Locally Connected HS/HL Compacta

Question [M.E. Rudin, 1982]: Is there a compact X which is
1) non-metrizable, and
2) locally connected, and
3) hereditarily Lindelöf (HL)?
4) and hereditarily separable (HS)?

Answer Полицена: (CH) Yes.
But under PFA his construction crumbles.

Kunen’s Answer: Con(MA + ¬CH + Yes).

ZFC Answer: ???
Maybe: look at maps $f : X \to Y$, for Y compact metric.
For $X \in M \prec H(\theta)$, let $\pi : X \to X/M$ denote the quotient map
given by $\pi(x) = \pi(y) \iff f(x) = f(y) \forall f \in M \cap C(X, [0, 1])$.

Lemma. Suppose X is compact, $w(X) = \aleph_1$, and $\chi(X) = \aleph_0$.
Then X is an *Aronszajn compactum* iff whenever M is countable,
$X \in M \prec H(\theta)$, and $\pi : X \to X/M$ is the usual quotient map,
$\pi^{-1}\{y\}$ is a singleton for all but countably many $y \in X/M$.

Theorem (♦) There is an Aronszajn compactum X which is HS and HL. X can be constructed to be locally connected and connected, or to be totally disconnected.

Question: Is there (in ZFC) an HL Aronszajn compactum?

Reference: J. Hart and K. Kunen, Aronszajn Compacta
http://www.uwosh.edu/faculty_staff/hartj/
Outline of this talk:

1. Background: The properties in the question
2. Aronszajn compacta
 a. The definition
 b. Elementary examples and non-examples
 c. Our \Diamond Aronsajn spaces
 d. Sketch of \Diamond construction of Aronszajn spaces
 e. Recap of open questions

All spaces are Hausdorff.
The properties in the question:

Rudin’s Question: Is there a compact X which is
(1) non-metrizable, and
(2) locally connected, and
(3) hereditarily Lindelöf (HL)?
(4) and hereditarily separable (HS)?

Locally connected:

Juhász’ Question: If X is locally connected and compact and Y is T_2, is every preserving function $f : X \rightarrow Y$ continuous?

Def. A function $f : X \rightarrow Y$ is *preserving* whenever the image of every compact subspace is compact and the image of every connected subspace is connected.

Remarks:
A continuous function is always preserving.

Locally connected is necessary:

White [1971]: For Tychonov spaces X and Y, if X is not locally connected at a point p in X, then there is a preserving function $f : X \rightarrow Y$ that is not continuous at p.

but not sufficient:

McMillan [1970] constructed a locally connected hedgehog space X, with a preserving function $f : X \rightarrow [0, 1]$ that is not continuous.

Non-metrizable

Whyburn [1965] If X is locally connected and first countable and Y is T_2, then every preserving function $f : X \rightarrow Y$ is continuous.
The properties (continued):

(1) non-metrizable (continued)

Juhász’ other Question: Is there a locally connected continuum without nontrivial convergent sequences?

Def. A continuum is a compact connected space.

van Mill’s Answer: (CH) Yes.

There is an example with \(\dim(X) = \infty \).

Our Answer: (◊) Yes.

(4) Hereditarily Separable (HS):

Our ◊ example is also HS.

But any compactum having no convergent \(\omega \)-sequences has points of uncountable character, and hence is not HL.

But that doesn’t rule out HL for Juhász’ preserving question:

(3) Hereditarily Lindelöf (HL):

Gerlits, J., Juhász, I., Soukup, L., and Szentmiklóssy, Z., include an HL example with a discontinuous preserving function \(f : X \to [0, 1] \).

More reasons to consider (3), (4): they keep appearing in the lit:

surveys:

Juhász [1978]
M.E.Rudin [1980]
Roitman [1984]
Todorčević [1984]
Todorčević [1989]

papers:

M.E.Rudin [1972]
Fedorchuk [1975]
Kunen [1977,1981]
Džamonja and Kunen [1993]
Moore [2006]
The definition of Aronszajn compact:

First, a little notation: For $X \subseteq [0, 1]^{\omega_1}$ and $\alpha \leq \beta \leq \omega_1$:

- $\pi_\alpha^\beta : [0, 1]^\beta \rightarrow [0, 1]^\alpha$ is the natural projection,
- $X_\alpha = \pi_\alpha^\omega_1(X)$, and $\sigma_\alpha^\beta = \pi_\alpha^\beta|X_\beta$.

An embedded Aronszajn compactum is a closed $X \subseteq [0, 1]^{\omega_1}$ with $w(X) = \aleph_1$ and $\chi(X) = \aleph_0$ such that for some club $C \subseteq \omega_1$:

For each $\alpha \in C$, $L_\alpha := \{ x \in X_\alpha : |(\sigma_\alpha^{\omega_1})^{-1}\{x\}| > 1 \}$ is countable.

For each such X, define $T = T(X) := \bigcup \{ L_\alpha : \alpha \in C \}$, and let \triangleleft denote the following order:

- if $\alpha, \beta \in C$, $\alpha < \beta$, $x \in L_\alpha$ and $y \in L_\beta$,
- then $x \triangleleft y$ iff $x = \sigma_\alpha^\beta(y)$.

Remark: $\langle T(X), \triangleleft \rangle$ is an Aronszajn tree.

Each level L_α is countable by definition, each $L_\alpha \neq \emptyset$ because $w(X) = \aleph_1$,

and every chain in T is countable because $\chi(X) = \aleph_0$.

Def. An Aronszajn compactum is a compact space X homeomorphic to an embedded Aronszajn compactum E.

An Aronszajn line may or may not yield an Aronszajn compactum:

An Aronszajn line is a LOTS of size \aleph_1, with no increasing or decreasing ω_1-sequences, and no uncountable subsets of real type.

Of real type means order-isomorphic to a subset of \mathbb{R}.

Def. A compacted Aronszajn line is a compact LOTS X such that $w(X) = \aleph_1$ and $\chi(X) = \aleph_0$ and the closure of every countable set is second countable.

Lemma A LOTS X is an Aronszajn compactum iff X is a compacted Aronszajn line.
Examples and non-examples of Aronszajn compacta:

Example:
☞ The Dedekind completion X of an Aronszajn line:
its tree $T(X)$ is essentially the standard tree of closed intervals.

A Suslin line is any LOTS which is ccc and not separable.
If it’s compact, it may or may not be an Aronszajn compactum:

Lemma Let X be a compact Suslin line. Then X is a compacted
Aronszajn line iff $D := \{x \in X : \exists y > x ([x, y] = \{x, y\})\}$ does not
contain an uncountable subset of real type.

Non-example:
☞ Form X from a connected compact Suslin line Y by doubling
uncountably many points lying in some Cantor subset C of Y:
Mimic the double arrow space [Alexandroff and Urysohn, 1929],
but start with Y, replace each $x \in C$ by a pair $x^- < x^+$,
and refine the order topology of Y.

Theorem (◊) For each of the following $2 \cdot 3 = 6$ possibilities, there
is an HS, HL, Aronszajn compactum X with tree $T = T(X)$.
Possibilities for T:
 a. T is Suslin.
 b. T is special (T is the union of ω antichains).
Possibilities for X:
 a. $\dim(X) = 0$.
 β. $\dim(X) = 1$ and X is connected and locally connected.
 γ. $\dim(X) = \infty$ and X is connected and locally connected.
Sketch of an Aronszajn compactum X that is locally connected, HL, HS, and with $\dim(X) = 1$:

$X \subseteq [0,1]^{\omega_1}$ is an Aronszajn compactum iff $w(X) = \aleph_1$, $\chi(X) = \aleph_0$, and for some club $C \subseteq \omega_1$: $\mathcal{L}_\alpha := \{x \in X_\alpha : |(\sigma_\alpha^{\omega_1})^{-1}\{x\}| > 1\}$ is countable for each $\alpha \in C$.

$T(X) := \bigcup\{\mathcal{L}_\alpha : \alpha \in C\}$, and for $x, y \in T(X)$:

$x \triangleleft y$ iff $x \in \mathcal{L}_\alpha$, $y \in \mathcal{L}_\beta$, $\alpha < \beta$, and $x = \sigma_\alpha^\beta(y)$.

To simplify notation, let $Q = [0,1]^{\omega}$. Obtain $X = X_{\omega_1} \subset Q^{\omega_1}$ by an inductive construction, and form $T(X)$ by an inductive Aronszajn tree construction.

At stage $\alpha < \omega_1$: Determine the projection X_α of X on Q^α.

Select a countable set $\mathcal{L}_\alpha \subseteq X_\alpha$ of “expandable points”. So for $\beta > \alpha$, whenever $x \notin \mathcal{L}_\alpha$, construct $X_\beta \subseteq Q^\beta$, so that $|(\sigma_\alpha^\beta)^{-1}\{x\}| = 1$.

Then, X is the inverse limit of $\langle X_\alpha : \alpha < \omega_1 \rangle$.

To make $\dim(X) = 1$: set $X_1 = MS$.

The Menger Sponge (MS) is, up to homeomorphism, the only one-dimensional Peano continuum (connected, locally connected, compact metric space) with no locally separating points and no non-empty planar open sets.

Pix thanx to http://www.joachim-reichel.de/
Sketch (continued):

To start:

Let L_1 be any countable dense subset of X_1.

To get $X_2 \subseteq Q^2$:

Choose h_1, q_1, and r^n_1, for $n < \omega$, so that:

(a) $q_1 \in L_1$,
 $h_1 \in C(X_1 \{q_1\}, [0, 1])$.

(b) $r^n_1 \in X_1 \{q_1\}$,
 $\langle r^n_1 : n \in \omega \rangle \to q_1$, and
 $[0, 1] = \{h_1(r^n_1) : n \in \omega\}$.

Let $X_2 = \overline{h_1} \subseteq Q^2$.

Let D_2 be any subset of $(\sigma^2_1)^{-1}\{q_1\}$ with $2 \leq |D_2| \leq \aleph_0$.

Let $L_2 = (\sigma^2_1)^{-1}(L_1 \{q_1\}) \cup D_2$.

Observe:

- X_2 is connected and has no isolated points.
- $\{q_1\} \times [0, 1]$ is closed and connected in X_2.
- L_2 is a countable dense subset of X_2.
- The projection $\sigma^2_1 : X_2 \to X_1$ is irreducible.

Def. A map $f : X \to Y$ is *irreducible* iff $\forall A \subseteq X \text{ closed } f(A) \neq Y$.
Sketch (continued):

To cultivate the tree $T(X)$:
At stage $\beta = \alpha + 1 \geq 2$, q_α branches into at least 2 new points: D_β is any subset of $(\sigma_\alpha^\beta)^{-1}\{q_\alpha\}$ such that $2 \leq |D_\beta| \leq \aleph_0$, and $L_\beta = (\sigma_\alpha^\beta)^{-1}(L_\alpha \setminus \{q_\alpha\}) \cup D_\beta$.
Moreover, we leaf c choices for limit stage expandable points:
Every $x \in L_\alpha$ gets expanded by stage $\alpha + n$ for some $n \in \omega$:
put $q_\alpha + n \in L_{\alpha + n}$ so that $\sigma_\alpha^{\alpha+n}(q_\alpha+n) = x$.

\begin{itemize}
 \item L_5
 \item t_{00}
 \item t_{01}
 \item L_4
 \item q_4
 \item t_{10}
 \item t_{110}
 \item t_{111}
 \item L_3
 \item t_0
 \item $t_1 = q_2$
 \item $t_{11} = q_3$
 \item L_2
 \item $t_{< >} = q_1$
 \item L_1
\end{itemize}
To make X HL:

Use ♦ to choose a closed $\widetilde{F}_\alpha \subseteq Q^\alpha$ for each $\alpha < \omega_1$, so that
\[\{ \alpha < \omega_1 : \pi^\omega_1_\alpha(F) = \widetilde{F}_\alpha \} \] is stationary for all closed $F \subseteq Q^{\omega_1}$.
Let $F_\beta = \widetilde{F}_\beta$ if $\widetilde{F}_\beta \subseteq X_\beta$ and β is a limit; otherwise, let $F_\beta = \emptyset$.

To ensure all closed sets will be G_δ’s, keep the F_β nice:
let $\mathcal{P}_\beta = \{ F_\beta \} \cup \{ (\sigma_\alpha^\beta)^{-1}(P) : 0 < \alpha < \beta \land P \in \mathcal{P}_\alpha \}$.

Each \mathcal{P}_α is countable, so we can select the set of expandable points $\mathcal{L}_\alpha \subseteq X_\alpha$ so that $\mathcal{L}_\alpha \cap (P \setminus \ker(P)) = \emptyset$ whenever $P \in \mathcal{P}_\alpha$.

At stage $\beta = \alpha + 1$, proceed as for $\beta = 2$,
and, if $q_\alpha \in P \in \mathcal{P}_\alpha$,
choose $r^n_\alpha \in \ker(P)$
for infinitely many n.

For limit β, let $\mathcal{L}_\beta = \{ x^* : x \in \bigcup_{\alpha < \beta} \mathcal{L}_\alpha \}$, where, x^*, for $x \in \mathcal{L}_\alpha$, is some $y \in X_\beta$ such that $\sigma_\alpha^\beta(y) = x$ and $\sigma_\xi^\beta(y) \in \mathcal{L}_\xi$ for all $\xi < \beta$.

\[
\begin{align*}
 & h_\alpha \\
 & r_\alpha^0, r_\alpha^1, r_\alpha^2, \ldots, q_\alpha, X_\beta \subseteq Q^\beta \\
 & X_\alpha \cong \text{MS}
\end{align*}
\]
Recap of Open questions:

Rudin’s Question+: Is there a compact X which is
(1) non-metrizable, and
(2) locally connected, and
(3) hereditarily Lindelöf (HL)?
(4) and hereditarily separable (HS)?

Question: Is there, in ZFC, an HL Aronszajn compactum?

To refute the existence of an HL Aronszajn compactum,
one needs more than just an Aronszajn tree of closed sets,
since this much exists in the Cantor set:

Proposition There is an Aronszajn tree T whose nodes are closed
subsets of the Cantor set 2^ω. The tree ordering is \supset, with root 2^ω.
Each level of T consists of a pairwise disjoint family of sets.

Proof: it’s like that of Theorem 4 of Galvin and Miller
which is attributed there to Todorčević.

Reference: F. Galvin and A. Miller, γ-sets and other singular sets of