Tukey Degrees of Ultrafilters

Kunen Fest 2009

Natasha Dobrinen

University of Denver

joint work with

Stevo Todorcevic

University of Toronto
Université Paris VII
\textbf{Def.} $\mathcal{U} \leq_T \mathcal{V}$ iff there is a \textit{Tukey} map $g : \mathcal{U} \rightarrow \mathcal{V}$ taking unbounded subsets of \mathcal{U} to unbounded subsets of \mathcal{V}.

Equivalently, $\mathcal{U} \leq_T \mathcal{V}$ iff there is a \textit{cofinal} map $f : \mathcal{V} \rightarrow \mathcal{U}$ taking cofinal subsets of \mathcal{U} to cofinal subsets of \mathcal{V}.

$\mathcal{U} \equiv_T \mathcal{V}$ iff $\mathcal{U} \leq_T \mathcal{V}$ and $\mathcal{V} \leq_T \mathcal{U}$.

\textbf{Fact.} \equiv_T is an equivalence relation. \leq_T is a partial ordering on the equivalence classes.
Motivations

1. A special class of directed systems of size \mathfrak{c}.

2. $\nu \geq_{RK} \mathcal{U}$ implies $\nu \geq_{T} \mathcal{U}$.

What is the structure of Tukey degrees of ultrafilters on ω?
[Isbell 65] There is an ultrafilter \(U_{top} \equiv_T [\mathfrak{c}]^{<\omega} \).

Note: \(V \equiv_T [\mathfrak{c}]^{<\omega} \) iff \(\neg (\forall S \in \mathcal{V}^c \exists T \in [S]^\omega (\bigcap T \in V)) \).

Question. [Isbell 65] Is there always (in ZFC) an ultrafilter \(U \) such that \(U <_T U_{top} \)?
Note: $\mathcal{V} \equiv_T [c]<^\omega$ iff $(\forall S \in [\mathcal{V}]^c \exists T \in [S]^\omega (\bigcap T \in \mathcal{V}))$.

Def. [Solecki/Todorcevic 04] An ultrafilter \mathcal{V} is *basic* if each convergent sequence has a bounded subsequence.

Fact. Each basic ultrafilter does not have top Tukey degree.
Note: \(\mathcal{V} \equiv_T [c]^<\omega \) iff \(\neg (\forall S \in [\mathcal{V}]^c \exists T \in [S]^\omega \ (\cap T \in \mathcal{V})) \).

Def. An ultrafilter \(\mathcal{V} \) is *basic* if each convergent sequence has a bounded subsequence.

Fact. A basic ultrafilter is does not have top Tukey degree.

Thm. An ultrafilter is basic iff it is a p-point.
Are there Tukey non-top ultrafilters which are not p-points?
Def. \(U \) is *basically generated* if there is a filter base \(\mathcal{B} \subseteq U \)
(\(\forall X \in U \ \exists Y \in \mathcal{B} \ Y \subseteq X \)) such that whenever \(A, A_n \in \mathcal{B} \) and \(A_n \to A \), then there is a subsequence such that \(\bigcap_{k<\omega} A_{n_k} \in U \).

Fact. A basically generated ultrafilter is not Tukey top.

Thm. If \(U, U_n \) are p-points, then \(\lim_{n \to U} U_n \) is basically generated (but not a p-point).

Fact. Glazer selective ultrafilters on FIN are basically generated.
We now focus on the structure of Tukey degrees of p-points and ultrafilters below them.
Theorem. If \mathcal{U} is a p-point and $\mathcal{U} \gtrsim_T \mathcal{V}$, then there is a continuous monotone map $f : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ such that $f \upharpoonright \mathcal{U} : \mathcal{U} \to \mathcal{V}$ is a cofinal map.

Note: f is definable from its values on the Fréchet filter.
Thm. Every family of p-points of cardinality \(> \aleph^+ \) contains a subfamily of equal size of pairwise Tukey incomparable p-points.

Thm. Every \(\leq_T \) chain of p-points has cardinality \(\leq \aleph^+ \).

Thm. If \(U \geq_T V \) and \(U \) is selective, then \(V \) is basically generated.
Antichains

Thm. 1. If $\text{cov}(\mathcal{M}) = c$, and $2^{<\kappa} = c$, then there are 2^κ pairwise incomparable selective ultrafilters.

2. If $\mathfrak{d} = \mathfrak{u} = c$ and $2^{<\kappa} = c$, then there are 2^κ pairwise incomparable p-points.
Chains

[Kunen 78] If \mathcal{U} is κ-OK and $\kappa > \text{cof}(\mathcal{U})$, then \mathcal{U} is a p-point.

[Milovich 08] \mathcal{U} is a p-point iff it is \mathfrak{c}-OK and not Tukey top.

Fact. If \mathcal{U} is κ-OK but not a p-point, then $\mathcal{U} \geq_T [\kappa]^\omega$. Hence, if \mathcal{U} is κ-OK but not a p-point, then $\text{cof}(\mathcal{U}) = \kappa$ iff $\mathcal{U} \equiv_T [\kappa]^\omega$.

If there are κ-OK non p-points with cofinality κ for each uncountable $\kappa < \mathfrak{c}$, then there is a strictly increasing chain of ultrafilters of length α, where α is such that $\aleph_{\alpha} = \mathfrak{c}$.
Thm. (also independently by Dilip Raghavan) CH implies for each p-point \mathcal{U} there is a p-point \mathcal{V} such that $\mathcal{V} >_T \mathcal{U}$.

Cor. (CH) There is a Tukey strictly increasing chain of p-points of length ω_1.

Question. Is it true that there is a p-point Tukey above ANY Tukey strictly increasing chain of p-points?
Incomparable Predecessors

Thm. (MA) There is a p-point with 2 Tukey incomparable predecessors, each of which is also a p-point.

Thm. (CH) There is a Glazer selective ultrafilter \mathcal{U} on FIN such that \mathcal{U}_{min} and \mathcal{U}_{max} are Tukey incomparable selective ultrafilters.
Comparing with ω^ω.

Fact. If \mathcal{U} is rapid, then $\mathcal{U} \geq T \omega^\omega$.

Fact. For each ultrafilter \mathcal{U}, $\mathcal{U} \cdot \mathcal{U} \geq T \omega^\omega$.

Fact. If \mathcal{U} is a p-point, then $\mathcal{U}^\omega \equiv T \mathcal{U} \times \omega^\omega$.

Thm. If \mathcal{U} is a p-point, then $\mathcal{U} \cdot \mathcal{U} \leq T \mathcal{U}^\omega$.

Thm. The following are equivalent for a p-point \mathcal{U}

1. $\mathcal{U} \geq_T \omega^\omega$;
2. $\mathcal{U} \equiv_T \mathcal{U} \cdot \mathcal{U}$;
3. $\mathcal{U} \equiv_T \mathcal{U}^\omega$.
Cor. If \(U \) is a rapid ultrafilter then \(U \cdot U \equiv_T U \).

Cor. If \(U \) is a p-point and \(U \geq_T \omega^\omega \), then \(U \cdot U \equiv_T U \).

Cor. If \(U \) is a p-point of cofinality \(< \delta\), then \(U \nleq_T \omega^\omega \) and therefore \(U \cdot U >_T U \).

Thm. Assuming \(p = c \), there is a p-point \(U \) such that \(U \nleq_T \omega^\omega \) and therefore \(U <_T U \cdot U <_T U_{top} \).
Some Open Problems

1. Is it true in ZFC that there is an ultrafilter $\mathcal{U} <_T \mathcal{U}_{top}$ [Isbell]?

2. Is Tukey equivalent to Rudin-Keisler for selective ultrafilters?

3. Is there an ultrafilter \mathcal{U} on ω such that $\mathcal{U} <_T \mathcal{U} \cdot \mathcal{U} <_T \mathcal{U} \cdot \mathcal{U} \cdot \mathcal{U}$?

4. What properties are preserved Tukey downwards?