How Many Sprays Cover the Plane?

Ramiro de la Vega S.
Universidad de los Andes, Bogotá

KunenFest, UW-Madison, April 2009
How Many Sprays Cover the Plane?

- **Definition:** $A \subseteq \mathbb{R}^2$ is a **spray** if for some $c \in \mathbb{R}^2$, $|C \cap A| < \aleph_0$ for every circle $C \subseteq \mathbb{R}^n$ centered at c.

 Trivial: the plane cannot be covered by 1 spray.

 Easy: the plane cannot be covered by 2 sprays.

 How about 3 sprays?
How Many Sprays Cover the Plane?

• **Definition:** $A \subseteq \mathbb{R}^2$ is a **spray** if for some $c \in \mathbb{R}^2$, $|C \cap A| < \aleph_0$ for every circle $C \subseteq \mathbb{R}^n$ centered at c.

• **Trivial:** the plane cannot be covered by 1 spray.

Easy: the plane cannot be covered by 2 sprays.

How about 3 sprays?
How Many Sprays Cover the Plane?

- **Definition:** A $A \subseteq \mathbb{R}^2$ is a spray if for some $c \in \mathbb{R}^2$, $|C \cap A| < \aleph_0$ for every circle $C \subseteq \mathbb{R}^n$ centered at c.

- Trivial: the plane cannot be covered by 1 spray.

- Easy: the plane cannot be covered by 2 sprays.

How about 3 sprays?
How Many Sprays Cover the Plane?

- **Definition:** A \(A \subseteq \mathbb{R}^2 \) is a **spray** if for some \(c \in \mathbb{R}^2 \),
 \[|C \cap A| < \aleph_0 \]
 for every circle \(C \subseteq \mathbb{R}^n \) centered at \(c \).

- Trivial: the plane cannot be covered by 1 spray.

- Easy: the plane cannot be covered by 2 sprays.

- How about 3 sprays?
Related Results

• **Definition:** $A \subseteq \mathbb{R}^n$ is a fog if for some $v \in \mathbb{R}^n$, $|l \cap A| < \aleph_0$ for every line $l \subseteq \mathbb{R}^n$ parallel to v.

Definition: $A \subseteq \mathbb{R}^n$ is a cloud if for some $c \in \mathbb{R}^n$, $|l \cap A| < \aleph_0$ for every line $l \subseteq \mathbb{R}^n$ with $c \in v$.

Theorem: The following are equivalent:

$2^{\aleph_0} = \aleph_1$.

$\mathbb{R}^3 = A_0 \cup A_1 \cup A_2$, with A_i a fog along e_i.
(Sierpinski, 1952)

$\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, with each A_i is a fog.
(Davies, 1963)

$\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a cloud.
(Komjáth, 2001)

$\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a spray.
(Question: Schmerl, 2003)
Related Results

- **Definition:** $A \subseteq \mathbb{R}^n$ is a fog if for some $v \in \mathbb{R}^n$,
 $|l \cap A| < \aleph_0$ for every line $l \subseteq \mathbb{R}^n$ parallel to v.

- **Definition:** $A \subseteq \mathbb{R}^n$ is a cloud if for some $c \in \mathbb{R}^n$,
 $|l \cap A| < \aleph_0$ for every line $l \subseteq \mathbb{R}^n$ with $c \in v$.

Theorem: The following are equivalent:

\[2^{\aleph_0} = \aleph_1. \]

\[\mathbb{R}^3 = A_0 \cup A_1 \cup A_2, \text{ with } A_i \text{ a fog along } e_i. \]
(Sierpinski, 1952)

\[\mathbb{R}^2 = A_0 \cup A_1 \cup A_2, \text{ where each } A_i \text{ is a fog.} \]
(Davies, 1963)

\[\mathbb{R}^2 = A_0 \cup A_1 \cup A_2, \text{ where each } A_i \text{ is a cloud.} \]
(Komjáth, 2001)

\[\mathbb{R}^2 = A_0 \cup A_1 \cup A_2, \text{ where each } A_i \text{ is a spray.} \]
(Question: Schmerl, 2003)
Related Results

- **Definition:** $A \subseteq \mathbb{R}^n$ is a fog if for some $v \in \mathbb{R}^n$, $|l \cap A| < \aleph_0$ for every line $l \subseteq \mathbb{R}^n$ parallel to v.

- **Definition:** $A \subseteq \mathbb{R}^n$ is a cloud if for some $c \in \mathbb{R}^n$, $|l \cap A| < \aleph_0$ for every line $l \subseteq \mathbb{R}^n$ with $c \in v$.

- **Theorem:** The following are equivalent:

 i) $2^{\aleph_0} = \aleph_1$.

 ii) $\mathbb{R}^3 = A_0 \cup A_1 \cup A_2$, with A_i a fog along e_i.

 (Sierpinski, 1952)

 $\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a fog.

 (Davies, 1963)

 $\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a cloud.

 (Komjáth, 2001)

 $\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a spray. (?)

 (Question: Schmerl, 2003)
Related Results

- **Definition:** $A \subseteq \mathbb{R}^n$ is a **fog** if for some $v \in \mathbb{R}^n$, $|l \cap A| < \aleph_0$ for every line $l \subseteq \mathbb{R}^n$ parallel to v.

- **Definition:** $A \subseteq \mathbb{R}^n$ is a **cloud** if for some $c \in \mathbb{R}^n$, $|l \cap A| < \aleph_0$ for every line $l \subseteq \mathbb{R}^n$ with $c \in v$.

- **Theorem:** The following are equivalent:

 i) $2^{\aleph_0} = \aleph_1$.

 ii) $\mathbb{R}^3 = A_0 \cup A_1 \cup A_2$, with A_i a fog along e_i.
 (Sierpinski, 1952)

 iii) $\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a fog.
 (Davies, 1963)

 $\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a cloud.
 (Komjáth, 2001)

 $\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a spray. (?)
 (Question: Schmerl, 2003)
Related Results

- **Definition:** A \(\subseteq \mathbb{R}^n \) is a **fog** if for some \(v \in \mathbb{R}^n \), \(|l \cap A| < \aleph_0 \) for every line \(l \subseteq \mathbb{R}^n \) parallel to \(v \).

- **Definition:** A \(\subseteq \mathbb{R}^n \) is a **cloud** if for some \(c \in \mathbb{R}^n \), \(|l \cap A| < \aleph_0 \) for every line \(l \subseteq \mathbb{R}^n \) with \(c \in v \).

- **Theorem:** The following are equivalent:

 i) \(2^{\aleph_0} = \aleph_1 \).

 ii) \(\mathbb{R}^3 = A_0 \cup A_1 \cup A_2 \), with \(A_i \) a fog along \(e_i \).
 (Sierpinski, 1952)

 iii) \(\mathbb{R}^2 = A_0 \cup A_1 \cup A_2 \), where each \(A_i \) is a fog.
 (Davies, 1963)

 iv) \(\mathbb{R}^2 = A_0 \cup A_1 \cup A_2 \), where each \(A_i \) is a cloud.
 (Komjáth, 2001)

 \(\mathbb{R}^2 = A_0 \cup A_1 \cup A_2 \), where each \(A_i \) is a spray. (?)
 (Question: Schmerl, 2003)
Related Results

- **Definition:** $A \subseteq \mathbb{R}^n$ is a **fog** if for some $v \in \mathbb{R}^n$, $|l \cap A| < \aleph_0$ for every line $l \subseteq \mathbb{R}^n$ parallel to v.

- **Definition:** $A \subseteq \mathbb{R}^n$ is a **cloud** if for some $c \in \mathbb{R}^n$, $|l \cap A| < \aleph_0$ for every line $l \subseteq \mathbb{R}^n$ with $c \in v$.

- **Theorem:** The following are equivalent:

 i) $2^{\aleph_0} = \aleph_1$.

 ii) $\mathbb{R}^3 = A_0 \cup A_1 \cup A_2$, with A_i a fog along e_i.
 (Sierpinski, 1952)

 iii) $\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a fog.
 (Davies, 1963)

 iv) $\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a cloud.
 (Komjáth, 2001)

 v) $\mathbb{R}^2 = A_0 \cup A_1 \cup A_2$, where each A_i is a spray. (?)
 (Question: Schmerl, 2003)
A General Context

- Let E_0, E_1, E_2 be three equivalence relations on \mathbb{R}^2 such that $|[x]_i \cap [x]_j| < \aleph_0$ for any $x \in \mathbb{R}^2$ and $i \neq j$.

Let us say that $A \subseteq \mathbb{R}^2$ is E_i-small if $|[x]_i \cap A| < \aleph_0$ for every $x \in \mathbb{R}^2$.

We want to study the statement $P(E_0, E_1, E_2)$:

$\exists A_0, A_1, A_2, \mathbb{R}^2 = \bigcup_{i \in 3} A_i$ and each A_i is E_i-small.

Theorem (Erdös, Jackson, Mauldin, 1994): The following are equivalent:

$2^{\aleph_0} = \aleph_1$.

$P(E_0, E_1, E_2)$ holds for every E_0, E_1, E_2.
A General Context

• Let E_0, E_1, E_2 be three equivalence relations on \mathbb{R}^2 such that $|[x]_i \cap [x]_j| < \aleph_0$ for any $x \in \mathbb{R}^2$ and $i \neq j$.

• Let us say that $A \subseteq \mathbb{R}^2$ is E_i-small if $|[x]_i \cap A| < \aleph_0$ for every $x \in \mathbb{R}^2$.

We want to study the statement $P(E_0, E_1, E_2)$:

$$\exists A_0, A_1, A_2, \mathbb{R}^2 = \bigcup_{i \in 3} A_i \text{ and each } A_i \text{ is } E_i \text{-small.}$$

Theorem (Erdös, Jackson, Mauldin, 1994): The following are equivalent:

$$2^{\aleph_0} = \aleph_1.$$

$$P(E_0, E_1, E_2) \text{ holds for every } E_0, E_1, E_2.$$
A General Context

• Let E_0, E_1, E_2 be three equivalence relations on \mathbb{R}^2 such that $|[x]_i \cap [x]_j| < \aleph_0$ for any $x \in \mathbb{R}^2$ and $i \neq j$.

• Let us say that $A \subseteq \mathbb{R}^2$ is E_i-small if $|[x]_i \cap A| < \aleph_0$ for every $x \in \mathbb{R}^2$.

• We want to study the statement $P(E_0, E_1, E_2)$:

$$\exists A_0, A_1, A_2, \ \mathbb{R}^2 = \bigcup_{i \in 3} A_i \text{ and each } A_i \text{ is } E_i\text{-small.}$$

Theorem (Erdös, Jackson, Mauldin, 1994): The following are equivalent:

$$2^{\aleph_0} = \aleph_1.$$

$P(E_0, E_1, E_2)$ holds for every E_0, E_1, E_2.
A General Context

• Let E_0, E_1, E_2 be three equivalence relations on \mathbb{R}^2 such that $|[x]_i \cap [x]_j| < \aleph_0$ for any $x \in \mathbb{R}^2$ and $i \neq j$.

• Let us say that $A \subseteq \mathbb{R}^2$ is E_i-small if $|[x]_i \cap A| < \aleph_0$ for every $x \in \mathbb{R}^2$.

• We want to study the statement $P(E_0, E_1, E_2)$:

$$\exists A_0, A_1, A_2, \mathbb{R}^2 = \bigcup_{i \in 3} A_i \text{ and each } A_i \text{ is } E_i\text{-small.}$$

• Theorem (Erdős, Jackson, Mauldin, 1994): The following are equivalent:

i) $2^{\aleph_0} = \aleph_1$.

ii) $P(E_0, E_1, E_2)$ holds for every E_0, E_1, E_2.
Main Result

- **Definition**: A triple $E = \langle E_0, E_1, E_2 \rangle$ is twisted if $\forall M, N \prec V$ with $E \in M \cap N$ and $N \in M$, the set
 \[
 \{ x \in [a]_k : [x]_i \in M \setminus N, \ [x]_j \in N \setminus M \}
 \]
 is finite, whenever $a \in \mathbb{R}^2$ and $\{i, j, k\} = 3$.

Theorem: $P(E) \iff E$ is twisted.
Main Result

- **Definition:** A triple $E = \langle E_0, E_1, E_2 \rangle$ is **twisted** if $\forall M, N \prec V$ with $E \in M \cap N$ and $N \in M$, the set
 $$\{ x \in [a]_k : [x]_i \in M \setminus N, \ [x]_j \in N \setminus M \}$$
 is finite, whenever $a \in \mathbb{R}^2$ and $\{i, j, k\} = 3$.

- **Theorem:** $P(E) \iff E$ is twisted.
The Role of \(CH \)

\[\{ x \in [a]_k : [x]_i \in M \setminus N, \ [x]_j \in N \setminus M \} \]

- Under \(CH \) this set is always empty:
 - If \(N \cap \mathbb{R}^2 \) is countable then \(N \cap \mathbb{R}^2 \subseteq M \).
 - If \(N \cap \mathbb{R}^2 \) is uncountable then \(\mathbb{R}^2 \subseteq N \).

Theorem: Under \(CH \), every \(E \) is twisted.

Under \(\neg CH \) a strategy to prove that certain \(E \) is not twisted (e.g. for Sierpinski, Davies and Komjáth’s results) is the following:

Fix \(M, N \prec V \) with \(|M| = \aleph_1 \) and \(|N| = \aleph_0 \).

Find \(x \in \mathbb{R}^2 \) with \([x]_i \in M \setminus N \) and \([x]_j \in N \setminus M \).

Try to move \(x \) in such a way that \([x]_k \) remains constant while \([x]_i \) and \([x]_j \) change in a definable way.
The Role of CH

$$\left\{ x \in [a]_k : [x]_i \in M \setminus N, \ [x]_j \in N \setminus M \right\}$$

- Under CH this set is always empty:
 - If $N \cap \mathbb{R}^2$ is countable then $N \cap \mathbb{R}^2 \subseteq M$.
 - If $N \cap \mathbb{R}^2$ is uncountable then $\mathbb{R}^2 \subseteq N$.

- **Theorem:** Under CH, every E is twisted.

Under $\neg CH$ a strategy to prove that certain E is not twisted (e.g. for Sierpinski, Davies and Komjáth’s results) is the following:

1. Fix $M, N \prec V$ with $|M| = \aleph_1$ and $|N| = \aleph_0$.
2. Find $x \in \mathbb{R}^2$ with $[x]_i \in M \setminus N$ and $[x]_j \in N \setminus M$.
3. Try to move x in such a way that $[x]_k$ remains constant while $[x]_i$ and $[x]_j$ change in a definable way.
The Role of CH

\[\{ x \in [a]_k : [x]_i \in M \setminus N, [x]_j \in N \setminus M \} \]

- Under CH this set is always empty:

 - If $N \cap \mathbb{R}^2$ is countable then $N \cap \mathbb{R}^2 \subseteq M$.

 - If $N \cap \mathbb{R}^2$ is uncountable then $\mathbb{R}^2 \subseteq N$.

- Theorem: Under CH, every E is twisted.

- Under $\neg CH$ a strategy to prove that certain E is not twisted (e.g. for Sierpinski, Davies and Komjáth’s results) is the following:

 - Fix $M, N < V$ with $|M| = \aleph_1$ and $|N| = \aleph_0$.

 - Find $x \in \mathbb{R}^2$ with $[x]_i \in M \setminus N$ and $[x]_j \in N \setminus M$.

 Try to move x in such a way that $[x]_k$ remains constant while $[x]_i$ and $[x]_j$ change in a definable way.
The Role of CH

\[\{ x \in [a]_k : [x]_i \in M \setminus N, \ [x]_j \in N \setminus M \} \]

- Under CH this set is always empty:
 - If $N \cap \mathbb{R}^2$ is countable then $N \cap \mathbb{R}^2 \subseteq M$.
 - If $N \cap \mathbb{R}^2$ is uncountable then $\mathbb{R}^2 \subseteq N$.

- **Theorem:** Under CH, every E is twisted.

- Under $\neg CH$ a strategy to prove that certain E is not twisted (e.g. for Sierpinski, Davies and Komjáth’s results) is the following:
 - Fix $M, N \prec V$ with $|M| = \aleph_1$ and $|N| = \aleph_0$.
 - Find $x \in \mathbb{R}^2$ with $[x]_i \in M \setminus N$ and $[x]_j \in N \setminus M$.
 - Try to move x in such a way that $[x]_k$ remains constant while $[x]_i$ and $[x]_j$ change in a definable way.
Back to Sprays

- **Theorem:** Let \(c_0, c_1 \) and \(c_2 \) be three distinct points on \(\mathbb{R}^2 \) lying on the same line. The following are equivalent:

 i) \(2^{\aleph_0} = \aleph_1 \).

 ii) \(\mathbb{R}^3 = A_0 \cup A_1 \cup A_2, \ A_i \) is a spray centered at \(c_i \).

Theorem: The plane is the union of three sprays.
• **Theorem:** Let c_0, c_1 and c_2 be three distinct points on \mathbb{R}^2 lying on the same line. The following are equivalent:

 i) $2^{\aleph_0} = \aleph_1$.

 ii) $\mathbb{R}^3 = A_0 \cup A_1 \cup A_2$, A_i is a spray centered at c_i.

• **Theorem:** The plane is the union of three sprays.
\mathbb{R}^2 is the union of 3 sprays (sketch)

- Let $c_0 = (-1, 0), c_1 = (1, 0)$ and $c_3 = (0, \sqrt{3})$.

Define $(x, y) \in E_i \iff \|x - c_i\| = \|y - c_i\|$.

We will identify $[x]_i$ with $\|x - c_i\|^2$.

There is a polynomial $p \in \mathbb{R}[X, Y, Z, W]$ such that
\[\forall x, y \in \mathbb{R}^2, \text{ if } [x]_2 = [y]_2 \text{ then } p([x]_0, [y]_0, [x]_1, [y]_1) = 0. \]

If $A \subset \mathbb{R}$ is infinite then $\exists a, b \in A$ such that $p(X, Y, a, b)$

is irreducible (in $\mathbb{C}[X, Y]$).

If $(a, b) \neq (a', b')$ and $p(X, Y, a, b), p(X, Y, a', b')$ are both irreducible then the system:
\[p(X, Y, a, b) = 0 \]
\[p(X, Y, a', b') = 0 \]

has only finitely many solutions.
\(\mathbb{R}^2 \) is the union of 3 sprays (sketch)

- Let \(c_0 = (-1, 0), c_1 = (1, 0) \) and \(c_3 = (0, \sqrt{3}) \).

Define \((x, y) \in E_i \iff \|x - c_i\| = \|y - c_i\|\).

We will identify \([x]_i\) with \(\|x - c_i\|^2\).

- There is a polynomial \(p \in \mathbb{R}[X, Y, Z, W] \) such that \(\forall x, y \in \mathbb{R}^2 \) if \([x]_2 = [y]_2\) then
 \[p([x]_0, [y]_0, [x]_1, [y]_1) = 0. \]

If \(A \subset \mathbb{R} \) is infinite then \(\exists a, b \in A \) such that \(p(X, Y, a, b) \) is irreducible (in \(\mathbb{C}[X, Y] \)).

If \((a, b) \neq (a', b')\) and \(p(X, Y, a, b), p(X, Y, a', b') \) are both irreducible then the system:
\[p(X, Y, a, b) = 0 \]
\[p(X, Y, a', b') = 0 \]
has only finitely many solutions.
\(\mathbb{R}^2 \) is the union of 3 sprays (sketch)

- Let \(c_0 = (-1, 0), c_1 = (1, 0) \) and \(c_3 = (0, \sqrt{3}) \).
 Define \((x, y) \in E_i \iff \|x - c_i\| = \|y - c_i\| \).
 We will identify \([x]_i\) with \(\|x - c_i\|^2 \).

- There is a polynomial \(p \in \mathbb{R}[X, Y, Z, W] \) such that
 \(\forall x, y \in \mathbb{R}^2 \) if \([x]_2 = [y]_2 \) then
 \[p([x]_0, [y]_0, [x]_1, [y]_1) = 0. \]

- If \(A \subset \mathbb{R} \) is infinite then \(\exists a, b \in A \) such that \(p(X, Y, a, b) \)
 is irreducible (in \(\mathbb{C}[X, Y] \)).

If \((a, b) \neq (a', b') \) and \(p(X, Y, a, b) \), \(p(X, Y, a', b') \) are both irreducible then the system:

\[
\begin{align*}
p(X, Y, a, b) &= 0 \\
p(X, Y, a', b') &= 0
\end{align*}
\]
has only finitely many solutions.
\mathbb{R}^2 is the union of 3 sprays (sketch)

- Let $c_0 = (-1, 0), c_1 = (1, 0)$ and $c_3 = (0, \sqrt{3})$.

Define $(x, y) \in E_i \iff \|x - c_i\| = \|y - c_i\|.$

We will identify $[x]_i$ with $\|x - c_i\|^2$.

- There is a polynomial $p \in \mathbb{R}[X, Y, Z, W]$ such that

 $\forall x, y \in \mathbb{R}^2$ if $[x]_2 = [y]_2$ then

 $p([x]_0, [y]_0, [x]_1, [y]_1) = 0$.

- If $A \subset \mathbb{R}$ is infinite then $\exists a, b \in A$ such that $p(X, Y, a, b)$ is irreducible (in $\mathbb{C}[X, Y]$).

- If $(a, b) \neq (a', b')$ and $p(X, Y, a, b), p(X, Y, a', b')$ are both irreducible then the system:

 $p(X, Y, a, b) = 0$

 $p(X, Y, a', b') = 0$

has only finitely many solutions.
\mathbb{R}^2 is the union of 3 sprays (sketch)

\[\{ x \in [a]_2 : [x]_0 \in M \setminus N, \ [x]_1 \in N \setminus M \} \]

- If this set is infinite, fix x, y in it such that
 \[p(X, Y, [x]_1, [y]_1) \text{ is irreducible.} \]

By elementarity there exist $x', y' \in M$ such that
\[[x']_1, [y']_1 \in N, \ [x']_0 = [x]_0, \ [y']_0 = [y]_0 \] and
\[p(X, Y, [x']_1, [y']_1) \text{ is irreducible.} \]

Note that $([x']_1, [y']_1) \neq ([x]_1, [y]_1)$ since the first one is in M and the second one is not.

The system
\[p(X, Y, [x]_1, [y]_1) = 0 \]
\[p(X, Y, [x']_1, [y']_1) = 0 \]

is definable in N, $([x]_0, [y]_0)$ is one of its finitely many solutions, but $([x]_0, [y]_0) \notin N$.
\mathbb{R}^2 is the union of 3 sprays (sketch)

$$\{ x \in [a]_2 : [x]_0 \in M \setminus N, [x]_1 \in N \setminus M \}$$

- If this set is infinite, fix x, y in it such that $p(X, Y, [x]_1, [y]_1)$ is irreducible.

- By elementarity there exist $x', y' \in M$ such that $[x']_1, [y']_1 \in N$, $[x']_0 = [x]_0$, $[y']_0 = [y]_0$ and $p(X, Y, [x']_1, [y']_1)$ is irreducible.

Note that $([x']_1, [y']_1) \neq ([x]_1, [y]_1)$ since the first one is in M and the second one is not.

The system

$$p(X, Y, [x]_1, [y]_1) = 0$$

$$p(X, Y, [x']_1, [y']_1) = 0$$

is definable in N, $([x]_0, [y]_0)$ is one of its finitely many solutions, but $([x]_0, [y]_0) \notin N$.
\mathbb{R}^2 is the union of 3 sprays (sketch)

\[\{x \in [a]_2 : [x]_0 \in M \setminus N, \ [x]_1 \in N \setminus M \} \]

- If this set is infinite, fix x, y in it such that
 \[p(X, Y, [x]_1, [y]_1) \text{ is irreducible.} \]

- By elementarity there exist $x', y' \in M$ such that
 $[x']_1, [y']_1 \in N, \ [x']_0 = [x]_0, \ [y']_0 = [y]_0$ and
 \[p(X, Y, [x']_1, [y']_1) \text{ is irreducible.} \]

- Note that $([x']_1, [y']_1) \neq ([x]_1, [y]_1)$ since the first one is in M and the second one is not.

The system

\[p(X, Y, [x]_1, [y]_1) = 0 \]
\[p(X, Y, [x']_1, [y']_1) = 0 \]

is definable in N, $([x]_0, [y]_0)$ is one of its finitely many solutions, but $([x]_0, [y]_0) \notin N$.
\mathbb{R}^2 is the union of 3 sprays (sketch)

$$\{x \in [a]_2 : [x]_0 \in M \setminus N, \ [x]_1 \in N \setminus M\}$$

- If this set is infinite, fix x, y in it such that $p(X, Y, [x]_1, [y]_1)$ is irreducible.

- By elementarity there exist $x', y' \in M$ such that $[x']_1, [y']_1 \in N,$ $[x']_0 = [x]_0,$ $[y']_0 = [y]_0$ and $p(X, Y, [x']_1, [y']_1)$ is irreducible.

- Note that $([x']_1, [y']_1) \neq ([x]_1, [y]_1)$ since the first one is in M and the second one is not.

- The system
 $$p(X, Y, [x]_1, [y]_1) = 0$$
 $$p(X, Y, [x']_1, [y']_1) = 0$$

 is definable in $N,$ $([x]_0, [y]_0)$ is one of its finitely many solutions, but $([x]_0, [y]_0) \notin N.$
THE END