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1 Introduction

The fair way to decide an election between two candidates a and b is majority
rule; if more than half the electorate prefer a to b, then a is elected; otherwise
b is elected. Arrow’s theorem asserts that no fair election procedure1 exists
for choosing from among three or more candidates. This paper gives an
exposition of Arrow’s theorem. I learned the ultrafilter proof given below
at a mathematics-economics conference held at the Univerisity of Warwick
around 1975.

2 Informal examples

To get a feeling for Arrow’s theorem let us consider how some existing election
procedures can lead to grossly unfair results. (I downloaded much of this stuff
from Wikipedia.)

One commonly used procedure is to have a second “runoff” election be-
tween the top two candidates if no candidate achieves a majority in the first
election. The electorate might be confronted with three candidates a, b and c
with candidates a and b extreme but opposite and c moderate. Suppose that
each of the three candidates is the first choice of a third of the electorate and
that all the supporters of a and b have c as their second choice. It seems clear
that c is the best choice, especially if the supporters of a detest b and the
supporters of b detest a. However, under the runoff procedure the electorate
might well be forced to choose between a and b in the second election.

1Election procedures are sometimes called social choice functions.
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Preferential voting (also called ”instant runoff voting”) is a type of ballot
structure used in several electoral systems in which voters rank a list or group
of candidates in order of preference. The candidate receiving the least first
place votes is eliminated and his votes (with the preferences shifted up) are
distributed among the remaining candidates. The process is repeated until
only one candidate remains. Preferential voting is used in Australia, but the
term ”Australian Ballot” most commonly means simply ”secret ballot”.

Condercet voting works as follows: Rank the candidates in order (1st,
2nd, 3rd, etc.) of preference. Comparing each candidate on the ballot to
every other, one at a time (pairwise), tally a ”win” for the victor in each
match. Sum these wins for all ballots cast. The candidate who has won
every one of their pairwise contests is the most preferred, and hence the
winner of the election.

3 Formulation of the Theorem

Throughout E denotes the electorate. The elements of this set represent
the individual people who actually do the voting. For the formulation of the
theorem we need assume nothing about this set except that it is nonempty
and finite. The set of candidates is another finite set C. We assume only
that the cardinality

n := |C|
of the set of candidates is at least 3. A state of the electorate is a function s
which assigns to each individual elector i ∈ E a simple ordering of the set C
of candidates. A simple ordering of C is the same as a bijection between C
and {1, 2, . . . , n} so a state of the electorate is a map s : E×C → {1, 2, . . . , n}
such that for each i ∈ E the function si : C → {1, 2, . . . , n} defined by

si(a) = s(i, a)

is a bijection. The idea is that if the state of the electorate is s, then elector
i prefers candidate a to candidate b if and only if s(i, a) > s(i, b). We denote
by Σ the set of all states of the electorate. The cardinality of Σ is

|Σ| = (n!)|E|

where |E| is the cardinality of E and n = |C| is the cardinality of C. Evi-
dentally, Σ is a rather large set.
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An election procedure is a function which assigns to each state of the
electorate an ordering of the candidates (the result of the election). In other
words, an election procedure is a function

f : Σ → {1, 2, . . . , n}.

The condition f(s)(a) > f(s)(b) says that the election procedure f ranks
candidate a ahead of candidate b when the state of the electorate is s.

The election procedure f is said to satisfy the unanimity condition iff
for all state s and all candidates a and b we have

∀i ∈ E[s(i, a) > s(i, b)] =⇒ f(s)(a) > f(s)(b).

(If all electors favor Alice over Bob, then the election favors Alice over Bob.)
The election procedure f is said to satisfy the monotonicity condition

iff whenever s, s′ ∈ Σ and a, b ∈ C satisfy f(s)(a) > f(s)(b), f(s′)(c) =
f(s)(c) for all c ∈ C \ {a, b}, and si(a) > si(b) =⇒ s′i(a) > s′i(b), then
f(s′)(a) > f(s′)(b). (If in a second run of an election in which the electorate
favored Alice over Bob, some of the electors who previously voted for Bob
over Alice now place Alice ahead of Bob but except for this no elector changes
his/her vote, then Alice beats Bob in the second election as well.)

The election procedure f is said to satisfy the irrelevance of third
alternatives condition iff whenever s, s′ ∈ Σ and a, b ∈ C satisfy the
condition that

si(a) > si(b) ⇐⇒ s′i(a) > s′i(b) for all i ∈ E

and f(s)(a) > f(s)(b), then also f(s′)(a) > f(s′)(b). (Whether or not the
the election favors Alice over Bob has nothing to do with how the individual
electors feel about Charles.

A dictator for election procedure f is an elector i ∈ E whose preferences
always coincide with the result of the election. In other words, j ∈ E is a
dictator for f iff for all states s ∈ Σ we have f(s) = sj. We would hardly
call an election procedure fair if it has a dictator, but:

Arrow’s Theorem: Any election procedure which satisfies the unanimity
condition, the monotonicity condition, and the irrelevance of third alterna-
tives condition has a dictator.
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4 Ultrafilters

Let E be a nonempty set. A filter on E is a set F of subsets of E satisfying
the following three conditions:

1. E ∈ F and ∅ /∈ F ;

2. If X ⊆ Y ⊆ E and X ∈ F , then Y ∈ F ;

3. If X ∈ F and Y ∈ F , then X ∩ Y ∈ F .

Example 4.1. Let Z be any nonempty subset of E. Then the set

F = {X ⊆ E : Z ⊆ X}
is a filter called the principal filter generated by Z.

Example 4.2. Let E be any infinite set. Then the set F of cofinite subsets
of E is a filter. (A subset α ⊆ E is called cofinite iff its complement E \ α
is finite.) This filter is not principal.

Theorem 4.3. Let F be a filter on E. Then the following conditions are
equivalent:

1. F is a maximal filter, i.e. if F ′ is a filter on E and F ⊆ F ′ then
F = F ′;

2. F is a prime filter, i.e. if X, Y ⊆ E and X∪Y ∈ F then either X ∈ F
or Y ∈ F ;

3. For every X ⊆ E either X ∈ F or E \XinF ;

4. If Y ⊆ E and Y ∩X ∈ F for all X ∈ F , then Y ∈ F ;

5. If {X1, X2, . . . , Xr} is a partition of E, then there is a j (necesarily
unique) such that Xj ∈ F .

A filter which satisfies these equivalent conditions is called an ultrafilter.

Example 4.4. A principal ultrafilter is a principal filter which is an ultra-
filter. A principal filter is an ultrafilter if and only if its generator Z consists
of a single point.

Theorem 4.5. Every filter extends to an ultrafilter.

Corollary 4.6. There exist nonprincipal ultrafilters on an infinite set.

Theorem 4.7. On a finite set every filter is principal.
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5 Proof of Arrow’s Theorem

Let f be an election procedure which satisfies the unanimity condition, the
monotonicity condition, and irrelevance of third alternatives condition. For
any state s and pair of candidates a and b define

P (s, a, b) = {i ∈ E : s(i, a) > s(i, b)}

denote the set of electors who prefer a to b. For a 6= b call a set X ⊂ E such
that

∀s ∈ Σ
[
X ⊂ P (s, a, b) =⇒ f(s)(a) > f(s)(b)

]

a forcing coalition for a over b. Call the set X a forcing coalition iff
for all a 6= b it is a forcing coalition for a over b. Let F(a, b) be the set of
forcing coalitions for a over b and

F :=
⋂

a6=b

F(a, b)

denote the set of all forcing coalitions.

Theorem 5.1. Assume that the set C of candidates contains at least three
members. Then F is an ultrafilter.

Arrow’s Theorem is an immediate corollary. By definition an elector
j ∈ E is a dictator iff the singleton {j} is a forcing coalition. Since E is finite
the ultrafilter F is principal and the generator is the dictator. The pattern of
proof is as follows. First we show that each F(a, b) is a filter. Then we show
that F(a, b) is independent of the choice of a 6= b, i.e. F(a, b) = F(a′, b′) for
a 6= b and a′ 6= b′. Thus F(a, b) = F . Finally we show that the minimal
element of F (i.e. the intersection of all X ∈ F) is a singleton.

The unanimity axiom says that the entire electorate is a forcing coalition,
i.e. E ∈ F(a, b). It is immediate that any superset of a forcing coalition is
again a forcing coalition, i.e. X ∈ F(a, b) and X ⊂ Y =⇒ Y ∈ F(a, b).

We show that the intersection of two forcing coalitions is a forcing coali-
tion. Choose X, Y ∈ F(a, b). Choose a, b ∈ C and s ∈ Σ with X ∩ Y ⊆
P (s, a, b). Choose c 6= a, b (as n ≥ 3) and let s′ ∈ Σ satisfy s′i(a) > s′i(c)
for i ∈ X \ Y , s′i(a) > s′i(c) > s′i(b) for i ∈ X ∩ Y , s′i(c) > s′i(b) for
i ∈ Y \ X, and P (s′, a, b) = P (s, a, b). Then f(s′)(a) > f(s′)(c) as X ∈ F
and f(s′)(c) > f(s′)(a) as Y ∈ F so f(s′)(a) > f(s′)(c) > f(s′)(b). Hence
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f(s)(b) > f(s)(a) by the irrelevance of third alternatives. This proves
X ∩Y ∈ F(a, b). We have shown that F(a, b) is a filter. Taking intersections
shows that F is a filter.

Lemma 5.2. For all states s and s′ and all candidates a and b we have

f(s)(a) > f(s)(b) and P (s, a, b) ⊆ P (s′, a, b) =⇒ f(s′)(a) > f(s′)(b).

Proof. Assume that f(s)(a) > f(s)(b) and P (s, a, b) ⊆ P (s′, a, b). Define
s∗ ∈ Σ by s∗ ∈ Σ by s∗i (a) = s′i(a), s∗i (b) = s′i(b) and s∗i (c) = si(c) for i ∈ E
and c 6= a, b. Then f(s∗)(a) > f(s∗)(b) by monotonicity so f(s′)(a) > f(s′)(b)
by the irrelevance of third alternatives.

Corollary 5.3. Assume that for some s ∈ Σ and a, b ∈ C we have f(s)(a) >
f(s)(b) and let X = P (s, a, b). Then X ∈ F(a, b).

Lemma 5.4. F(a, b) = F(a′, b′) for all a 6= b and a′ 6= b′.

Proof. Choose X ∈ F(a, b) and a′ 6= b. We first show that X ∈ F(a′, b).
Assume that X ⊂ P (s, a′, b). Choose s′ so that P (s′, a′, b) = P (s, a, b). Then
f(s)(a) > f(s)(b) as X ∈ F(a, b) so f(s′)(a) > f(s′)(b). This shows that
X ∈ F(a′, b). Hence F(a, b) ⊂ F(a′, b). Reversing the roles of a and a′

gives F(a, b) = F(a′, b). Similarly F(a, b) = F(a, b′). Since a is arbitrary,
F(a′, b) = F(a′, b′). Hence F(a, b) = F(a′, b) = F(a′, b′) as required.

We show that F is an ultrafilter. Let X be the minimal element of F .
Choose j ∈ X. We will show that X = {j}, i.e. that X \ {j} = ∅. Choose
a, b, c distinct and a state s ∈ Σ such that sj(a) > sj(b) > sj(c), si(c) >
si(a) > si(b) for i ∈ X \ {j}, and si(b) > si(c) > si(a) for i ∈ E \X. Since
P (s, a, b) = X, we have f(s)(a) > f(s)(b). Now P (s, c, b) = X\{j}. If it were
the case that f(s)(c) > f(s)(b), then (by Corollary 5.3) X \ {j} would force
c over b, so X \ {j} ∈ F(c, b), so (by Lemma 5.4) X \ {j} ∈ F contradicting
minimality. Hence f(s)(b) > f(s)(c). It follows that f(s)(a) > f(s)(c). But
P (s, a, c) = {j}. Hence, by Corollary 5.3 we have {j} ∈ F(a, c) = F . This
completes the proof.

6 Reflections

When I have discussed Arrow’s theorem with nonmathematicians I discover
that they tend to attack the theorem by attacking its assumptions. This
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is of course quite reasonable, but the nonmathematicians do this by trying
to impose additional assumptions. They say something like “Well of course
you reached an antidemocratic solution: your hypotheses didn’t assume all
members of the electorate are equal!” What they don’t understand is that
additional hypotheses cannot possibly falsify a true theorem.

It is tempting to conclude that the theorem proves something about po-
litical life like the most stable countries are those which have a two party
system. Possibly some people might even take the theorem as an argument
against democracy. I am skeptical of such inferences. It seems to me that
democracy is successful when all voices are heard and the citizenry under-
stand one another and have some control over their fate. I don’t see what
Arrow’s theorem says about that.
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