z))−

m∑
j=1

pij

√
n(f(z +

1√
n

(ej − ei))− f(z)).

Note that we have used the fact that λ(γ) = (I − P T )−1γ.
We take D(An) to be C2

c (Rm
0 ), the twice continuously differentiable functions on Rm

0 =
[0,∞)m. Assuming that we can control the magnitude of u0 and v0, Ln

0f(z, u0, v0) → L0f(z)
and Ci,nf(z) → Cif(z), where

L0f(z) =
1

2

∑
1≤i,j≤m

a0
ij∂i∂jf(z),

with

a0
ii = γi + λ(γ)ipi0 +

∑
j 6=i

(λ(γ)jpji + λ(γ)ipij), aij = −λ(γ)ipij − λ(γ(jpji, i 6= j,

and

Cif(z) = ∂if(z)−
m∑

j=1

pij∂jf(z).

Let the running cost function be

c(z, u0, v0) =
m∑

i=1

(zi + |v0
i |+ |u0

i |).

Noting that F n defined in (3.9) is an increasing sequence of sets, we define F to be the
closure of ∪nF

n.
For each n, the optimal long-run average cost is given by the solution of the linear

programming problem, minimize∫
[0,∞)m×F n

c(z, u0, v0)µ(dz × du0 × dv0)

among µ ∈ P([0,∞)m × F n) satisfying∫
[0,∞)m×F n

Anf(z, u0, v0)µ(dz × du0 × dv0) = 0, f ∈ D(An). (3.18)

Let µn be the minimizing probability measure. Define

µn
0 (dz) = µn(dz × F n)

µn
i (dz) =

∫
F n

(
√

nλi(γ) + u0
i )I{zi=0}µ

n(dz × du0 × dv0)

νn
0 (dz ×H) =

∫
F n

IH(
u0

|u0|+ |v0|
,

v0

|u0|+ |v0|
)(|u0|+ |v0|)µn(dz × du0 × dv0),
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where µn
i is a measure on Di = {z ∈ [0,∞)m : zi = 0} and νn

0 is a measure on [0,∞)m× F̂ n,
F̂ n = {(u/(|u|+ |v|), v/(|u|+ |v|)) : (u, v) ∈ F n}. Since the optimal cost

∫
[0,∞)m×F n

c(z, u0, v0)µn(dz × u0 × v0) =
∫
[0,∞)m

m∑
i=1

ziµ
n
0 (dz) + νn

0 ([0,∞)m × F̂ n)

is bounded in n, it follows that {µn
0} is relatively compact in the weak topology and {νn

0 }
and {µn

i }, i = 1, . . . ,m are relatively compact in the vague topology. If (µ0, ν0, µ1, . . . , µm)
is a limit point of (µn

0 , ν
n
0 , µn

1 , . . . , µ
n
m), for each f ∈ C2

c ([0,∞)m),

∫
[0,∞)m

L0f(z)µ0(dz) +
∫
[0,∞)m×F̂

B0f(z, u, v)ν0(dz × du× dv) +
m∑

i=1

∫
[0,∞)m

Cif(z)µi(dz) = 0,

and

lim inf
n→∞

∫
[0,∞)m×F n

c(z, u0, v0)µn(dz × du0 × dv0) ≥
∫
[0,∞)m

m∑
i=1

ziµ0(dz) + ν0([0,∞)m × F̂ ).

(3.19)
Consequently, the left side of (3.19) is bounded below by the solution of the linear program-
ming problem, minimize

∫
[0,∞)m

m∑
i=1

ziµ0(dz) + ν0([0,∞)m × F̂ )

subject to

∫
[0,∞)m

Lf(z)µ0(dz) +
∫
[0,∞)m×F

B0f(z, u, v)ν0(dz × du× dv) +
m∑

i=1

∫
[0,∞)m

Cif(z)µi(dz) = 0.

(3.20)
The following theorem is a special case of results in [7].

Theorem 3.1 Suppose µ0, ν0, and µ1, . . . , µm satisfy (3.20). Then there exist (Z, Λ0, Λi)
such that

f(Z(t))−
∫ t

0
Lf(Z(s))ds−

∫
[0,∞)m×F×[0,t]

B0f(z, u, v)Λ0(dz × du× dv × ds)

−
m∑

i−1

∫
Di×[0,t]

Cif(z)Λi(dz × ds)

is a martingale for each f ∈ C2
c , and Z and the increments of Λ0, . . . , Λm are stationary with

E[f(Z(t))] =
∫

fdµ0

E[Λ0(G×H × [0, t])] = ν0(G×H)t

E[Λi(G× [0, t])] = µi(G)t
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