Paracompact box products
then and later

Judith Roitman
University of Kansas

April 2009
The question: Which box products are paracompact?
The question: Which box products are paracompact?

Definition Box product: underlying set is a product of spaces, $\prod_{i \in I} X_i$; basic open set is a product of open sets, $\prod_{i \in I} u_i$.
The question: Which box products are paracompact?

Definition Box product: underlying set is a product of spaces, \(\Pi_{i \in I} X_i \); basic open set is a product of open sets, \(\Pi_{i \in I} u_i \).

The original question: (Teitze, 1940’s?) Is \(\square \mathbb{R}^\omega \) normal?
The question: Which box products are paracompact?

Definition Box product: underlying set is a product of spaces, $\prod_{i \in I} X_i$; basic open set is a product of open sets, $\prod_{i \in I} u_i$.

The original question: (Teitze, 1940’s?) Is $\square \mathbb{R}^\omega$ normal?

A second question: (Stone, 1950’s) Is the box product of countably many separable metric spaces normal?
The question: Which box products are paracompact?

Definition Box product: underlying set is a product of spaces, $\Pi_{i \in I} X_i$; basic open set is a product of open sets, $\Pi_{i \in I} U_i$.

The original question: (Teitze, 1940’s?) Is $\square \mathbb{R}^\omega$ normal?

A second question: (Stone, 1950’s) Is the box product of countably many separable metric spaces normal?

The first interesting answer: (M.E. Rudin 1972)

Theorem Assume CH. The box product of countably many compact metrizable spaces is paracompact.
Kunen’s improvement (1978)
Kunen’s improvement (1978)

Theorem (a) Assume CH. If each X_n is compact with each $w(X_n) \leq \omega_1$ then $\square_{n<\omega} X_n$ is paracompact.
Kunen’s improvement (1978)

Theorem (a) Assume CH. If each X_n is compact with each $w(X_n) \leq \omega_1$ then $\square_{n<\omega} X_n$ is paracompact.

(b) Assume MA. If each X_n is compact first countable then $\square_{n<\omega} X_n$ is paracompact.
Kunen’s improvement (1978)

Theorem (a) Assume CH. If each X_n is compact with each $w(X_n) \leq \omega_1$ then $\square_{n<\omega} X_n$ is paracompact.

(b) Assume MA. If each X_n is compact first countable then $\square_{n<\omega} X_n$ is paracompact.

(c) Assume CH. If each X_n is compact scattered then $\square_{n<\omega} X_n$ is paracompact.
Important early negative results
Important early negative results

Theorem (Kunen 1973) If $\mathfrak{b} = \mathfrak{d}$ then $\mathfrak{d} \times \square(\omega + 1)^\omega$ is not normal.

Theorem (van Douwen 1975) $\mathbb{P} \times \square(\omega + 1)^\omega$ is not normal.
Important early negative results

Theorem (Kunen 1973) If $b = d$ then $d \times \square(\omega + 1)\omega$ is not normal.

Theorem (van Douwen 1975) $\mathbb{P} \times \square(\omega + 1)\omega$ is not normal.

Theorem (Kunen 1974) $\square(2^{(c^+)})\omega$ is not normal.
Important early negative results

Theorem (Kunen 1973) If \(b = d \) then \(d \times \Box(\omega + 1)\omega \) is not normal.

Theorem (van Douwen 1975) \(\mathbb{P} \times \Box(\omega + 1)\omega \) is not normal.

Theorem (Kunen 1974) \(\Box(2^{(c^+)}))\omega \) is not normal.

Note: Taken together these results say that something like compactness is needed, and weight must not be too large.
Two stunning results of Brian Lawrence:
Two stunning results of Brian Lawrence:

Theorem If $b = d$ or $d = c$ then $\square \mathbb{Q}^\omega$ is paracompact.
Two stunning results of Brian Lawrence:

Theorem If $b = \diamond$ or $\diamond = c$ then $\square \mathbb{Q}^{\omega}$ is paracompact.

Theorem (1996) $\square (\omega + 1)^{\omega1}$ is not normal.
Two stunning results of Brian Lawrence:

Theorem If $b = d$ or $d = c$ then $\square \mathbb{Q}^\omega$ is paracompact.

Theorem (1996) $\square (\omega + 1)^{\omega_1}$ is not normal.

I.e., forget about the box product of uncountably many spaces.
Kunen’s student Louis Wingers:
Kunen’s student Louis Wingers:

Theorem (Wingers 1995) if X is separable Lindelöf not Hurewicz then $X \times \Box(\omega + 1)^\omega$ is not normal.
Kunen’s student Louis Wingers:

Theorem (Wingers 1995) if X is separable Lindelöf not Hurewicz then $X \times \Box(\omega + 1)\omega$ is not normal.

This generalizes van Douwen’s $\mathbb{P} \times \Box(\omega + 1)\omega$ is not normal.
Kunen’s student Louis Wingers:

Theorem (Wingers 1995) if \(X \) is separable Lindelöf not Hurewicz then
\(X \times \square(\omega + 1)^\omega \) is not normal.

This generalizes van Douwen’s \(\mathbb{P} \times \square(\omega + 1)^\omega \) is not normal.

Theorem (Wingers 1994) if \(d = c \) then \(\square_{n<\omega} \square X_n \) is paracompact if each
\(X_n \) is \(\sigma \)-compact, 0-dimensional, first countable, \(|X_n| \leq c \).
Kunen’s student Louis Wingers:

Theorem (Wingers 1995) if X is separable Lindelöf not Hurewicz then $X \times \square(\omega + 1)^\omega$ is not normal.

This generalizes van Douwen’s $\mathbb{P} \times \square(\omega + 1)^\omega$ is not normal.

Theorem (Wingers 1994) if $d = c$ then $\square_{n<\omega} \square X_n$ is paracompact if each X_n is σ-compact, 0-dimensional, first countable, $|X_n| \leq c$.

This generalizes Lawrence’s $\square \mathbb{Q}^\omega$ is paracompact.
Sketches of proofs.
Negative results
Negative results

Negative results are (so far) “not normal” results.
Negative results

Negative results are (so far) “not normal” results.

For $\varnothing \times (\omega + 1)^\omega$ **to not be normal** (in the presence of a scale):
Negative results

Negative results are (so far) “not normal” results.

For $\vartheta \times (\omega + 1)^\omega$ to not be normal (in the presence of a scale):

$\{f_\alpha : \alpha < \vartheta\}$ is the scale.
Negative results

Negative results are (so far) “not normal” results.

For $\omega \times (\omega + 1)^\omega$ to not be normal (in the presence of a scale):

$\{f_\alpha : \alpha < \vartheta\}$ is the scale.

$H = \{ (\alpha, f_\alpha) : \alpha < \vartheta \}.$
Negative results

Negative results are (so far) “not normal” results.

For $\omega \times (\omega + 1) \omega$ to not be normal (in the presence of a scale):

$\{f_\alpha : \alpha < \vartheta\}$ is the scale.

$H = \{(\alpha, f_\alpha) : \alpha < \vartheta\}$.

$K = b \times \{x : \{n : x(n) < \omega\} \text{ is finite}\}$.
Negative results

Negative results are (so far) “not normal” results.

For $\vartheta \times (\omega + 1)^\omega$ to not be normal (in the presence of a scale):

$\{f_\alpha : \alpha < \vartheta\}$ is the scale.

$H = \{(\alpha, f_\alpha) : \alpha < \vartheta\}$.

$K = b \times \{x : \{n : x(n) < \omega\} \text{ is finite}\}$.

Can’t separate H, K.
For $\Box (2^{(\epsilon^+)} \omega)$ to not be normal
For □(2(\(e^+\))\(\omega\)) to not be normal

Show the diagonal \(D\) is not normal.
For $\square(2^{(c^+)} \omega)$ to not be normal

Show the diagonal D is not normal.

$D \approx 2^{(c^+)}$ with the G_δ topology.
For $\Box(2^{(c^+)} \omega)$ to not be normal

Show the diagonal D is not normal.

$D \approx 2^{(c^+)}$ with the G_δ topology.

$D \approx 2^A$ where $A = (c^+ \times \omega) \cup [c^+]^2$.
For □(2\(^{(c^+)}\))\(\omega\) to not be normal

Show the diagonal \(D\) is not normal.

\(D \approx 2^{(c^+)}\) with the \(G_\delta\) topology.

\(D \approx 2^A\) where \(A = (c^+ \times \omega) \cup [c^+]^2\).

For \(f \in 2^A\) and \(\alpha < c^+\) define \(f_\alpha : \omega \rightarrow 2\) by \(f_\alpha(n) = f(\alpha, n)\).
For \(\square(2^{(c^+)})^\omega \) to not be normal

Show the diagonal \(D \) is not normal.

\(D \approx 2^{(c^+)} \) with the \(G_\delta \) topology.

\(D \approx 2^A \) where \(A = (c^+ \times \omega) \cup [c^+]^2 \).

For \(f \in 2^A \) and \(\alpha < c^+ \) define \(f_\alpha : \omega \to 2 \) by \(f_\alpha(n) = f(\alpha, n) \).

\(H = \{ f \in 2^A : \text{if } \alpha < \beta < c^+ \text{ and } f_\alpha = f_\beta \text{ then } f(\alpha, \beta) = 0 \} \).
For \(\square(2^{(c^+)})^\omega \) to not be normal

Show the diagonal \(D \) is not normal.

\[D \approx 2^{(c^+)} \] with the \(G_\delta \) topology.

\[D \approx 2^A \text{ where } A = (c^+ \times \omega) \cup [c^+]^2. \]

For \(f \in 2^A \) and \(\alpha < c^+ \) define \(f_\alpha : \omega \to 2 \) by \(f_\alpha(n) = f(\alpha, n) \).

\(H = \{ f \in 2^A : \text{if } \alpha < \beta < c^+ \text{ and } f_\alpha = f_\beta \text{ then } f(\alpha, \beta) = 0 \} \).

\(K = \{ f \in 2^A : \text{if } \alpha < \beta < c^+ \text{ then } f(\alpha, \beta) = 1 \} \).
For □(2^(c^+))ω to not be normal

Show the diagonal D is not normal.

$D \cong 2^{(c^+)}$ with the G_δ topology.

$D \cong 2^A$ where $A = (c^+ \times \omega) \cup [c^+]^2$.

For $f \in 2^A$ and $\alpha < c^+$ define $f_\alpha : \omega \to 2$ by $f_\alpha(n) = f(\alpha, n)$.

$H = \{ f \in 2^A : \text{if } \alpha < \beta < c^+ \text{ and } f_\alpha = f_\beta \text{ then } f(\alpha, \beta) = 0 \}$.

$K = \{ f \in 2^A : \text{if } \alpha < \beta < c^+ \text{ then } f(\alpha, \beta) = 1 \}$.

H, K can’t be separated.
Kunen’s simplifications: (good for positive results)
Kunen’s simplifications: (good for positive results)

Theorem If each X_n is compact, then $\square_{n<\omega} X_n$ is paracompact iff $\nabla_{n<\omega} X_n$ is ultraparacompact.
Kunen’s simplifications: (good for positive results)

Theorem If each X_n is compact, then $\square_{n<\omega} X_n$ is paracompact iff $\nabla_{n<\omega} X_n$ is ultraparacompact.

Definition Ultraparacompact: every open cover has a pairwise disjoint covering refinement.
Kunen’s simplifications: (good for positive results)

Theorem If each X_n is compact, then $\Box_{n<\omega}X_n$ is paracompact iff $\nabla_{n<\omega}X_n$ is ultraparacompact.

Definition Ultra-paracompact: every open cover has a pairwise disjoint covering refinement.

UPC is so much nicer than PC.

Definition $\nabla = \Box \text{ mod finite.}$
Kunen’s simplifications: (good for positive results)

Theorem If each X_n is compact, then $\Box_{n<\omega} X_n$ is paracompact iff $\nabla_{n<\omega} X_n$ is ultraparacompact.

Definition Ultraparacompact: every open cover has a pairwise disjoint covering refinement.

UPC is so much nicer than PC.

Definition $\nabla = \Box \mod \text{finite}$.

Kunen also pointed out that, in the ∇-product, countable intersections (in fact $< b$ intersections) of open sets are open.
How do you show a space is UPC?
How do you show a space is UPC?

Method 1.
How do you show a space is UPC?

Method 1.

Show that it has a really nice (e.g., κ-metrizable) base.
How do you show a space is UPC?

Method 1.
Show that it has a really nice (e.g., κ-metrizable) base.

Method 2.
How do you show a space is UPC?

Method 1.
Show that it has a really nice (e.g., κ-metrizable) base.

Method 2.
Stratify the space.
For $b = \varnothing \Rightarrow$ the box product of countably many compact metrizable spaces is paracompact
For $b = \varnothing \Rightarrow$ the box product of countably many compact metrizable spaces is paracompact.

There’s a basis of clopen sets $\left\{ u_{x,\beta} : x \in \nabla, \beta < b \right\}$ where $\left\{ u_{x,\alpha} : \alpha < b \right\}$ is a neighborhood base of x.
For $b = \varnothing \Rightarrow$ the box product of countably many compact metrizable spaces is paracompact

There’s a basis of clopen sets \(\{ u_{x,\beta} : x \in \nabla, \beta < b \} \) where \(\{ u_{x,\alpha} : \alpha < b \} \) is a neighborhood base of \(x \).

and if \(y \in u_{x,\alpha} \) and \(\beta > \alpha \) then \(u_{y,\beta} \subset u_{x,\alpha} \).
For $b = d \Rightarrow$ the box product of countably many compact metrizable spaces is paracompact

There’s a basis of clopen sets $\{u_{x,\beta} : x \in \nabla, \beta < b\}$ where $\{u_{x,\alpha} : \alpha < b\}$ is a neighborhood base of x.

and if $y \in u_{x,\alpha}$ and $\beta > \alpha$ then $u_{y,\beta} \subset u_{x,\alpha}$.

I.e., b-metrizable.
For $b = \omega \Rightarrow$ the box product of countably many compact metrizable spaces is paracompact

There’s a basis of clopen sets \(\{u_{x,\beta} : x \in \nabla, \beta < b\} \) where \(\{u_{x,\alpha} : \alpha < b\} \)

is a neighborhood base of \(x \).

and if \(y \in u_{x,\alpha} \) and \(\beta > \alpha \) then \(u_{y,\beta} \subset u_{x,\alpha} \).

I.e., \(b \)-metrizable.

(Hint: This is done using a scale.)
Theorem (JR) \(\Delta \Rightarrow \nabla (\omega + 1)^\omega \) is UPC.
Theorem (JR) \(\Delta \Rightarrow \nabla (\omega + 1)\omega \) is UPC.

\(\Delta \) says: \(\forall x \) a partial function from \(\omega \) to \(\omega \) \(\exists f_x \) total so if \(x \not\sqsubset^* y \) and \(y \not\sqsubset^* x \) then either \(\{n : y(n) \leq f_x\} \) or \(\{n : x(n) \leq f_y\} \) is infinite.

Sketch of proof:
Theorem (JR) \(\Delta \Rightarrow \nabla (\omega + 1)^\omega \) is UPC.

\(\Delta \) says: \(\forall x \) a partial function from \(\omega \) to \(\omega \) \(\exists f_x \) total so if \(x \nsubseteq^* y \) and \(y \nsubseteq^* x \) then either \(\{ n : y(n) \leq f_x \} \) or \(\{ n : x(n) \leq f_y \} \) is infinite.

Sketch of proof:

Suppose \(\{ x_\alpha : \alpha < c \} \) satisfies: \(\forall x \) a partial function \(\exists \alpha \) \(x \subseteq^* x_\alpha \).
Theorem (JR) $\Delta \Rightarrow \nabla (\omega + 1)\omega$ is UPC.

Δ says: $\forall x$ a partial function from ω to ω $\exists f_x$ total so if $x \nsubseteq^* y$ and $y \nsubseteq^* x$ then either $\{n : y(n) \leq f_x\}$ or $\{n : x(n) \leq f_y\}$ is infinite.

Sketch of proof:

Suppose $\{x_\alpha : \alpha < c\}$ satisfies: $\forall x$ a partial function $\exists \alpha x \subseteq^* x_\alpha$.

$X_\alpha = \{x : \alpha$ is least with $x \subseteq^* x_\alpha\}$.
Theorem (JR) \(\Delta \Rightarrow \nabla (\omega + 1)^\omega \) is UPC.

\(\Delta \) says: \(\forall x \) a partial function from \(\omega \) to \(\omega \) \(\exists f_x \) total so if \(x \not\subseteq^* y \) and \(y \not\subseteq^* x \) then either \(\{ n : y(n) \leq f_x \} \) or \(\{ n : x(n) \leq f_y \} \) is infinite.

Sketch of proof:

Suppose \(\{ x_\alpha : \alpha < \epsilon \} \) satisfies: \(\forall x \) a partial function \(\exists \alpha \) \(x \subseteq^* x_\alpha \).

\(X_\alpha = \{ x : \alpha \) is least with \(x \subseteq^* x_\alpha \} \).

Each \(X_\alpha \) is closed discrete (in fact stronger).
Theorem (JR) $\Delta \Rightarrow \nabla (\omega + 1)^\omega$ is UPC.

Δ says: $\forall x$ a partial function from ω to $\omega\ \exists f_x$ total so if $x \not\subseteq^* y$ and $y \not\subseteq^* x$ then either $\{n : y(n) \leq f_x\}$ or $\{n : x(n) \leq f_y\}$ is infinite.

Sketch of proof:

Suppose $\{x_\alpha : \alpha < c\}$ satisfies: $\forall x$ a partial function $\exists \alpha\ x \subseteq^* x_\alpha$.

$X_\alpha = \{x : \alpha$ is least with $x \subseteq^* x_\alpha\}$.

Each X_α is closed discrete (in fact stronger).

At stage α refine your cover to separate whatever is not already covered in X_α. By Δ this doesn’t stop until you’re finished.
Positive ZFC results on subsets
Positive ZFC results on subsets

Theorem If $|Y| \leq \mathfrak{d}$, $Y \subset \nabla_{i<\omega}$, each X_i compact first countable, then Y is paracompact.
Positive ZFC results on subsets

Theorem If $|Y| \leq \aleph_0$, $Y \subset \nabla_{i<\omega}$, each X_i compact first countable, then Y is paracompact.

Much more can be said about $\nabla(\omega + 1)^\omega$, e.g.,
Positive ZFC results on subsets

Theorem If $|Y| \leq \mathfrak{d}$, $Y \subset \nabla_{i<\omega}$, each X_i compact first countable, then Y is paracompact.

Much more can be said about $\nabla(\omega + 1)^\omega$, e.g.,

Theorem (JR) (a) If each element of $Y \subset \nabla(\omega + 1)^\omega$ is “increasing”, then Y is strongly closed discrete [i.e., separated by a closed discrete family.]
Positive ZFC results on subsets

Theorem If $|Y| \leq \omega$, $Y \subset \nabla_{i<\omega}$, each X_i compact first countable, then Y is paracompact.

Much more can be said about $\nabla(\omega + 1)^\omega$, e.g.,

Theorem (JR) (a) If each element of $Y \subset \nabla(\omega + 1)^\omega$ is “increasing”, then Y is strongly closed discrete [i.e., separated by a closed discrete family.]

(b) If \approx is a nice enough way of decomposing functions, and $Y \subset \nabla(\omega + 1)^\omega$ is an \approx-transversal, then Y is paracompact.
Questions:
Questions:

1. Can Δ fail?
Questions:

1. Can Δ fail?

2. Does Δ imply paracompactness for any other box products?
Questions:

1. Can Δ fail?

2. Does Δ imply paracompactness for any other box products?

3. Does \Box normal imply \Box paracompact?
Questions:

1. Can Δ fail?
2. Does Δ imply paracompactness for any other box products?
3. Does \Box normal imply \Box paracompact?
4. How far can you generalize counterexamples? Positive non-compact results?
Questions:

1. Can Δ fail?

2. Does Δ imply paracompactness for any other box products?

3. Does \Box normal imply \Box paracompact?

4. How far can you generalize counterexamples? Positive non-compact results?

5. Can you find other paracompact subspaces in ZFC?