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POISSON REPRESENTATIONS OF BRANCHING MARKOV AND
MEASURE-VALUED BRANCHING PROCESSES

BY THOMAS G. KURTZ1 AND ELIANE R. RODRIGUES2

University of Wisconsin, Madison and UNAM

Representations of branching Markov processes and their measure-
valued limits in terms of countable systems of particles are constructed for
models with spatially varying birth and death rates. Each particle has a lo-
cation and a “level,” but unlike earlier constructions, the levels change with
time. In fact, death of a particle occurs only when the level of the particle
crosses a specified level r , or for the limiting models, hits infinity. For branch-
ing Markov processes, at each time t , conditioned on the state of the process,
the levels are independent and uniformly distributed on [0, r]. For the limit-
ing measure-valued process, at each time t , the joint distribution of locations
and levels is conditionally Poisson distributed with mean measure K(t) × Λ,
where Λ denotes Lebesgue measure, and K is the desired measure-valued
process.

The representation simplifies or gives alternative proofs for a variety of
calculations and results including conditioning on extinction or nonextinc-
tion, Harris’s convergence theorem for supercritical branching processes, and
diffusion approximations for processes in random environments.

1. Introduction. Measure-valued processes arise naturally as infinite system
limits of empirical measures of finite particle systems. A number of approaches
have been developed which preserve distinct particles in the limit and which give
a representation of the measure-valued process as a transformation of the limiting
infinite particle system. Most of these representations [5–7, 35] have exploited
properties of exchangeable sequences, identifying the state of the measure-valued
process as a multiple of the de Finetti measure of the sequence, or, as in [35], as a
transformation of the de Finetti measure of a sequence that gives both a location
and a mass for the distinct particles.

The primary limitation of the representations given for measure-valued branch-
ing processes in [7] is that the branching rates must be independent of particle
location. This restriction was relaxed in [31] for critical and subcritical branching,
but that representation does not seem to provide much useful insight and would be
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difficult to extend to supercritical processes. A second limitation of the approach
in [7] is that, at least without major additional effort, it applies only to models in
which the states are finite measures.

In the present paper, we give another construction which, although similar to
that of [31], applies immediately to both subcritical and supercritical processes (as
well as processes that are subcritical in some locations and supercritical in others).
The construction also applies immediately to models with infinite mass. In addi-
tion, the new construction seems to be a much more effective tool for analyzing
the measure-valued processes obtained.

We introduce the basic ideas of the construction in Section 2, giving results
for population models without location or type. As in the earlier work, the jus-
tification for the representation is a consequence of a Markov mapping theorem,
Theorem A.15. The Feller diffusion approximation for nearly critical branching
processes is obtained as a consequence of the construction. Section 3 gives the
construction for the general branching Markov process and the Dawson–Watanabe
superprocess limit. Section 4 gives a variety of applications and extensions, in-
cluding conditioning on nonextinction, models with heavy-tailed offspring distrib-
utions and processes in random environments. The Appendix contains background
material and a number of technical lemmas.

2. Simple examples. In this section, we give particle representations for pure
death and continuous time Markov branching processes and illustrate how the in-
finite system limit can be derived immediately. The main point is to introduce the
notion of the level of a particle in the simplest possible settings.

2.1. Pure death processes. For r > 0, let ξ1(0), . . . , ξn0(0) be independent
random variables, uniformly distributed on [0, r]. For b > 0, let

ξ̇i (t) = bξi(t),

so ξi(t) = ξi(0)ebt , and define N(t) = #{i : ξi(t) < r} and U(t) = (U1(t), . . . ,

UN(t)), where the Uj(t) are the values of the ξi(t) that are less than r . The Ui(t)

will be referred to as the levels of the particles. The level of a particle being below
r means that the particle is “alive,” and as soon as its level reaches r the particle
“dies.” Note that N(t) is the number of particles “alive” in the system at time t .

Let f (u,n) = ∏n
i=1 g(ui), where 0 ≤ g ≤ 1, g is continuously differentiable

and g(ui) = 1 for ui > r . [The “n” in f (u,n) is, of course, redundant, but it will
help clarify some of the later calculations.] Then

d

dt
f (U(t),N(t)) = Af (U(t),N(t)),

where

Af (u,n) = f (u,n)

n∑
i=1

buig
′(ui)/g(ui).
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Note that Af (u,n) may also be written as

Af (u,n) =
n∑

i=1

buig
′(ui)

∏
j �=i

g(uj ).

Hence, even if g(ui) = 0 for some i, the expression for Af (u,n) still makes sense.
Let αr(n, du) be the joint distribution of n i.i.d. uniform [0, r] random variables.

Setting e−λg = r−1 ∫ r
0 g(z) dz, f̂ (n) = ∫

f (u,n)αr(n, du) = e−λgn and∫
Af (u,n)αr(n, du) = ne−λg(n−1)br−1

∫ r

0
zg′(z) dz

= bne−λg(n−1)r−1
∫ r

0

(
g(r) − g(z)

)
dz

= bne−λg(n−1)(1 − e−λg )

= Cf̂ (n),

where

Cf̂ (n) = bn[f̂ (n − 1) − f̂ (n)],
that is, the generator of a linear death process. Of course, the conditional distribu-
tion of U(t) given N(t) is just αr(N(t), ·).

Let Ft = σ(U(s) : s ≤ t) and F N
t = σ(N(s) : s ≤ t). Then trivially,

f (U(0),N(0)) = f (U(t),N(t)) −
∫ t

0
Af (U(s),N(s)) ds

is an {Ft }-martingale, and Lemma A.13 implies

E[f (U(t),N(t))|F N
t ] −

∫ t

0
E[Af (U(s),N(s))|F N

s ]ds

= f̂ (N(t)) −
∫ t

0
Cf̂ (N(s)) ds

is a {F N
t }-martingale. Consequently, N is a solution of the martingale problem for

C and hence is a linear death process. Of course, this observation follows imme-
diately from the fact that τ r

i defined by Ui(0)ebτ r
i = r is exponentially distributed

with parameter b, but the martingale argument illustrates a procedure that works
much more generally.

2.2. A simple branching process. For f and g as above, a > 0, r > 0 and
−∞ < b ≤ ra, define the generator

Arf (u,n) = f (u,n)

n∑
i=1

2a

∫ r

ui

(
g(v) − 1

)
dv

(2.1)

+ f (u,n)

n∑
i=1

(au2
i − bui)

g′(ui)

g(ui)
.
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We refer to ui as the level of the ith particle, and as in the pure death example,
a particle “dies” when its level reaches r . The process with generator (2.1) has the
following properties. The particle levels satisfy

U̇i(t) = aU2
i (t) − bUi(t),

and a particle with level z gives birth at rate 2a(r − z) to a particle whose initial
level is uniformly distributed between z and r . Uniqueness for the martingale prob-
lems for Ar follows by first checking uniqueness for the operator D given by the
second term alone, and then showing that uniqueness holds up to the first time that
the process includes n particles by observing that Ar truncated at n is a bounded
perturbation of D. Finally, the first hitting time of n goes to infinity as n → ∞ (cf.
Problem 28 in Section 4.11 of [9]).

As before, f̂ (n) = ∫
f (u,n)αr(n, du) = e−λgn. To calculate

∫
Ar(f u,n) ×

αr(n, du), observe that

r−12a

∫ r

0
g(z)

∫ r

z

(
g(v) − 1

)
dv dz = are−2λg − 2ar−1

∫ r

0
g(z)(r − z) dz

and

r−1
∫ r

0
(az2 − bz)g′(z) dz = −r−1

∫ r

0
(2az − b)

(
g(z) − 1

)
dz

= −2ar−1
∫ r

0
zg(z) dz + ar + b(e−λg − 1).

Then∫
Af (u,n)αr(n, du) = ne−λg(n−1)(are−2λg − 2are−λg + ar + b(e−λg − 1)

)
= Cf̂ (n),

where

Cf̂ (n) = ran
(
f̂ (n + 1) − f̂ (n)

)+ (ra − b)n
(
f̂ (n − 1) − f̂ (n)

)
(2.2)

is the generator of a branching process.
Unlike the linear death example, it is not immediately obvious that αr(N(t), ·)

is the conditional distribution of U(t) given F N
t = σ(N(s) : s ≤ t); however, The-

orem A.15 and the fact that a solution of the martingale problem for C starting
from N(0) exists gives the existence of a solution (U(t),N(t)) of the martingale
problem for Ar such that for all t ≥ 0, αr(N(t), ·) is the conditional distribution of
U(t) given F N

t . To apply Theorem A.15, take ψ(u,n) = n in (A.15) and assume
E[N(0)] < ∞. Any solution of the martingale problem for C with E[N(0)] < ∞
will satisfy E[N(t)] = E[N(0)]ebt , for all t ≥ 0. The moment assumption can be
eliminated by conditioning.

We conclude that for any distribution for N(0), there is a solution (U,N) of
the martingale problem for A such that N is a solution of the martingale problem
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for C, that is, N is a linear birth and death process with birth rate ar and death rate
ar − b. Uniqueness holds for the martingale problem for A, so for any solution
of the martingale problem for A satisfying P {U(0) ∈ 	|N(0)} = αr(N(0),	), we
have that N is a solution of the martingale problem for C.

This representation can be used to do simple calculations. For example, let
U∗(0) be the minimum of U1(0), . . . ,UN(0). Then for all t , all levels are above

U∗(t) = U∗(0)e−bt

1 − (a/b)U∗(0)(1 − e−bt )
.

Let τ = inf{t :N(t) = 0}. Then if τ is finite, U∗(τ ) = r . In particular, if N(0) = n,
then

P {τ > t} = P {U∗(t) < r} = P

{
U∗(0) <

r

e−bt − (ra/b)(e−bt − 1)

}

= 1 −
(
e−bt − ra

b
(e−bt − 1)

)−n

.

Note that the assumption that b ≤ ra ensures that e−bt − ra
b

(e−bt − 1) ≥ 1.
In the branching process, the average lifetime of an individual is (ar − b)−1

which will be small if r is large. Consequently, it is important to note that the
levels do not represent single individuals in the branching process but whole lines
of descent. For example, at least in the critical or subcritical case, the individual
with level U∗(0) at time zero is the individual whose line of descent lasts longer
than that of any other individual alive at time zero.

2.2.1. Conditioning on nonextinction. If b ≤ 0, then conditioning on nonex-
tinction, that is, conditioning on τ > t and letting t → ∞, is equivalent to con-
ditioning on U∗(0) = 0. Conditioned on U∗(0) = 0, U1(0), . . . ,UN(0)(0) include
N(0) − 1 independent, uniform [0, r] random variables and one that equals zero.
If one of the initial levels is zero, then the solution of the martingale problems for
Ar gives a solution for

Ac
rf (u,n) = f (u,n)

n−1∑
i=1

2a

∫ r

ui

(
g(v) − 1

)
dv + f (u,n)

n−1∑
i=1

(au2
i − bui)

g′(ui)

g(ui)

+ f (u,n)2a

∫ r

0

(
g(v) − 1

)
dv,

and taking αc
r (n, du) to be the distribution of n independent random variables, one

of which is zero and the others uniform [0, r], we see that N is a solution of the
martingale problem for

Ccf̂ (n) = ra(n + 1)
(
f̂ (n + 1) − f̂ (n)

)+ (ra − b)(n − 1)
(
f̂ (n − 1) − f̂ (n)

)
.
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2.2.2. Conditioning on extinction. If 0 < b < ra, then conditioning on ex-
tinction is equivalent to conditioning on U∗(0) > b

a
. Conditioned on U∗(0) > b

a
,

U1(0), . . . ,UN(0)(0) are independent uniform [ b
a
, r]. Defining Vi(t) = Ui(t) − b

a
,

V is a solution of the martingale problem for

Arf (v,n) = f (v,n)

n∑
i=1

2a

∫ r−b/a

vi

(
g(z) − 1

)
dz + f (v,n)

n∑
i=1

(av2
i + bvi)

g′(vi)

g(vi)
,

so N is a solution of the martingale problem for

Cf̂ (n) = (ra − b)n
(
f̂ (n + 1) − f̂ (n)

)+ ran
(
f̂ (n − 1) − f̂ (n)

)
,

which is the generator of a subcritical branching process.

2.2.3. Convergence as t → ∞. Again, in the supercritical case, 0 < b < ra, if
0 < U∗(0) < b

a
, then N(t) → ∞. Observe that

V∗(∞) = lim
t→∞ ebtU∗(t) = U∗(0)

1 − (a/b)U∗(0)

exists, and a similar limit will hold for any level whose initial value is below b
a

.
Setting ξ(t) = ∑

δebtUi(t)
, the counting measure ξ(t) converges almost surely in

the sense that

lim
t→∞

∫ ∞
0

f (u)ξ(t, du) = lim
t→∞

∑
i

f (ebtUi(t)) =
∫ ∞

0
f (u)ξ(∞, du) a.s.

for each bounded, continuous, nonnegative f with compact support in [0,∞). Let
{F N

t } be the filtration generated by N . Then as in (A.6),

E
[
e− ∫ rebt

0 f (u)ξ(t,du)|F N
t

]= e
−F t

f r−1e−btN(t)
,(2.3)

where

F t
f = −rebt log

(
1 − r−1e−bt

∫ rebt

0

(
1 − e−f (u))du

)
→

∫ ∞
0

(
1 − e−f (u))du.

The left-hand side of (2.3) converges almost surely by Lemma A.14. Consequently,

W ≡ lim
t→∞ e−btN(t)

exists almost surely. Note that W > 0 if and only if limt→∞ N(t) = ∞.
Conditioned on W , ξ(∞) is a Poisson point process with intensity r−1W , and

V∗(∞) is exponentially distributed with parameter r−1W , with the understanding
that V∗(∞) = ∞ if W = 0. It follows that for λ > 0,

P {r−1V∗(∞) > λ|V∗(∞) < ∞}
= E[e−λW |W > 0]

= P

{
r−1U∗(0)

(
1 − a

b
U∗(0)

)−1

> λ
∣∣∣U∗(0) <

b

a

}
.
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If N(0) = 1, then U∗(0) is uniformly distributed on [0, r], and hence P {W > 0} =
b
ra

and

E[e−λW |W > 0] = 1

1 + (ra/b)λ
,

that is, W is exponentially distributed with parameter b
ra

. Of course, we have sim-
ply rederived a classical result of Harris [17].

2.3. Feller diffusion approximation. As r → ∞, Arf in (2.1) converges for
every continuously differentiable g such that 0 ≤ g ≤ 1 and g(z) = 1 for z ≥ rg ,
that is, for f (u) =∏

i g(ui), in the limit

Af (u) = f (u)
∑
i

2a

∫ rg

ui

(
g(v) − 1

)
dv + f (u)

∑
i

(au2
i − bui)

g′(ui)

g(ui)
.(2.4)

If n/r → y as r → ∞, then αr(n, ·) converges to α(y, ·), where α(y, ·) is the
distribution of a Poisson process ξy on [0,∞) with intensity y, in the sense that∫

[0,r]n
f (u)αr(n, du) → E

[
e
∫∞

0 logg(z) dξy(z)]= e−y
∫∞

0 (1−g(z)) dz.

Note that

f̂ (y) = αf (y) =
∫

f (u)α(y, du) = e−y
∫∞

0 (1−g(z)) dz = e−yβg ,

and using Lemma A.3

αAf (y) = e−yβg

(
2ay

∫ ∞
0

g(z)

∫ ∞
z

(
g(v) − 1

)
dv dz

+ y

∫ ∞
0

(az2 − bz)g′(z) dz

)
= e−yβg

(
2ay

∫ ∞
0

g(z)

∫ ∞
z

(
g(v) − 1

)
dv dz

− y

∫ ∞
0

(2az − b)
(
g(z) − 1

)
dz

)
= e−yβg

(
2ay

∫ ∞
0

g(z)

∫ ∞
z

(
g(v) − 1

)
dv dz

− 2ay

∫ ∞
0

∫ ∞
z

(
g(v) − 1

)
dv dz

+ by

∫ ∞
0

(
g(z) − 1

)
dz

)
= e−yβg (ayβ2

g − byβg)

= Cf̂ (y),
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where

Cf̂ (y) = ayf̂ ′′(y) + byf̂ ′(y).

Again, we can apply Theorem A.15 taking

γ (u) = lim sup
z→∞

1

z

∑
i

1[0,z](ui)

and ψ(u) =∑
i e

−ui , so

|Af (u)| ≤ [2arg + ‖g′‖(ar2
g + |b|rg)]ergψ(u)

and
∫

ψ(u)α(y, du) = y. If Ỹ is a solution of the martingale problem for C with
E[Ỹ (0)] < ∞, then E[Ỹ (t)] = ebtE[Ỹ (0)] and the conditions of Theorem A.15
are satisfied. Consequently, there is a solution U of the martingale problem for A

such that

Y(t) = lim sup
z→∞

1

z

∑
i

1[0,z](Ui(t))(2.5)

is a solution of the martingale problem for C with the same distribution as Ỹ . [Note
that, with probability one, the lim sup in (2.5) is actually a limit.]

If U is a solution of the martingale problem for A, then Ur(t) = {Ui(t) :Ui(t) <

r} defines a solution of the martingale problem for Ar . Uniqueness for Ar follows
by the argument outlined in Section A.6, and uniqueness for Ar implies unique-
ness for A. Since uniqueness holds for the martingale problem for A, by Theo-
rem A.15(c), uniqueness holds for C also. In general, if U is a solution of the
martingale problem for A and

∑
i δUi(0) is a Poisson random measure with mean

measure yΛ, where Λ denotes Lebesgue measure, then (2.5) is a solution of the
martingale problem for C.

2.4. The genealogy and the number of ancestors. For each T > 0, there is a
solution of

u̇T (t) = auT (t)2 − buT (t)(2.6)

satisfying uT (t) < ∞ for t < T and limt→T − uT (t) = ∞. Every particle alive
at time T is a descendent of some particle Ui(t) alive at time t < T satisfying
Ui(t) < uT (t). Note that the converse is also true. If Ui(t) < uT (t), then Ui(t) has
descendants alive at time T . In fact, a positive fraction of the particles alive at time
T will be descendants of Ui(t).

If Y(T ) > 0, then there are infinitely many particles alive at time T , but since

ξ(t, [0, uT (t))) < ∞,

they are all descendants of finitely many ancestors alive at time t . Note that t →
ξ(t, [0, uT (t))) is nondecreasing and increases by jumps of +1. It is not possible



POISSON REPRESENTATIONS 947

to recover the full genealogy just from the levels since a new individual appearing
at time t with level v could be the offspring of any existing individual with level
Ui(t) < v. In Section 3, particles will be assigned a location (or type), and if these
locations evolve in such a way that two particles have the same location only if one
is the offspring of the other and then only at the instant of birth, it will be possible
to reconstruct the full genealogy from the levels and locations.

2.5. Branching processes in random environments. Assume that a and b are
functions of another stochastic process ξ , say an irreducible, finite Markov chain
with generator Q. Then, for functions of the form f (l, u,n) = f0(l)f1(u) =
f0(l)

∏n
i=1 g(ui), consider a scaled generator

Arf (l, u,n) = rf1(u)Qf0(l) + f (l, u,n)

n∑
i=1

2a(l)

∫ r

ui

(
g(v) − 1

)
dv

+ f (l, u,n)

n∑
i=1

(
a(l)u2

i − √
rb(l)ui

)g′(ui)

g(ui)
,

which, as in (2.2), corresponds to a process with generator

Crf̂ (l, n) = rQf̂ (l, n) + a(l)rn
(
f̂ (l, n + 1) − f̂ (n)

)
+ (

ra(l) − √
rb(l)

)
n
(
f̂ (l, n − 1) − f̂ (l, n)

)
,

where f̂ (l, n) = f0(l)e
−λgn. The process corresponding to Cr is a branching

process in a random environment determined by ξ . Writing the process corre-
sponding to Ar as (

ξ(rt),U1(t), . . . ,UNr(t)

)
the process corresponding to Cr is (ξ(rt),Nr(t)).

Note that in this example, the levels satisfy

U̇i(t) = a(ξ(rt))U2
i (t) − √

rb(ξ(rt))Ui(t).

Let π be the stationary distribution for Q, and assume that
∑

l π(l)b(l) = 0. Then,
by Theorem 2.1 or [3], for example,

Z(r)(t) = √
r

∫ t

0
b(ξ(rs)) ds

converges to a Brownian motion Z with variance parameter∑
k

∑
l

π(k)qkl

(
h0(l) − h0(k)

)2 = −2
∑

l

π(l)h0(l)b(l) ≡ 2c,

where h0(l) is a solution of Qh0(l) = b(l). In the limit, by Theorem 5.10 of [33]
(applying a truncation argument to extend the boundedness assumption), the levels
will satisfy

dUi(t) = (
aUi(t)

2 + cUi(t)
)
dt + √

2cUi(t) dW(t),(2.7)
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where a =∑
π(l)a(l).

Applying ideas from [28], we can obtain convergence for the full system by
considering the asymptotic behavior of the generator. Setting

h1(l, u, n) = h0(l)f1(u,n)

n∑
i=1

ui

g′(ui)

g(ui)
,

we have

Ar

(
f1 + 1√

r
h1

)
(l, u, n)

= f1(u,n)

n∑
i=1

2a(l)

∫ r

ui

(
g(v) − 1

)
dv + f1(u,n)

n∑
i=1

a(l)u2
i

g′(ui)

g(ui)

+ 1√
r
h0(l)f1(u,n)

(
n∑

i=1

ui

g′(ui)

g(ui)

)
n∑

i=1

2a(l)

∫ r

ui

(
g(v) − 1

)
dv

+ 1√
r

n∑
i=1

h0(l)f1(u,n)

∫ r

ui

vg′(v) dv

+ 1√
r
h0(l)f1(u,n)

n∑
j=1

(
a(l)u2

j − √
rb(l)uj

)

×
(∑

i �=j

ui

g′(ui)g
′(uj )

g(ui)g(uj )
+ g′(uj ) + ujg

′′(uj )

g(uj )

)
,

and passing to the limit as r → ∞, Ar(f1 + 1√
r
h1) converges to

Ãf1(u, l)

= f1(u)
∑
i

2a(l)

∫ ∞
ui

(
g(v) − 1

)
dv + f1(u)

∑
i

a(l)u2
i

g′(ui)

g(ui)

− h0(l)b(l)f1(u)
∑
j

(∑
i �=j

ujui

g′(ui)g
′(uj )

g(ui)g(uj )
+ ujg

′(uj ) + u2
j g

′′(uj )

g(uj )

)
.

Finally, we can find an additional perturbation h2 so that Ar(f1 + 1√
r
h1 + 1

r
h2)

converges to

Af1(u) = f1(u)
∑
i

2a

∫ ∞
ui

(
g(v) − 1

)
dv + f1(u)

∑
i

au2
i

g′(ui)

g(ui)

+ cf1(u)
∑
j

(∑
i �=j

ujui

g′(ui)g
′(uj )

g(ui)g(uj )
+ ujg

′(uj ) + u2
j g

′′(uj )

g(uj )

)
.
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This convergence assures convergence of the finite models to an infinite particle
model. The particle birth process is the same as in Section 2.3, but the levels satisfy
(2.7) where the Brownian motion W is the same for all levels.

Let α and βg be as in Section 2.3, and note that

βg =
∫ ∞

0

(
1 − g(z)

)
dz =

∫ ∞
0

zg′(z) dz

= −1

2

∫ ∞
0

z2g′′(z) dz.

We have from Lemma A.3

αAf (y) = e−yβg

(
2ay

∫ ∞
0

g(z)

∫ ∞
z

(
g(v) − 1

)
dv dz

+ y

∫ ∞
0

(az2 + cz)g′(z) dz

+ cy2
(∫ ∞

0
zg′(z) dz

)2

+ cy

∫ ∞
0

z2g′′(z) dz

)
= e−yβg

(
(ay + cy2)β2

g − cyβg

)
= Cf̂ (y),

where

Cf̂ (y) = (ay + cy2)f̂ ′′(y) + cyf̂ ′(y),

which identifies the diffusion limit for r−1Nr .
Theorem A.15 can be extended to cover models with non-Markovian environ-

ments, that is, the process ξ is specified directly rather than through a generator.
The diffusion limit is then obtained by verifying convergence of the level processes
and applying Theorem A.12.

For early work on diffusion approximations for branching processes in random
environments, see [18, 26, 29] and also [9], Section 9.3.

3. Representations of measure-valued branching processes.

3.1. Branching Markov processes. We now consider particles with both a
level ui and a location xi in a complete, separable metric space E. Since the in-
dexing of the particles is not important, we identify a state (x,u,n) of our process
with the counting measure μ(x,u) =∑n

i=1 δ(xi ,ui). Let

f (x,u,n) =
n∏

i=1

g(xi, ui) = e
∫

logg dμ(x,u) ,
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where g :E × [0,∞) → (0,1]. We assume that as a function of x, g is in the
domain D(B) of the generator of a Markov process in E, g is continuously differ-
entiable in u and g(x,u) = 1 for u ≥ r . We set

Arf (x,u,n) = f (x,u,n)

n∑
i=1

Bg(xi, ui)

g(xi, ui)

+ f (x,u,n)

n∑
i=1

2a(xi)

∫ r

ui

(
g(xi, v) − 1

)
dv(3.1)

+ f (x,u,n)

n∑
i=1

(
a(xi)u

2
i − b(xi)ui

) ∂ui
g(xi, ui)

g(xi, ui)
.

Each particle has a location Xi(t) in E and a level Ui(t) in [0, r]. The locations
evolve independently as Markov processes with generator B; the levels satisfy

U̇i(t) = a(Xi(t))U
2
i (t) − b(Xi(t))Ui(t);(3.2)

particles give birth at rates 2a(Xi(t))(r − Ui(t)); the initial location of a new
particle is the location of the parent at the time of birth; and the initial level
is uniformly distributed on [Ui(t), r]. Particles that reach level r die. Setting
e−λg(xi ) = ĝ(xi) = r−1 ∫ r

0 g(xi, z) dz and f̂ (x, n) = ∏n
i=1 ĝ(xi) = e−∑n

i=1 λg(xi),
calculating as in Section 2.2, we have

Crf̂ (x, n) =
n∑

i=1

Bxi
f̂ (x, n) +

n∑
i=1

ra(xi)
(
f̂
(
b(x|xi), n + 1

)− f̂ (x, n)
)

+
n∑

i=1

(
ra(xi) − b(xi)

)(
f̂
(
d(x|xi), n − 1

)− f̂ (x, n)
)
,

where Bxi
is the generator B applied to f̂ (x, n) as a function of xi , b(x|xi) is

the collection of n + 1 particles in E obtained from x by adding a copy of the
ith particle xi , and d(x|xi) is the collection of n − 1 particles obtained from x by
deleting the ith particle, that is, if μx denotes

∑n
i=1 δxi

, then for z ∈ E,

μb(x|z) = δz +
n∑

i=1

δxi
, μd(x|xj ) =

n∑
i=1

δxi
− δxj

.

If ra(z)− b(z) ≥ 0 for all z ∈ E, then C is the generator of a branching Markov
process with particle motion determined by B , the birth rate for a particle at z ∈ E

given by ra(z) and the death rate given by ra(z) − b(z).
With Theorem A.15 in mind, we make the following assumptions on B , a, b

and r . C(E) is the space of continuous functions on E, C(E) the space of bounded
continuous functions on E and M(E) the space of Borel measurable functions
on E.
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CONDITION 3.1.

(i) B ⊂ C(E) × C(E), D(B) is closed under multiplication and is separating.
(ii) f ∈ D(A) satisfies f (x,u,n) = ∏n

i=1 g(xi, ui), where g(z, v) = ∏m
l=1(1 −

gl
1(z)g

l
2(v)) for gl

1 ∈ D(B), gl
2 differentiable with support in [0, r] and 0 ≤

gl
1(z)g

l
2(v) ≤ ρg < 1 for all l, z and v.

(iii) There exists ψB ∈ C(E), ψB ≥ 0 and constants cg ≥ 0, for each g in (ii), such
that

sup
u

|Bg(x,u)| ≤ cgψB(x), x ∈ E.

(iv) Defining B0 = {(g, (ψB ∨ 1)−1Bg) :g ∈ D(B)}, B0 is graph separable (see
Section A.5).

(v) a, b ∈ M(E), a ≥ 0, r > 0 and ra − b ≥ 0.

We have the following generalization of the results of Section 2.2.

THEOREM 3.2. Assume Condition 3.1. For x ∈ En and u ∈ [0,∞)n, let

ψ(x,u) = 1 +
n∑

i=1

(
ψB(xi) + a(xi) + |b(xi)|)e−ui

and

ψ̃(x) = 1 +
n∑

i=1

(
ψB(xi) + a(xi) + |b(xi)|)(1 − e−r ).

If X is a solution of the martingale problem for C satisfying

E

[∫ t

0
ψ̃(X(s)) ds

]
< ∞ for all t ≥ 0,(3.3)

then there is a solution (X̃, Ũ) of the martingale problem for Ar such that X and
X̃ have the same distribution.

REMARK 3.3. For many models, ψB , a and b will be uniformly bounded, and
the moment conditions (3.3) will hold as long as E[X(0)] < ∞.

PROOF OF THEOREM 3.2. Note that

|Arf (x,u,n)| ≤ (
2r + (1 + r2 + r)dg

)
erψ(x,u),

where dg depends on the gl
1, gl

2, ∂vg
l
2 and B

∏
g

lk
1 for all choices of {l1, . . . , lj } ⊂

{1, . . . ,m}. The result then follows by application of Theorem A.15. �

Theorem 3.2 applies to finite branching Markov processes. Similar results also
hold for locally finite processes.
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THEOREM 3.4. In addition to Condition 3.1, assume that∫ ∞
0

|g(x,u) − 1|du + sup
u

(u + u2) ∂ug(x,u) ≤ cgψB(x).

For x ∈ E∞ and u ∈ [0,∞)∞, let

ψ(x,u) = 1 +
∞∑
i=1

ψB(xi)
(
1 + a(xi) + |b(xi)|)e−ui

and

ψ̃(x) = 1 +
∞∑
i=1

ψB(xi)
(
1 + a(xi) + |b(xi)|)(1 − e−r ).

If X is a solution of the martingale problem for C satisfying

E

[∫ t

0
ψ̃(X(s)) ds

]
< ∞ for all t ≥ 0,(3.4)

then there is a solution (X̃, Ũ ) of the martingale problem for Ar such that X and
X̃ have the same distribution.

PROOF. Note that

Arf (x,u,n) ≤ 2cge
rψ(x,u).

The result then follows by application of Theorem A.15. �

EXAMPLE 3.5. Suppose that a and b are bounded, and B is a diffusion op-
erator with bounded drift and diffusion coefficients. Then we can take D(B) to
be the collection of nonnegative C2-functions with compact support and ψB(z) =

1
(1+|z|2)β , for β > 0. If E[∑i ψB(Xi(0))] < ∞, then there exists a solution of the
martingale problems for C satisfying sups≤t E[∑i ψB(Xi(s))] < ∞ and hence
E[∫ t

0 ψ̃(X(s)) ds] < ∞.

3.2. Basic limit theorem. As in Section 2.3, if r → ∞, Af given by (3.1)
becomes

Af (x,u) = f (x,u)
∑
i

Bg(xi, ui)

g(xi, ui)

+ f (x,u)
∑
i

2a(xi)

∫ rg

ui

(
g(xi, v) − 1

)
dv(3.5)

+ f (x,u)
∑
i

(
a(xi)u

2
i − b(xi)ui

)∂ui
g(xi, ui)

g(xi, ui)
,
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where g :E × [0,∞) → (0,1] has the property that there exists rg such that
g(z, v) = 1 for v > rg , and f (x,u) =∏

i g(xi, ui). We can identify the state space
of the corresponding process with a subset of (E × [0,∞))∞ or, since order is not
important, with a subset of N (E ×[0,∞)), the counting measures on E ×[0,∞).
Define

Nf

(
E × [0,∞)

)= {
μ ∈ N

(
E × [0,∞)

)
:μ
(
E × [0, u])< ∞ ∀0 < u < ∞}

,

where the topology for Nf (E × ∞) is given by the requirement that μn → μ if
and only if

∫
f dμn → ∫

f dμ for all f ∈ C(E × [0,∞) for which there exists
uf > 0 such that f (x,u) = 0 for u ≥ uf . (See Section A.3 for a discussion of the
appropriate topology to use in the infinite measure setting.)

As r → ∞, the particle process converges to a process in which particle lo-
cations evolve as independent Markov processes with generator B , levels sat-
isfy (3.2), a particle with level Ui(t) gives birth to new particles at its location
Xi(t) and level in the interval [Ui(t) + c,Ui(t) + d] at rate 2a(Xi(t))(d − c).
A particle dies when its level hits ∞. The level of a particle born at time t0 (or in
the initial population, if t0 = 0) with initial level Ui(t0) satisfies

Ui(t) = Ui(t0)e
− ∫ t

t0
b(Xi(s)) ds

1 − Ui(t0)
∫ t
t0

e
− ∫ v

t0
b(Xi(s)) ds

a(Xi(v)) dv
,

until it hits infinity. If b ≤ 0 and a is bounded away from zero, then Ui will hit
infinity in finite time.

If we extend the path Xi back along its ancestral path to time zero, we would
have

Ui(t) ≥ u0e
− ∫ t

0 b(Xi(s)) ds

1 − u0
∫ t

0 e− ∫ v
0 b(Xi(s)) dsa(Xi(v)) dv

,

where u0 is the level of the particle’s ancestor at time zero, and Xi(s) is the position
of the ancestor at time s ≤ t . Since we are assuming that the initial position of an
offspring is that of the parent, Xi is a solution of the martingale problem for B .

PROPOSITION 3.6. Let (X,U) be a solution of the martingale problem for A

given by (3.5). Let (Xr,Ur) consist of the subset of particles for which Ui < r ,
that is, ∑

δ(Xr
j (t),Ur

j (t)) =∑
δ(Xi(t),Ui(t))1[0,r)(Ui(t)).

If a(z)r − b(z) ≥ 0 for all z ∈ E, then (Xr,Ur) is a solution of the martingale
problem for Ar given by (3.1).
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REMARK 3.7. The condition a(z)r − b(z) ≥ 0 for all z ∈ E ensures that any
particle that is above level r at time t will stay above level r at all future times.

PROOF OF PROPOSITION 3.6. The proposition follows by the observation that
Ar can be obtained from A by restricting the domain to f (x,u) =∏

i g(xi, ui) for
which g(z, v) = 1 for v ≥ r . �

3.3. The genealogy. Assume for the moment that a and b do not depend on x.
If the location process has the property that at the time of a birth only the offspring
has the same location as the parent (e.g., if the location process is Brownian mo-
tion), then the full genealogy can be recovered from knowledge of the levels and
locations. The collection of ancestors at time t < T of the particles alive at time
T is {(Xi(t),Ui(t)) :Ui(t) < uT (t)}, where uT (t) is given by (2.6). The number
of particles in this collection is nondecreasing in t and increases only by jumps of
+1. The parent of the new particle is identifiable by the fact that only the parent
and the offspring will be at the same location.

If a and b depend on x, the full genealogy is still determined by the locations and
levels of the particles, but recovering the genealogy is more complicated since it
may not be possible to tell whether or not a particle (Xi(t),Ui(t)) has descendants
alive at time T > t just from information available at time t . However, some easy
observations can be made. For example, if infx a(x) > 0 and supx b(x) < ∞, then
for t < T , all particles alive at time T are descendants of finitely many particles
alive at time t .

3.4. The measure-valued limit. The generator for a Dawson–Watanabe super-
process is typically of the form

Cf̂ (μ) = exp{−〈h,μ〉}
∫
E

(−Bh(y) − F(h(y), y)
)
μ(dy),

for f̂ (μ) = exp{−〈h,μ〉}, where 〈h,μ〉 = ∫
E h(y)μ(dy) and h is an appropriate

function in D(B) (see, e.g., Theorem 9.4.3 of [9]). For superprocesses arising from
branching models with offspring distributions having finite variances, F should be
of the form F(h(y), y) = −a(y)h(y)2 + b(y)h(y).

For μ ∈ Mf (E), let α(μ,dx × du) be the distribution of a Poisson random
measure on E × [0,∞) with mean measure μ × Λ. Then setting h(y) = ∫∞

0 (1 −
g(y, v)) dv,

f̂ (μ) = αf (μ) =
∫

f (x,u)α(μ,dx × du)

= exp
{∫

E

∫ ∞
0

(
g(y, v) − 1

)
dv μ(dy)

}
= exp{−〈h,μ〉}.
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Using Lemma A.3, we have

αAf (μ) =
∫
E

∫ ∞
0

Bg(y, v) dv μ(dy) exp{−〈h,μ〉}

+
∫
E

∫ ∞
0

2a(y)g(y, z)

∫ ∞
z

(
g(y, v) − 1

)
dv dzμ(dy) exp{−〈h,μ〉}

+
∫
E

∫ ∞
0

(
a(y)v2 − b(y)v

)
∂vg(y, v) dv μ(dy) exp{−〈h,μ〉}

=
∫
E

∫ ∞
0

Bg(y, v) dv μ(dy) exp{−〈h,μ〉}

+
∫
E

∫ ∞
0

2a(y)g(y, z)

∫ ∞
z

(
g(y, v) − 1

)
dv dzμ(dy) exp{−〈h,μ〉}

−
∫
E

∫ ∞
0

(
2a(y)v − b(y)

)(
g(y, v) − 1

)
dv μ(dy) exp{−〈h,μ〉}

=
∫
E

∫ ∞
0

Bg(y, v) dv μ(dy) exp{−〈h,μ〉}

+
∫
E

∫ ∞
0

2a(y)g(y, z)

∫ ∞
z

(
g(y, v) − 1

)
dv dzμ(dy) exp{−〈h,μ〉}

−
∫
E

∫ ∞
0

2a(y)

∫ ∞
z

(
g(y, v) − 1

)
dv μ(dy) exp{−〈h,μ〉}

+
∫
E

∫ ∞
0

b(y)
(
g(y, v) − 1

)
dv μ(dy) exp{−〈h,μ〉}

=
∫
E

∫ ∞
0

Bg(y, v) dv μ(dy) exp{−〈h,μ〉}

+
∫
E

a(y)

(∫ ∞
0

(
g(y, v) − 1

)
dv

)2

μ(dy) exp{−〈h,μ〉}

+
∫
E

∫ ∞
0

b(y)
(
g(y, v) − 1

)
dv μ(dy) exp{−〈h,μ〉}

=
∫
E

(−Bh(y) + a(y)h(y)2 − b(y)h(y)
)
μ(dy) exp{−〈h,μ〉} = Cf̂ (μ).

But C is the generator for a superprocess, so for each μ ∈ Mf (E), there exists a
solution Z of the martingale problem for C with Z(0) = μ and hence a solution
(X,U) of the martingale problem for A with initial distribution α(μ, ·).

The mapping γ : Nf (E × [0,∞)) → Mf (E) used in the application of Theo-
rem A.15 is given by

γ
(∑

δ(xi ,ui)

)
=
⎧⎪⎨⎪⎩

lim
r→∞

1

r

∑
ui≤r

δxi
, if the measures converge

in the weak topology,
μ0, otherwise,
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where μ0 is a fixed element of Mf (E). The solution
∑

δ(Xi(t),Ui(t)) of the martin-
gale problem for A is a conditionally Poisson random measure (see Section A.2)
with Cox measure Z(t). Consequently, the particles determine Z by

Z(t) = lim
r→∞

1

r

∑
Ui(t)≤r

δXi(t).(3.6)

Since by Proposition 3.6 and Theorem 3.2, Zr(t) = 1
r

∑
Ui(t)≤r δXi(t) is the nor-

malized empirical measure for a branching Markov process, (3.6) gives the conver-
gence of the normalized branching Markov process to the corresponding Dawson–
Watanabe superprocess (cf. [4, 49]).

4. Examples and extensions.

4.1. A model with immigration. The simplest immigration process assumes
that the space–time point process giving the arrival times and locations of the im-
migrants is a Poisson process. Assuming temporal homogeneity, immigration is in-
troduced by adding the generator of a space–time-level Poisson random measure.
Let ν be the intensity of immigration, that is, ν(A)�t is approximately the prob-
ability that an individual immigrates into A ⊂ E in a time interval of length �t .
The generator becomes

Af (x,u) = f (x,u)
∑
i

Bg(xi, ui)

g(xi, ui)

+ f (x,u)
∑
i

2a(xi)

∫ rg

ui

(
g(xi, v) − 1

)
dv

(4.1)
+ f (x,u)

∫ rg

0

∫
E

(
g(z, v) − 1

)
ν(dz) dv

+ f (x,u)
∑
i

(
a(xi)u

2
i − b(xi)ui

) ∂ui
g(xi, ui)

g(xi, ui)
.

Noting that the generator for finite r is obtained from A by restricting the domain
to the collection of g with rg ≤ r , if ra(x) − b(x) ≥ 0, for all x, the generator of
the corresponding branching Markov process with immigration is

Crf̂ (x, n) =
n∑

i=1

Bxi
f̂ (x, n) +

n∑
i=1

ra(xi)
(
f̂
(
b(x|xi), n + 1

)− f̂ (x, n)
)

+
n∑

i=1

(
ra(xi) − b(xi)

)(
f̂
(
d(x|xi), n − 1

)− f̂ (x, n)
)

+
∫
E

(
f̂
(
b(x|z), n + 1

)− f̂ (x, n)
)
ν(dz).
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For r = ∞, setting h(x) = ∫∞
0 (1 − g(x, v)) dv as before, the generator for the

measure-valued process is

Cf̂ (μ) = αAf (μ) = (〈−Bh + ah2 − bh,μ〉 − 〈h, ν〉) exp{−〈h,μ〉},
for f̂ (μ) = exp{−〈h,μ〉}.

Early results on branching Markov processes with immigration include [19, 27].
Work on limiting measure-valued processes with immigration includes [8, 37–39,
48].

4.2. Conditioning on nonextinction. In the limiting model considered in Sec-
tion 3.2, let a and b be constant and b < 0. Let τ be the time of extinction
and let U∗(0) be the minimum of the initial levels. Then τ is the solution of
1 − U∗(0)a

b
(1 − e−bτ ) = 0, so

τ = −1

b
log

U∗(0)a − b

U∗(0)a
.

If Z(0) = μ0, then U∗(0) is exponentially distributed with parameter μ0(E) and

P {τ > T } = P

{
U∗(0) <

b

a(1 − e−bT )

}
= 1 − exp

{
− bμ0(E)

a(1 − e−bT )

}
.

The case b = 0 is obtained by passing to the limit so that P {τ > T } = 1 −
exp{−μ0(E)/(aT )}.

As in Section 2.2.1, conditioning on {τ > T } and letting T → ∞ is equivalent
to conditioning on the initial Poisson process having a level at zero. The resulting
generator becomes

Af (x,u) = f (x,u)
∑
i

Bg(xi, ui)

g(xi, ui)

+ f (x,u)
∑
ui>0

2a

∫ rg

ui

(
g(xi, v) − 1

)
dv

(4.2)
+ f (x,u)2a

∫ rg

0

(
g(x0, v) − 1

)
dv

+ f (x,u)
∑
ui>0

(au2
i − bui)

∂ui
g(xi, ui)

g(xi, ui)
,

where the ui are the nonzero levels, and the generator for the conditioned measure-
valued process is given by setting

α0f (μ) =
∫

f (x,u)α0(μ, dx × du)

= 1

|μ|
∫
E

g(z,0)μ(dz) exp{−〈h,μ〉}
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and

α0Af (μ) = 〈−Bh(y) + ah(y)2 − b(y)h(y),μ〉
× 1

|μ|
∫
E

g(z,0)μ(dz) exp{−〈h,μ〉}

+ 1

|μ|
∫
E

(
Bg(z,0) − 2ag(z,0)h(z)

)
μ(dz) exp{−〈h,μ〉}.

Note that α0 is the distribution of ξ = δ0,Z0 +∑∞
i=1 δ(Ui,Zi), where {Ui, i ≥ 1} is

a Poisson process with intensity μ(E), and Z0,Z1, . . . are i.i.d. with distribution
μ(·)/μ(E).

For earlier work, see [10, 12, 20, 36, 40]. In particular, the particle at level zero
in the construction above is the “immortal particle” of Evans [10].

4.3. Conditioning on extinction. As in Section 2.2.2, if a and b are con-
stant and b > 0, then conditioning on extinction is equivalent to conditioning on
U∗(0) > b

a
. Defining Vi(t) = Ui(t) − b

a
, the generator for the conditioned process

is

Af (x, v) = f (x, v)
∑
i

Bg(xi, vi)

g(xi, vi)

+ f (x, v)
∑
i>0

2a

∫ rg

vi

(
g(xi, v) − 1

)
dv(4.3)

+ f (x, v)
∑
i>0

(av2
i − bvi)

∂vi
g(xi, vi)

g(xi, vi)
,

and the generator of the measure-valued process is

Cf̂ (μ) =
∫
E

(−Bh(y) + ah(y)2 + bh(y)
)
μ(dy) exp{−〈h,μ〉},

for f̂ (μ) = exp{−〈h,μ〉}. In other words, conditioning a supercritical process on
extinction replaces the supercritical process by a subcritical one. This result is
originally due to Evans and O’Connell [11].

4.4. Models with multiple simultaneous births. We now consider continuous-
time, branching Markov processes with general offspring distributions. The gen-
eral theory of branching Markov processes was developed by Ikeda, Nagasawa
and Watanabe in a long series of papers [21–24] following earlier work by several
authors. The particle representation is substantially more complicated and passage
to the infinite population limit more delicate.
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As above, the particles move independently in E according to a generator B .
A particle at position x ∈ E with level u gives birth to k offspring at rate (k +
1)a

(r)
k (x)(r − u)kr−(k−1). New particles have the location of the parent, but their

levels are uniformly distributed on [u, r). Then for f (x,u,n) =∏n
i=1 g(xi, ui),

Arf (x,u,n)

= f (x,u,n)

n∑
i=1

Bg(xi, ui)

g(xi, ui)

+ f (x,u,n)

n∑
i=1

∞∑
k=1

(k + 1)a
(r)
k (xi)

rk−1

×
∫
[ui,r)

k

[(
k∏

l=1

g(xi, vl)

)
− 1

]
dv1 · · ·dvk(4.4)

+ f (x,u,n)

n∑
i=1

( ∞∑
k=1

r2a
(r)
k (xi)

[(
1 − ui

r

)k+1

− 1 + (k + 1)
ui

r

]

− b(xi)ui

)
∂ui

g(xi, ui)

g(xi, ui)
.

Now, the levels satisfy the equation

U̇i(t) =
∞∑

k=1

r2a
(r)
k (Xi(t))

[(
1 − Ui(t)

r

)k+1

− 1 + (k + 1)
Ui(t)

r

]
(4.5)

− b(Xi(t))Ui(t).

Defining g(x) = 1
r

∫ r
0 g(x, v) dv and integrating (4.4) with respect to α(n, du),

the uniform measure on [0, r]n, we have that∫
Arf (x,u,n)α(n, du)

= Crf (x,n)

= f (x,n)

n∑
i=1

Bg(xi)

g(xi)
(4.6)

+ f (x,n)

n∑
i=1

∞∑
k=1

ra
(r)
k (xi)[g(xi)

k − 1]

+ f (x,n)

n∑
i=1

(
r

∞∑
k=1

ka
(r)
k (xi) − b(xi)

)[
1

g(xi)
− 1

]
,
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which is the generator of a branching process with multiple births with birth rates
ra

(r)
k (·), death rate r

∑∞
k=1 ka

(r)
k (·)−b(·) (provided this expression is nonnegative)

and particles moving according to the generator B . The analog of Theorem 3.2
holds with a(xi) replaced by

∑
k(k + 1)a

(r)
k (xi) in the definition of ψ and ψ̃ .

We define

�(r)(x, u) =
∞∑

k=1

r(k + 1)a
(r)
k (x)

[
1 −

(
1 − u

r

)k]
and assume that

lim
r→∞�(r)(x, u)

= lim
r→∞

∞∑
k=1

r(k + 1)a
(r)
k (x)

[
k∑

l=1

(
k

l

)
(−1)l+1

(
u

r

)l
]

(4.7)

≡ �(x,u)

exists uniformly for x ∈ E and u in bounded intervals. This condition is essentially
(9.4.36) of [9].

Observe that∫ u

0
�(r)(x, v) dv =

∞∑
k=1

r2a
(r)
k (x)

[(
1 − u

r

)k+1

− 1 + (k + 1)
u

r

]
,

so that (4.5) becomes

U̇i(t) =
∫ Ui(t)

0
�(r)(Xi(s), v) dv − b(Xi(t))Ui(t)(4.8)

and ∫ r

0
�(r)(x, v) dv =

∞∑
k=1

r2ka
(r)
k (x),

so that the death rate for the branching process can be written as r−1 ∫ r
0 �(r)(x,

v) dv − b(x).
As in [31],

∂m�(r)(x, u) ≡ ∂m

∂um
�(r)(x, u)

= (−1)m+1
∞∑

k=m

a
(r)
k (x)

(k + 1)k · · · (k − m + 1)

rm−1(4.9)

×
(

1 − u

r

)k−m

.
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Each of the derivatives is a monotone function of u, and since

∂m−1�(r)(x, b) − ∂m−1�(r)(x, a)

=
∫ b

a
∂m�(r)(x, u) du,

it follows by the convergence of �(r) and induction on m that each ∂m�(r)(x, u)

converges uniformly in u on bounded intervals that are bounded away from zero.
Consequently, � is infinitely differentiable in u, and for 0 < u1 < u2 < ∞,

lim
r→∞ sup

u1≤u≤u2

∣∣∂m�(r)(x, u) − ∂m�(x,u)
∣∣= 0.

The fact that the derivatives alternate in sign implies that ∂1�(x, ·) is completely
monotone and hence can be represented as

∂1�(x,u) =
∫ ∞

0
e−uzν̂(x, dz)

for some σ -finite measure ν̂(x, ·). Writing ν̂(x, ·) = 2a0(x)δ0 + ν(x, ·) with
ν(x, {0}) = 0,

�(x,u) = 2a0(x)u +
∫ ∞

0
z−1(1 − e−uz)ν(x, dz).

Let g satisfy g(x, v) = 1, for v ≥ ug , and define

h(x,u) =
∫ ug

u

(
1 − g(x, v)

)
dv.

If r > ug and there are n particles below level r , then (4.4) may be written as

Arf (x,u,n)

= f (x,u,n)

n∑
i=1

Bg(xi, ui)

g(xi, ui)

+ f (x,u,n)

×
n∑

i=1

∞∑
k=1

r(k + 1)

× a
(r)
k (xi)

{(
1 − ui + h(xi, ui)

r

)k

−
(

1 − ui

r

)k}

+ f (x,u,n)

n∑
i=1

(∫ ui

0
�(r)(xi, v) dv − b(xi)ui

)
∂ui

g(xi, ui)

g(xi, ui)
.
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Then, by (4.7) and the definition of h, we have

Af (x,u)

≡ lim
r→∞Arf (x,u)

= f (x,u)
∑
i

Bg(xi, ui)

g(xi, ui)

+ f (x,u)
∑
i

(
�(xi, ui) − �

(
xi, ui + h(xi, ui)

))
+ f (x,u)

∑
i

(∫ ui

0
�(xi, v) dv − b(xi)ui

)
∂ui

g(xi, ui)

g(xi, ui)

= f (x,u)
∑
i

Bg(xi, ui)

g(xi, ui)

+ f (x,u)
∑
i

2a0(xi)

∫ ∞
ui

(
g(xi, v) − 1

)
dv

+ f (x,u)
∑
i

∫ ∞
0

(
e
z
∫∞
ui

(g(xi ,v)−1) dv − 1
)
z−1e−zui ν(xi, dz)

+ f (x,u)
∑
i

(
a0(xi)u

2
i − b(xi)ui

+
∫ ∞

0
z−1(ui − z−1(1 − e−uiz)

)
ν(xi, dz)

)
∂ui

g(xi, ui)

g(xi, ui)
.

Note that the second term on the right-hand side has the same interpretation as the
second term on the right-hand side of (3.5). To understand the third term, recall
that if ξ =∑

i δτi
is a Poisson process on [0,∞) with parameter λ, then

E
[∏

g(τi)
]
= eλ

∫∞
0 (g(v)−1) dv.

Consequently, the third term determines bursts of simultaneous offspring at the
location xi of the parent and with levels forming a Poisson process with intensity
z on [ui,∞).

Setting h(x) = h(x,0) = ∫∞
0 (1 − g(x, v)) dv and f̂ (μ) = exp{−〈h,μ〉},

Cf̂ (μ) = αAf (μ)

=
∫
E

(
−Bh(y) +

∫ h(y)

0
�(y, z) dz − b(y)h(y)

)
μ(dy) exp{−〈h,μ〉}.

Based on the above calculations, we have the following theorem.
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THEOREM 4.1. Let B ⊂ C(E)×C(E) satisfy Condition 3.1, and let the mar-
tingale problem for B be well posed. Assume that for r ≥ r0,

inf
x

(
r

∞∑
k=1

ka
(r)
k (x) − b(x)

)
≥ 0

and that the convergence in (4.7) is uniform in x. Let K(0) be a finite random
measure on E, and let ξ r be a solution of the martingale problem for Ar such that
ξ r(0) is conditionally Poisson on E × [0, r] with mean measure K(0) × Λ. Then
ξ r ⇒ ξ where ξ is a solution of the martingale problem for A.

PROOF. For r > q , let ξ (q),r denote the restriction of ξ r to E×[0, q] and simi-
larly for ξ (q). It is enough to prove that ξ (q),r ⇒ ξ (q) for each q > r0. The generator
for ξ (q),r is the restriction of Ar to functions f ∈ D(Ar) such that the correspond-
ing g satisfies g(x,u) = 1 for u ≥ q . For f of this form, by (4.9), Ar,qf = Arf

satisfies

Ar,qf (x,u,n)

= f (x,u,n)

n∑
i=1

Bg(xi, ui)

g(xi, ui)

+ f (x,u,n)

n∑
i=1

∞∑
m=1

1

m!(−1)m+1∂m�(r)(xi, q)

×
∫
[ui,q)m

[(
m∏

l=1

g(xi, vl)

)
− 1

]
dv1 · · ·dvm

+ f (x,u,n)

n∑
i=1

(∫ ui

0
�(r)(x, v) dv − b(xi)ui

)
∂ui

g(xi, ui)

g(xi, ui)
,

and the corresponding branching Markov process has generator

Cr,qf (x,n)

= f (x,n)

n∑
i=1

Bg(xi)

g(xi)

+ f (x,n)

n∑
i=1

∞∑
m=1

1

(m + 1)!(−1)m+1∂m�(r)(xi, q)qm[g(xi)
m − 1]

+ f (x,n)

n∑
i=1

(
1

q

∫ q

0
�(r)(xi, v) dv − b(xi)

)[
1

g(xi)
− 1

]
.

The convergence of ξ (q),r follows by the convergence assumptions on �(r). �
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The measure ν(x, ·) is nonzero only if the offspring distribution has a “heavy
tail.” If a

(r)
k (x) = ak(x) and

∞∑
k=1

(k + 1)kak(x) < ∞,

then

�(x,u) = lim
r→∞

∞∑
k=1

r(k + 1)ak(x)

[
1 −

(
1 − u

r

)k]
=

∞∑
k=1

(k + 1)kak(x)u

and

Af (x,u) = f (x,u)
∑
i

Bg(xi, ui)

g(xi, ui)

+ f (x,u)
∑
i

∞∑
k=1

(k + 1)kak(xi)

∫ ug

ui

[g(xi, v) − 1]dv

+ f (x,u)
∑
i

( ∞∑
k=1

(k + 1)kak(xi)

2
u2

i − b(xi)ui

)
∂ui

g(xi, ui)

g(xi, ui)
,

which is essentially (3.5).
For scalar branching processes with general offspring distributions, convergence

to possibly discontinuous continuous state branching processes was proved by
Grimvall [16] (see [9], Section 9.1). Convergence in the measure-valued setting
is given in [49] and [4] for offspring distributions with finite second moment and
more generally in [9], Theorem 9.4.3. Fitzsimmons [13] gives a very general con-
struction of these processes.

If ν is not zero, then the genealogy of the process is much more complicated
than that described in Sections 2.4 and 3.3. Assume that � and b do not depend
on x, and define

�̂(u) ≡
∫ u

0
�(v)dv − bu = 2a0u

2 − bu +
∫ ∞

0
z−2(zu − 1 + e−uz)ν(dz).

If uT satisfies

u̇T (t) = �̂(uT (t)),

uT (t) < ∞ for t < T and limt→T − uT (t) = ∞, then it is still the case that
the collection of ancestors at time t < T of the population alive at time T is
{(Xi(t),Ui(t)) :Ui(t) < uT (t)}, but uT may not exist. In fact, since if u̇ = �̂(u)∫ u(t2)

u(t1)

1

�̂(v)
dv = t2 − t1,
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uT exists if and only if ∫ ∞
u

1

�̂(v)
dv < ∞

for u sufficiently large, which always holds if a0 > 0. In the critical and subcritical
cases, this condition is equivalent to extinction with probability one as was noted
by Bertoin and Le Gall ([2], page 167).

This finite ancestry property or coming down from infinity of the genealogy has
been studied for a variety of population models. See [47] and [1] for results in
the Fleming–Viot setting. The equivalence of the conditions for Fleming–Viot and
Dawson–Watanabe processes is given in ([2], page 171).

The argument in Section 2.2.3 can undoubtedly be extended to the present set-
ting. This development will be carried out elsewhere.

4.5. Model with exponentially distributed levels. The discrete models that we
have considered have been formulated with levels that are uniformly distributed
on an interval. That is not necessary, and other distributions may be convenient in
other contexts. We illustrate this flexibility by formulating a model for a simple
branching process with levels that are exponentially distributed. The dynamics of
the levels change, and the correct dynamics are determined by essentially working
backwards from the answer.

As before, let f (u,n) =∏n
i=1 g(ui) where 0 ≤ g ≤ 1 and g(ui) = 1 for ui ≥ ug .

Let

Arf (u,n) = f (u,n)

n∑
i=1

2a

∫ ∞
ui

e−v/r(g(v) − 1
)
dv + f (u,n)

n∑
i=1

Gr(ui)
g′(ui)

g(ui)
,

where Gr will be determined below. Note that a particle at level ui is giving birth
at rate 2are−ui/r , and the levels satisfy

U̇i(t) = Gr(Ui(t)).

Let αr(n, du) be the distribution of n independent exponential random variables
with mean r , and define e−λg = r−1 ∫∞

0 g(v)e−v/r dv so

f̂ (n) =
∫

f (u,n)αr(n, du) = e−λgn.

To calculate
∫

Arf (u,n)αr(n, du), observe that

r−12a

∫ ∞
0

e−z/rg(z)

∫ ∞
z

e−v/r(g(v) − 1
)
dv dz

= are−2λg − 2a

∫ ∞
0

e−2z/rg(z) dz,



966 T. G. KURTZ AND E. R. RODRIGUES

and assuming Gr(0) = 0,

r−1
∫ ∞

0
e−z/rGr(z)g

′(z) dz

= −r−1
∫ ∞

0
e−z/r(G′

r (z) − r−1Gr(z)
)(

g(z) − 1
)
dz

= −r−1
∫ ∞

0
e−z/r(G′

r (z) − r−1Gr(z)
)
g(z) dz

+ r−1
∫ ∞

0
e−z/r(G′

r (z) − r−1Gr(z)
)
dz.

Then for

G′
r (z) − r−1Gr(z) = ez/r d

dz
(e−z/rGr(z)) = 2ar(1 − e−z/r ) − b,

we have

e−z/rGr(z) = 2ar

(
r(1 − e−z/r ) − r

2
(1 − e−2z/r )

)
− br(1 − e−z/r )

and∫
Arf (u,n)αr(n, du)

= ne−λg(n−1)

(
are−2λg − r−1

∫ ∞
0

e−z/r(G′
r (z) − r−1Gr(z)

+ 2are−z/r)g(z) dz

+ r−1
∫ ∞

0
e−z/r(G′

r (z) − r−1Gr(z)
)
dz

)
= Crf̂ (n),

where

Crf̂ (n) = ran
(
f̂ (n + 1) − f̂ (n)

)+ (ra − b)n
(
f̂ (n − 1) − f̂ (n)

)
(4.10)

is the generator of a branching process.
Note that as r → ∞, Gr(z) converges to az2 − bz, and hence, Ar converges to

A given by (2.4).

4.6. Multitype branching processes. We now consider a branching particle
system with m possible types, S = {1,2, . . . ,m}. We assume that a particle of
type ζ1 ∈ S gives birth to a particle of type ζ2 ∈ S at rate ra(r)(ζ1, ζ2) and dies at
rate ra(r)(ζ1) − b(r)(ζ1), where a(r)(ζ1) =∑

j∈S a(r)(ζ1, j).
The fact that the ordered representations constructed for the previous examples

give the correct measure-valued processes depends on the fact that observing a
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birth event in the measure-valued process gives no information about the levels
of the particles after the birth event. That, in turn, depends on the offspring being
indistinguishable from the parent. Since in the current model, the type of an off-
spring may differ from the type of the parent, we need to find a way to “preserve
ignorance” about the levels when the type of the offspring is different. We accom-
plish this goal by randomizing the assignment of the parent and offspring to the
original level of the parent and a new level. Let f (ζ,u,n) be of the form

f (ζ,u,n) =
n∏

i=1

g(ζi, ui).

Then the generator of the ordered representation of the branching process de-
scribed above is given by

Arf (ζ,u,n)

= f (ζ,u,n)

n∑
i=1

∑
j∈S

2a(r)(ζi, j)

×
∫ r

ui

[
1

2

(
g(ζi, ui)g(j, v) + g(ζi, v)g(j, ui)

g(ζi, ui)

)
− 1

]
dv

+ f (ζ,u,n)

n∑
i=1

[
a(r)(ζi)u

2
i − b(r)(ζi)ui

] ∂ui
g(ζi, ui)

g(ζi, ui)
,

where as before, each level satisfies

d

dt
U

(r)
i (t) = a(r)(Xi(t))U

2
i (t) − b(r)(Xi(t))Ui(t).

Let Q(r)h(ζ ) =∑
j∈S a(r)(ζ, j)[h(j)−h(ζ )]. Because of the randomization of the

level assignments at each birth event, it follows that

h(Xi(t)) −
∫ t

τi

(
r − Ui(s)

)
Q(r)h(Xi(s)) ds

is a martingale.
Taking αr(n, du) as before, we have that∫

Arf (ζ,u,n)α(n, du) = Crf (ζ, n)

= f (ζ, n)

n∑
i=1

∑
j∈S

ra(r)(ζi, j)[g(j) − 1]

+ f (ζ, n)

n∑
i=1

[
ra(r)(ζi) − b(r)(ζi)

][ 1

g(ζi)
− 1

]
,
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where f (ζ, n) =∏n
i=1 g(ζi) and g(ζi) = 1

r

∫ r
0 g(ζi, v) dv. Hence, Crf (ζ, n) is the

generator of a multitype branching process.
Assume that

a(ζ, j) = lim
r→∞a(r)(ζ, j),

a(ζ ) = lim
r→∞a(r)(ζ ) = ∑

j∈S

a(ζ, j),

b(ζ ) = lim
r→∞b(r)(ζ )

and that

Qh(ζ ) = ∑
j∈S

a(ζ, j)[h(j) − h(ζ )]

is the generator of an irreducible, finite state Markov chain. Let π denote the
unique stationary distribution for Q. It is clear from the ergodicity of the Markov
chain that in the limit, the levels must satisfy

d

dt
Ui(t) = aU2

i (t) − bUi(t),

where a =∑
j π(j)a(j) and b =∑

j π(j)b(j).
We can make this observation precise by analyzing the asymptotic behavior of

the generator. Taking g(ζ,u) = exp(−h0(u) + 1
r
h(ζ, u)), where h(ζ,u) and h0(u)

are equal to zero if u ≥ ug , and letting r → ∞, we have that

lim
r→∞f (ζ,u) = lim

r→∞ exp
(
−∑

i

h0(ui) + 1

r

∑
i

h(ζi, ui)

)

= exp
(
−∑

i

h0(ui)

)
≡ f (u)

and since
g(ζi, ui)g(j, v) + g(ζi, v)g(j, ui)

g(ζi, ui)

= e−h0(v)(er−1h(j,v) + er−1(h(ζi ,v)+h(j,ui)−h(ζi ,ui))
)
,

lim
r→∞Arf (ζ,u)

= f (u)
∑
i

{
2a(ζi)

∫ ug

ui

[
e−h0(v) − 1

]
dv

(4.11)
+ ∑

j∈S

a(ζi, j)[h(j,ui) − h(ζi, ui)]

− [a(ζi)u
2
i − b(ζi)ui] ∂ui

h0(ui)

}
.
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If
∑

π(j)G(j,u) ≡ 0 for all u, then there exists h such that∑
j∈S

a(ζ, j)[h(j,u) − h(ζ,u)] = G(ζ,u).

Consequently, there exists h such that the right-hand side of (4.11) becomes

Af (u) = f (u)
∑
i

{
2a

∫ ug

ui

[
e−h0(v) − 1

]
dv − [au2

i − bui] ∂ui
h0(ui)

}
,

which is just a rewriting of (2.4), and hence we have convergence of the normalized
total population to the Feller diffusion.

For earlier work, see [14, 25, 29] and Section 9.2 of [9].

4.7. Models with catastrophic death. Now consider

Arf (x,u,n) = f (x,u,n)

n∑
i=1

Bg(xi, ui)

g(xi, ui)

+ f (x,u,n)

n∑
i=1

2a(xi)

∫ r

ui

(
g(xi, v) − 1

)
dv

(4.12)

+ f (x,u,n)

n∑
i=1

(
a(xi)u

2
i − b(xi)ui

) ∂ui
g(xi, ui)

g(xi, ui)

+
∫
V

(
f (x, c(u, x, v), n) − f (x,u,n)

)
γ (dv),

where γ is a σ -finite measure on a measurable space (V , V),

c(u, x, v) = (u1ρ(x1, v), u2ρ(x2, v), . . .)

and ρ(xi, v) ≥ 1. Then as in Section 3.1

Crf̂ (x, n) =
n∑

i=1

Bxi
f̂ (x, n) +

n∑
i=1

ra(xi)
(
f̂
(
b(x|xi), n + 1

)− f̂ (x, n)
)

+
n∑

i=1

(
ra(xi) − b(xi)

)(
f̂
(
d(x|xi), n − 1

)− f̂ (x, n)
)

+
∫
V

(
n∏

i=1

(
ρ−1(xi, v)ĝ(xi) + (

1 − ρ−1(xi, v)
))− f̂ (x, n)

)
γ (dv).

For simplicity, assume that γ (V ) < ∞. Then at rate γ (V ) an event occurs in which
an element v is selected from V , and given v, particles are independently killed,
with the probability that a particle at xi survives being ρ−1(xi, v).
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Letting r → ∞ to obtain A and integrating,

αAf =
∫
E

(−Bh(y) + a(y)h(y)2 − b(y)h(y)
)
μ(dy) exp{−〈h,μ〉}

+
∫
V

(
exp{−〈ρ−1(·, v)h,μ〉} − exp{−〈h,μ〉})γ (dv)

= Cf̂ (μ).

Branching processes with catastrophes have been considered in a series of pa-
pers by Pakes [41–46] and by Grey [15].

APPENDIX

A.1. Poisson random measures. Let (S, S) be a measurable space, and let ν

be a σ -finite measure on S . ξ is a Poisson random measure with mean measure ν

if:

(a) ξ is a random counting measure on S;
(b) for each A ∈ S with ν(A) < ∞, ξ(A) is Poisson distributed with parameter

ν(A);
(c) for A1,A2, . . . ∈ S disjoint, ξ(A1), ξ(A2), . . . are independent.

LEMMA A.1. If H :S → S0 is Borel measurable and ξ̂ (A) = ξ(H−1(A)),
then ξ̂ is a Poisson random measure on S0 with mean measure ν̂ given by ν̂(A) =
ν(H−1(A)).

REMARK A.2. ν̂ need not be σ -finite even if ν is, but the meaning of the
lemma should still be clear. σ -finite or not, ν̂(A) = ∞ if and only if ξ̂ (A) = ∞
a.s.

PROOF OF LEMMA A.1. The lemma follows from the fact that A1,A2, . . .

disjoint implies H−1(A1),H
−1(A2), . . . are disjoint. �

LEMMA A.3. If ξ is a Poisson random measure with mean measure ν and
f ∈ L1(ν), then

E
[
e
∫

f (z)ξ(dz)]= e
∫
(ef −1) dν,(A.1)

E

[∫
f (z)ξ(dz)

]
=
∫

f dν, Var
(∫

f (z)ξ(dz)

)
=
∫

f 2 dν,(A.2)

allowing ∞ = ∞.
Letting ξ =∑

i δZi
, for g ≥ 0 with logg ∈ L1(ν),

E

[∏
i

g(Zi)

]
= e

∫
(g−1) dν.
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Similarly, if hg,g − 1 ∈ L1(ν), then

E

[∑
j

h(Zj )
∏
i

g(Zi)

]
=
∫

hg dν e
∫
(g−1) dν

and

E

[∑
i �=j

h(Zi)h(Zj )
∏
k

g(Zk)

]
=
(∫

hg dν

)2

e
∫
(g−1) dν.

PROOF. The independence properties of ξ imply (A.1) for simple functions.
The general case follows by approximation. The other identities follow in a similar
manner. Note that the integrability of the random variables in the expectations
above can be verified by replacing g by (|g| ∧ a)1A + 1Ac and h by (|h| ∧ a)1A

for 0 < a < ∞ and ν(A) < ∞ and passing to the limit as a → ∞ and A ↗ E. �

LEMMA A.4. If ξ0 = ∑
i δUi

is a Poisson random measure on [0,∞) with
mean measure λΛ, Λ Lebesgue measure, and {Xi} are i.i.d. positive random vari-
ables, independent of ξ0, then

ξ =∑
i

δ(Xi,Ui)

is a Poisson random measure on [0,∞)2 with mean measure λμX × Λ, were μX

is the law of X1.
If κ = E[ 1

Xi
] < ∞, then

ξ̂ =∑
δXiUi

is a Poisson random measure on [0,∞) with mean measure λκΛ.

PROOF. By Lemma A.1, ξ̂ is a Poisson random measure with mean measure
given by

ν̂[0, c] = λμX × Λ{(x, u) :xu ≤ c} = λ

∫ ∞
0

P {X−1 ≥ uc−1}du

= λcE[X−1]. �

A.2. Conditionally Poisson systems. We begin by considering general con-
ditionally Poisson systems or Cox processes. Consider (S, d) a metric space, and
let ξ be a random counting measure on S and � be a locally finite random measure
on S. [A measure ν on S is locally finite if for each x ∈ S, there exists an ε > 0
such that ν(Bε(x)) < ∞.] We say that ξ is conditionally Poisson with Cox mea-
sure � if, conditioned on �, ξ is a Poisson random measure with mean measure �.
This requirement is equivalent to

E[e− ∫
S f dξ ] = E

[
e− ∫

S(1−e−f ) d�],
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for all nonnegative f ∈ M(S), where M(S) is the set of all Borel measurable func-
tions on S. Since the collection of functions Ff (μ) = e− ∫

S f dμ is closed under
multiplication and separates points in the space of locally finite measures, the dis-
tribution of � determines the distribution of ξ .

We are actually interested in the conditionally Poisson system on S × [0,∞)

with Cox measure � × Λ, where Λ is Lebesgue measure. Then for nonnegative
f ∈ M(S), we have

E[e− ∫
S×[0,K] f dξ ] = E

[
e−K

∫
S(1−e−f ) d�],

and the distribution of ξ determines the distribution of �, where we consider f ∈
M(S) to be a function on S × [0,K] satisfying f (x,u) = f (x). In particular,

�(f ) = lim
K→∞

1

K

∫
S×[0,K]

f dξ a.s.

LEMMA A.5. Suppose ξ is a conditionally Poisson random measure on S ×
[0,∞) with Cox measure �×Λ, and let f ∈ M(S), 0 ≤ f ≤ 1. Then for C,D > 0,

P

{∫
S×[0,K]

f dξ ≥ C

}
≤ KD

C
+ P

{∫
S
f d� ≥ D

}
(A.3)

and

P

{∫
S
f d� ≥ C

}
≤ E[1 − e−C−1 ∫

S×[0,K] f dξ ]
1 − e−Ke−C−1 .(A.4)

Let {ξα,α ∈ A} be a collection of conditionally Poisson random measures on
S × [0,∞) with Cox measures �α × Λ, and let f ∈ M(S), 0 ≤ f ≤ 1. Then
{∫S×[0,K] f dξα,α ∈ A} is stochastically bounded if and only if {∫S f d�α,α ∈ A}
is stochastically bounded.

PROOF. Since E[∫S×[0,K] f dξ |�] = K
∫
S f d�,

P

{∫
S×[0,K]

f dξ ≥ C
∣∣∣�}≤ K

∫
S f d�

C
∧ 1 ≤ KD

C
+ 1{∫S f d�≥D},

and taking expectations gives (A.3).
By (A.1)

E[1 − e− ∫
S×[0,K] εf dξ ] = E

[
1 − e−K

∫
S(1−e−εf ) d�]

≥ E[1 − e−εKe−ε
∫
S f d�]

≥ (1 − e−εKe−εC)P

{∫
S
f d� ≥ C

}
,

and taking ε = C−1 gives (A.4).
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The final statement follows from the two inequalities. �

Let ξ̂ = ∑
δXi

be a point process on S, and let {Ui} be independent random
variables, uniformly distributed on [0, r] and independent of ξ̂ . Define

ξ =∑
δ(Xi,Ui), �r = r−1ξ̂ .(A.5)

Then for f ≥ 0 on S × [0, r],
E[e− ∫

S×[0,r] f dξ |�r ] =∏
i

(
r−1

∫ r

0
e−f (Xi,u) du

)
= e

− ∫
S F r

f (x)�r(dx)
,(A.6)

where

Fr
f (x) = −r log

1

r

∫ r

0
e−f (x,u) du = −r log

(
1 − 1

r

∫ r

0

(
1 − e−f (x,u))du

)
.

We have the following analog of Lemma A.5.

LEMMA A.6. Suppose ξ and �r are given by (A.5), and let f ∈ M(S), 0 ≤
f ≤ 1. Then for C,D > 0 and K ≤ r ,

P

{∫
S×[0,K]

f dξ ≥ C

}
≤ KD

C
+ P

{∫
S
f d�r ≥ D

}
(A.7)

and

P

{∫
S
f d�r ≥ C

}
≤ E[1 − e−C−1 ∫

S×[0,K] f dξ ]
1 − e−Ke−C−1 .(A.8)

PROOF. Since E[∫S×[0,K] f dξ |�r ] = K
∫
S f d�r ,

P

{∫
S×[0,K]

f dξ ≥ C
∣∣∣�r

}
≤ K

∫
S f d�r

C
∧ 1 ≤ KD

C
+ 1{∫S f d�r≥D},

and taking expectations gives (A.7).
Defining

Gr
K,ε,f (x) = −r log

(
1 − K

r

(
1 − e−εf (x)))≥ εKe−εf (x),

by (A.6)

E[1 − e− ∫
S×[0,K] εf dξ ] = E[1 − e

− ∫
S Gr

K,ε,f d�r ]
≥ E[1 − e−εKe−ε

∫
S f d�r ]

≥ (1 − e−εKe−εC)P

{∫
S
f d�r ≥ C

}
,

and taking ε = C−1 gives (A.8). �
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LEMMA A.7. Suppose ξ is a conditionally Poisson random measure on
S × [0,∞) with Cox measure � × Λ. If �(S) < ∞ a.s., then we can write
ξ =∑∞

i=1 δ(Xi,Ui) with U1 < U2 < · · · a.s. and {Xi} exchangeable.

PROOF. Let {X̃i} be exchangeable with de Finetti measure �
|�| , and let Y be a

unit Poisson process with jump times {Si} independent of of {X̃i} and �. Define
ξ̃ =∑∞

i=1 δ(X̃i ,|�|−1Si)
, and note that

E[e− ∫
f dξ̃ ] = E

[∏
i

e−f (X̃i ,|�|−1Si)

]

= E

[∏
i

∫
e−f (z,|�|−1Si)|�|−1�(dz)

]

= E

[
exp

{
−
∫ ∞

0

(
1 −

∫
e−f (z,|�|−1s)|�|−1�(dz)

)
ds

}]
= E

[
exp

{
−
∫ ∞

0

∫ (
1 − e−f (z,u))�(dz) du

}]
.

Consequently, ξ̃ is conditionally Poisson with Cox measure � × Λ, and ξ and ξ̃

have the same distribution. �

As in Lemma A.4, we have the following.

LEMMA A.8. Suppose ξ is a conditionally Poisson random measure on S ×
[0,∞)2 with Cox measure � × Λ, where � is a random measure on S × [0,∞).
Suppose

�̂(A) =
∫
S×[0,∞)

1

y
1A(x)�(dx × dy)

defines a locally finite random measure on S. Then writing ξ =∑
i δ(Xi,Yi ,Ui), ξ̂ =∑

i δ(Xi,YiUi) is a conditionally Poisson random measure on S × [0,∞) with Cox
measure �̂ × Λ, and hence∫

S×[0,∞)
y−1f (x)�(dx × dy) = �̂(f ) = lim

K→∞
1

K

∫
S×[0,K]

f dξ̂ a.s.

A.3. Convergence results. Let {hk, k = 1,2, . . .} ⊂ C(S) satisfy 0 ≤ hk ≤ 1
and

⋃
k{x :hk(x) > 0} = S, where C(S) denotes the space of bounded continu-

ous functions on S, and let M{hk}(S) be the collection of Borel measures on S

satisfying
∫
S hk dν < ∞, for all k, topologized by the requirement that νn → ν if

and only if
∫
S f hk dνn → ∫

S f hk dν for all f ∈ C(S) and k; that is, the measures
dνk

n = hk dνn converge weakly for each k. Similarly, let M{hk}(S × [0,∞)) be
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the space of Borel measures on S × [0,∞) satisfying
∫
S×[0,K] hk dμ < ∞ for all

k = 1,2, . . . and K > 0, topologized by the requirement that μn → μ if and only
if ∫

S×[0,∞)
f hk dμn →

∫
S×[0,∞)

f hk dμ,

for all k and f ∈ C(S × [0,∞)) such that the support of f is contained in S ×
[0,K] for some K > 0. Note that in both cases, M{hk} is metrizable. To simplify
notation, let

C{hk}(S) = {f ∈ C(S) : |f | ≤ chk for some c > 0 and hk}.
Then convergence in M{hk}(S) is equivalent to convergence of

∫
S f dνn for all

f ∈ C{hk}(S).

THEOREM A.9. Let {ξn} be a sequence of conditionally Poisson random mea-
sures on S × [0,∞) with Cox measures {�n × Λ}. Then ξn ⇒ ξ in M{hk}(S ×
[0,∞)) if and only if �n ⇒ � in M{hk}(S). If the limit holds, then ξ is condition-
ally Poisson with Cox measure � × Λ.

PROOF. Suppose ξn ⇒ ξ in M{hk}(S × [0,∞)). Then for each f ∈ C(S),
f ≥ 0, each k, and all but countably many K

E[e− ∫
S×[0,K] f hk dξ ] = lim

n→∞E[e− ∫
S×[0,K] f hk dξn]

= lim
n→∞E

[
e−K

∫
S h−1

k (1−e−f hk )hk d�n]
.

For g ≥ 0 and K satisfying supx K−1g(x)hk(x) < 1, let

f (x) =
{

−h−1
k (x) log

(
1 − K−1g(x)hk(x)

)
, hk(x) > 0,

K−1g(x), hk(x) = 0,

and we see that

lim
n→∞E[e− ∫

S ghk d�n] = E[e− ∫
S×[0,K] f hk dξ ]

exists. Since ξn ⇒ ξ in M{hk}(S × [0,∞)), {∫S×[0,K] hk dξn} is stochastically
bounded and by Lemma A.5, {∫ hk d�n} must be stochastically bounded. Tight-
ness follows similarly. Consequently, {�n} is relatively compact in M{hk}(S) in
distribution, and the unique limit � is determined by the fact that

E[e− ∫
S ghk d�] = E[e− ∫

S×[0,K] f hk dξ ],
for g and f related as above. The proof of the converse is similar. �
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THEOREM A.10. For each n = 1,2, . . . , let rn > 0 and ξn be a point process
on S × [0, rn], and define

�n(dx) = 1

rn
ξn(dx × [0, rn]).(A.9)

Suppose for f ≥ 0, E[e− ∫
f (x,u)ξn(dx×du)] = E[e− ∫

Fn
f (x)�n(dx)], where

Fn
f (x) = −rn log

1

rn

∫ rn

0
e−f (x,u) du = −rn log

(
1 − 1

rn

∫ rn

0

(
1 − e−f (x,u))du

)
,

that is, the [0, rn] components are independent, uniformly distributed, and inde-
pendent of �n. Then assuming rn → ∞, ξn ⇒ ξ in M{hk}(S ×[0,∞)) if and only
if �n ⇒ � in M{hk}(S). If the limit holds, then ξ is conditionally Poisson with Cox
measure � × Λ.

PROOF. For g0, f0 ≥ 0, g0 ∈ Cc([0,∞)), f0 ∈ C(S) and f (x,u) = hk(x) ×
f0(x)g0(u), Fn

f (x) → ∫∞
0 (1− e−f (x,u)) du, and the remainder of the proof is sim-

ilar to that of Theorem A.9. �

These convergence theorems apply only to the one-dimensional distributions of
the models considered in this paper. To address convergence as processes, note that
for finite r and �r(t, dx) = r−1ξ(t, dx × [0, r]), the models satisfy

E
[
e− ∫

S×[0,r] f (x,u)ξ(t,dx×du)|F �r
t

]= e
− ∫

Fr
f (x)�r(t,dx)

,(A.10)

where

F r
f (x) = −r log

1

r

∫ r

0
e−f (x,u) du = −r log

(
1 − 1

r

∫ r

0

(
1 − e−f (x,u))du

)
,

and the r = ∞ models satisfy

E
[
e− ∫

S×[0,K] f dξ(t)|F �
t

]= e−K
∫
S(1−e−f ) d�(t),(A.11)

for f ∈ C{hk}(S). The following estimates imply that convergence of the finite-
dimensional distributions for ξn imply convergence of the finite-dimensional dis-
tributions for �n (or �n

rn
, assuming rn → ∞); however, convergence of the

finite-dimensional distributions of �n may not imply convergence of the finite-
dimensional distributions of of ξn.

LEMMA A.11. Suppose ξ is a conditionally Poisson random measure on S ×
[0,∞) with Cox measure � × Λ, � with values in M{hk}(S). Then for each f ∈
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C{hk}(S) and δ,K,K ′ > 0,

P

{∣∣∣∣K−1
∫
S×[0,K]

f dξ −
∫
S
f d�

∣∣∣∣≥ δ

}

≤ C

Kδ2 + P

{∫
f 2 d� > C

}
(A.12)

≤ C

Kδ2 + E[1 − e−C−1 ∫
S×[0,K′] f 2 dξ ]

1 − e−K ′e−C−1 .

Suppose ξ satisfies (A.10). Then for each f ∈ C{hk}(S), δ > 0 and 0 < K ,
K ′ < r

P

{∣∣∣∣K−1
∫
S×[0,K]

f dξ −
∫
S
f d�r

∣∣∣∣≥ δ

}

≤ (r − K)C

rKδ2 + P

{∫
f 2 d�r > C

}
(A.13)

≤ (r − K)C

rKδ2 + E[1 − e−C−1 ∫
S×[0,K′] f 2 dξ ]

1 − e−K ′e−C−1 .

PROOF. By (A.2) and the Chebyshev inequality,

P

{∣∣∣∣K−1
∫
S×[0,K]

f dξ −
∫
S
f d�

∣∣∣∣≥ δ
∣∣∣�}≤

∫
f 2 d�

Kδ2 ∧ 1 ≤ C

Kδ2 + 1{∫ f 2 d�>C},

and taking expectations gives the first inequality in (A.12). The second inequality
follows by (A.4).

Similarly, for the second part,

P

{∣∣∣∣K−1
∫
S×[0,K]

f dξ −
∫
S
f d�r

∣∣∣∣≥ δ
∣∣∣�r

}
≤
∫
(1 − K/r)f 2 d�r

Kδ2 ∧ 1

≤ (r − K)C

rKδ2 + 1{∫ f 2 d�r>C},

and taking expectations gives the first inequality in (A.13). The second inequality
follows by (A.8). �

The estimates in Lemma A.11 allow verifying convergence of measure-valued
processes satisfying (A.11) or (A.10) by verifying convergence of the correspond-
ing particle representations.

THEOREM A.12. Let {ξn} be a sequence of cadlag M{hk}(S×[0,∞))-valued
processes satisfying (A.11) for cadlag M{hk}(S)-valued processes {�n}. If the
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finite-dimensional distributions of ξn converge to the finite-dimensional distrib-
utions of ξ , then the finite-dimensional distributions of �n converge to the finite-
dimensional distributions of � satisfying

E
[
e− ∫

S×[0,K] f dξ(t)|F �
t

]= e−K
∫
S(1−e−f ) d�(t).

For n = 1,2, . . . , let ξn be a cadlag M{hk}(S × [0, rn])-valued process sat-
isfying (A.10) for cadlag M{hk}(S)-valued processes {�n

rn
}. If rn → ∞ and the

finite-dimensional distributions of ξn converge to the finite-dimensional distribu-
tions of ξ , then the finite-dimensional distributions of �n

rn
converge to the finite-

dimensional distributions of � satisfying

E
[
e− ∫

S×[0,K] f dξ(t)|F �
t

]= e−K
∫
S(1−e−f ) d�(t).

PROOF. Convergence of the finite-dimensional distributions follows easily
from the estimates in Lemma A.11. �

A.4. Martingale lemmas.

LEMMA A.13. Let {Ft } and {Gt } be filtrations with Gt ⊂ Ft . Suppose that
E[|X(t)| + ∫ t

0 |Y(s)|ds] < ∞ for each t , and

M(t) = X(t) −
∫ t

0
Y(s) ds

is an {Ft }-martingale. Then

M̂(t) = E[X(t)|Gt ] −
∫ t

0
E[Y(s)|Gs]ds

is a {Gt }-martingale.

PROOF. Let D ∈ Gt ⊂ Ft . Then

E
[(

M̂(t + r) − M̂(t)
)
1D

]
= E

[(
E[X(t + r)|Gt+r ] − E[X(t)|Gt ] −

∫ t+r

t
E[Y(s)|Gs]ds

)
1D

]
= E

[(
X(t + r) − X(t) −

∫ t+r

t
Y (s) ds

)
1D

]
= 0,

giving the martingale property. �

LEMMA A.14. Let {Fn} be an increasing sequence of σ -algebras and {Xn} a
sequence of random variables satisfying E[supn|Xn|] < ∞ and limn→∞ Xn = X

a.s. Then

lim
n→∞E[Xn|Fn] = E

[
X
∣∣∣∨

n

Fn

]
.
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PROOF. By the martingale convergence theorem, we have

E

[
inf
k≥m

Xk

∣∣∣∨
n

Fn

]
≤ lim inf

n→∞ E[Xn|Fn] ≤ lim sup
n→∞

E[Xn|Fn] ≤ E

[
sup
k≥m

Xk

∣∣∣∨
n

Fn

]
,

and the result follows by letting m → ∞. �

A.5. Markov mapping theorem. The following theorem (extending Corol-
lary 3.5 from [30]) plays an essential role in justifying the particle representa-
tions and can also be used to prove uniqueness for the corresponding measure-
valued processes. Let (S, d) and (S0, d0) be complete, separable metric spaces,
B(S) ⊂ M(S) be the Banach space of bounded measurable functions on S, with
‖f ‖ = supx∈S |f (x)| and C(S) ⊂ B(S) be the subspace of bounded continuous
functions. An operator A ⊂ B(S)×B(S) is dissipative if ‖f1 −f2 −ε(g1 −g2)‖ ≥
‖f1 − f2‖ for all (f1, g1), (f2, g2) ∈ A and ε > 0; A is a pre-generator if A is dis-
sipative and there are sequences of functions μn :S → P(S) and λn :S → [0,∞)

such that for each (f, g) ∈ A

g(x) = lim
n→∞λn(x)

∫
S

(
f (y) − f (x)

)
μn(x, dy)(A.14)

for each x ∈ S. A is graph separable if there exists a countable subset {gk} ⊂
D(A) ∩ C(S) such that the graph of A is contained in the bounded, pointwise
closure of the linear span of {(gk,Agk)}. [More precisely, we should say that there
exists {(gk, hk)} ⊂ A∩C(S)×B(S) such that A is contained in the bounded point-
wise closure of {(gk, hk)}, but typically A is single-valued, so we use the more
intuitive notation Agk .] These two conditions are satisfied by essentially all oper-
ators A that might reasonably be thought to be generators of Markov processes.
Note that A is graph separable if A ⊂ L × L, where L ⊂ B(S) is separable in the
sup norm topology, for example, if S is locally compact, and L is the space of
continuous functions vanishing at infinity.

A collection of functions D ⊂ C(S) is separating if ν,μ ∈ P(S) and
∫
S f dν =∫

S f dμ for all f ∈ D imply μ = ν.
For an S0-valued, measurable process Y , F̂ Y

t will denote the completion of the
σ -algebra σ(Y (0),

∫ r
0 h(Y (s)) ds, r ≤ t, h ∈ B(S0)). For almost every t , Y(t) will

be F̂ Y
t -measurable, but in general, F̂ Y

t does not contain F Y
t = σ(Y (s) : s ≤ t). Let

TY = {t :Y(t) is F̂ Y
t measurable}. If Y is cadlag and has no fixed points of discon-

tinuity [i.e., for every t , Y(t) = Y(t−) a.s.], then TY = [0,∞). DS[0,∞) denotes
the space of cadlag, S-valued functions with the Skorohod topology, and MS[0,∞)

denotes the space of Borel measurable functions, x : [0,∞) → S, topologized by
convergence in Lebesgue measure.

THEOREM A.15. Let (S, d) and (S0, d0) be complete, separable metric
spaces. Let A ⊂ C(S) × C(S) and ψ ∈ C(S), ψ ≥ 1. Suppose that for each
f ∈ D(A) there exists cf > 0 such that

|Af (x)| ≤ cf ψ(x), x ∈ A,(A.15)
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and define A0f (x) = Af (x)/ψ(x).
Suppose that A0 is a graph-separable pre-generator, and suppose that D(A) =

D(A0) is closed under multiplication and is separating. Let γ :S → S0 be Borel
measurable, and let α be a transition function from S0 into S [y ∈ S0 → α(y, ·) ∈
P(S) is Borel measurable] satisfying

∫
h ◦ γ (z)α(y, dz) = h(y), y ∈ S0, h ∈

B(S0), that is, α(y, γ −1(y)) = 1. Assume that ψ̃(y) ≡ ∫
S ψ(z)α(y, dz) < ∞ for

each y ∈ S0, and define

C =
{(∫

S
f (z)α(·, dz),

∫
S
Af (z)α(·, dz)

)
:f ∈ D(A)

}
.

Let μ0 ∈ P(S0), and define ν0 = ∫
α(y, ·)μ0(dy).

(a) If Ỹ satisfies
∫ t

0 E[ψ̃(Ỹ (s))]ds < ∞ for all t ≥ 0, and Ỹ is a solution of the
martingale problem for (C,μ0), then there exists a solution X of the martin-
gale problem for (A, ν0) such that Ỹ has the same distribution on MS0[0,∞)

as Y = γ ◦X. If Y and Ỹ are cadlag, then Y and Ỹ have the same distribution
on DS0[0,∞).

(b) For t ∈ TY ,

P {X(t) ∈ 	|F̂ Y
t } = α(Y (t),	), 	 ∈ B(S).(A.16)

(c) If, in addition, uniqueness holds for the martingale problem for (A, ν0), then
uniqueness holds for the MS0[0,∞)-martingale problem for (C,μ0). If Ỹ

has sample paths in DS0[0,∞), then uniqueness holds for the DS0[0,∞)-
martingale problem for (C,μ0).

(d) If uniqueness holds for the martingale problem for (A, ν0), then Y restricted
to TY is a Markov process.

REMARK A.16. Theorem A.15 can be extended to cover a large class of gen-
erators whose range contains discontinuous functions. (See [30], Corollary 3.5 and
Theorem 2.7.) In particular, suppose A1, . . . ,Am satisfy the conditions of Theo-
rem A.15 for a common domain D = D(A1) = · · · = D(Am), and β1, . . . , βm are
nonnegative functions in M(S). Then the conclusions of Theorem A.15 hold for

Af = β1A1f + · · · + βmAmf.

PROOF OF THEOREM A.15. Theorem 3.2 of [30] can be extended to opera-
tors satisfying (A.15) by applying Corollary 1.12 of [34] (with the operator B in
that corollary set equal zero) in place of Theorem 2.6 of [30]. Alternatively, see
Corollary 3.3 of [32]. �

A.6. Uniqueness for martingale problems. Assume that B ⊂ C(E)×C(E),
that D(B) is closed under multiplication and is separating, and that existence and
uniqueness hold for the DE[0,∞) martingale problem for (B, ν) for each initial
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distribution ν ∈ P(E). Without loss of generality, we can assume g ∈ D(B) satis-
fies 0 ≤ g ≤ 1.

By Theorem 4.10.1 of [9], existence and uniqueness then follows for the n-
particle motion martingale problem with generator

Bn =
{(

f (x), f (x)

n∑
i=1

Bg(xi)

g(xi)

)
:f (x) =

n∏
i=1

g(xi)

}
.(A.17)

Actually, the cited theorem implies uniqueness for the ordered n-particle motion
with generator

B̃n =
{(

f (x), f (x)

n∑
i=1

Bgi(xi)

gi(xi)

)
:f (x) =

n∏
i=1

gi(xi), gi ∈ D(B)

}
,

but Theorem A.15 can be applied to obtain uniqueness for Bn from uniqueness
for B̃n. Define γ (x) = ∑n

i=1 δxi
and let α(y, ·) average over all permutations of

the xi in y =∑n
i=1 δxi

.
Now consider a generator for a process with state space

S =⋃
n

{
n∑

i=1

δxi
:xi ∈ E

}
,

where we allow n = 0, that is, no particles exist.
For f (x,n) =∏n

i=1 g(xi), let

Af (x,n) = Bnf (x,n)

+ f (x,n)
∑
k

λk(x)

∫
Ek

(
k∏

i=1

g(zi) − 1

)
ηk(x, dz1, . . . , dzk)

+ f (x,n)
∑

(z1,...,zl)⊂{x1,...,xn}
μ(x, z1, . . . , zl)

(
1∏l

i=1 g(zi)
− 1

)
,

where λk,μ ≥ 0 and ηk is a transition function from S to Ek . The generator has
the following simple interpretation: in between birth and death events the particles
move independently with motion determined by B . At rate λk(x), k new particles
are created with locations in E determined by ηk . At rate μ(x, z1, . . . , zl), the
particles at z1, . . . , zl are removed.

Let

β(x) =∑
k

λk(x) + ∑
(z1,...,zl)⊂{x1,...,xn}

μ(x, z1, . . . , zl).

Then for each initial distribution ν0 and each m > 0, a localization argument and
Theorem 4.10.3 of [9] imply existence and uniqueness of the martingale prob-
lem for (A, ν0) up to the first time the solution leaves {x :β(x) < m}. Conse-
quently, existence and uniqueness hold provided that there is a solution X sat-
isfying sups≤t β(X(s)) < ∞ a.s. for each t > 0.
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Essentially the same argument gives existence and uniqueness for generators of
the form (3.1) provided infx(a(x)r − b(x)) > 0 and there exists a solution satisfy-
ing sups≤t

∑
a(Xi(s)) < ∞ a.s. for each t > 0.
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