Randomized Models and Continuous Logic

H. Jerome Keisler
Overview

Intuitively, a randomization of a first order structure \mathcal{M} is a new structure whose elements are random elements of \mathcal{M}. In many cases, the random elements of \mathcal{M} have properties analogous to those of the original elements of \mathcal{M}.

To capture this idea, we introduce the notion of a randomization of a first order theory, which is a corresponding theory in continuous logic. Continuous model theory has recently been developed in a way that looks much like first order model theory. In this lecture I will present some results showing that many model-theoretic properties of a first order theory carry over to its randomization.
Intuitively, a randomization of a first order structure \mathcal{M} is a new structure whose elements are random elements of \mathcal{M}. In many cases, the random elements of \mathcal{M} have properties analogous to those of the original elements of \mathcal{M}.

To capture this idea, we introduce the notion of a randomization of a first order theory, which is a corresponding theory in continuous logic. Continuous model theory has recently been developed in a way that looks much like first order model theory. In this lecture I will present some results showing that many model-theoretic properties of a first order theory carry over to its randomization.
Introduction

Some References

Randomized Models and Continuous Logic

H. Jerome Keisler

Introduction

Randomizing a Model

Given a first order vocabulary L and structure M with $|M| > 1$. A **randomization of** M is a pair $M^R = (K, B)$ equipped with an atomless finitely additive probability space (Ω, B, μ) such that:

- For each formula $\psi(\vec{x})$ of L and tuple \vec{X} in K, $\{w \in \Omega : M|_\psi = \psi(\vec{X}(w))\} \in B$.
- For $B, C \in B$, write $B = C$ for $\mu(B \triangle C) = 0$. Then $\forall B \exists X \exists Y B = [X = Y]$.
- For each formula $\theta(x, \vec{y})$ of L, $\forall \vec{Y} \exists X [\theta(X, \vec{Y})] = [\exists x \theta(\vec{Y})]$.
Randomized Models and Continuous Logic

H. Jerome Keisler

Introduction

Continuous Model Theory
Randomization Theory, T^R
Separable Models
Stability

Randomizing a Model

Given a first order vocabulary L and structure M with $|M| > 1$. A randomization of M is a pair $M^R = (\mathcal{K}, B)$ equipped with an atomless finitely additive probability space (Ω, B, μ) such that:

- \mathcal{K} is a set of functions $X : \Omega \rightarrow M$.

For each formula $\psi(\vec{x})$ of L and tuple \vec{X} in K, $\lbrack \psi(\vec{X}) \rbrack = \{ w \in \Omega : M|\psi = \psi(X(w)) \} \in B$.

For $B, C \in B$, write $B \triangleq C$ for $\mu(B \triangle C) = 0$. Then $\forall B \exists X \exists Y B = \lbrack X = Y \rbrack$.

For each formula $\theta(x, \vec{Y})$ of L, $\forall \vec{Y} \exists X \lbrack \theta(X, \vec{Y}) \rbrack \triangleq \lbrack (\exists x \theta)(\vec{Y}) \rbrack$.

Given a first order vocabulary L and structure M with $|M| > 1$. A randomization of M is a pair $M^R = (\mathcal{K}, \mathcal{B})$ equipped with an atomless finitely additive probability space $(\Omega, \mathcal{B}, \mu)$ such that:

- \mathcal{K} is a set of functions $\mathcal{X} : \Omega \to M$.
- \mathcal{B} is a set of subsets of Ω, called events.
Randomizing a Model

Given a first order vocabulary L and structure M with $|M| > 1$. A randomization of M is a pair $M^R = (\mathcal{K}, \mathcal{B})$ equipped with an atomless finitely additive probability space $(\Omega, \mathcal{B}, \mu)$ such that:

- \mathcal{K} is a set of functions $X : \Omega \rightarrow M$.
- \mathcal{B} is a set of subsets of Ω, called events.
- For each formula $\psi(\bar{x})$ of L and tuple \bar{X} in \mathcal{K},
 $$\llbracket \psi(\bar{X}) \rrbracket = \{ w \in \Omega : M \models \psi(\bar{X}(w)) \} \in \mathcal{B}.$$
Randomized Models and Continuous Logic

H. Jerome Keisler

Introduction

Randomizing a Model

Given a first order vocabulary \(L \) and structure \(M \) with \(|M| > 1 \). A randomization of \(M \) is a pair \(M^R = (\mathcal{K}, \mathcal{B}) \) equipped with an atomless finitely additive probability space \((\Omega, \mathcal{B}, \mu)\) such that:

- \(\mathcal{K} \) is a set of functions \(X : \Omega \to M \).
- \(\mathcal{B} \) is a set of subsets of \(\Omega \), called events.
- For each formula \(\psi(\vec{x}) \) of \(L \) and tuple \(\vec{X} \) in \(\mathcal{K} \),
 \[\mathcal{K}[\psi(\vec{X})] = \{ w \in \Omega : M \models \psi(\vec{X}(w)) \} \in \mathcal{B}. \]
- For \(B, C \in \mathcal{B} \), write \(B \equiv C \) for \(\mu(B \triangle C) = 0 \). Then
 \[\forall B \exists X \exists Y B \equiv [X = Y]. \]
Given a first order vocabulary L and structure M with $|M| > 1$. A randomization of M is a pair $M^R = (\mathcal{K}, \mathcal{B})$ equipped with an atomless finitely additive probability space $(\Omega, \mathcal{B}, \mu)$ such that:

- \mathcal{K} is a set of functions $X : \Omega \rightarrow M$.
- \mathcal{B} is a set of subsets of Ω, called events.
- For each formula $\psi(\vec{x})$ of L and tuple \vec{X} in \mathcal{K},
 $\frown [\psi(\vec{X})] = \{ w \in \Omega : M \models \psi(\vec{X}(w)) \} \in \mathcal{B}$.
- For $B, C \in \mathcal{B}$, write $B \upharpoonright C$ for $\mu(B \triangle C) = 0$. Then
 $\forall B \exists X \exists Y \, B \upharpoonright [X = Y]$.
- For each formula $\theta(x, \vec{y})$ of L,
 $\forall \vec{Y} \exists X \, [\theta(X, \vec{Y})] \upharpoonright \{(\exists x \theta)(\vec{Y})\}$.
Continuous Model Theory

First Order versus Continuous Logic

- First order logic:
 Universe set M, equality symbol $=$.
 Functions $F : M^k \to M$, relations $P : M^k \to \{\top, \bot\}$.
 Formulas take truth values in $\{\top, \bot\}$.
 Connectives $\varphi \land \psi, \varphi \lor \psi, \neg \varphi$.
 Quantifiers \forall, \exists.

- Continuous logic:
 Complete metric space N of diameter 1, distance d.
 Uniformly continuous functions and relations.
 Formulas take truth values in $[0, 1]$.
 Connectives 0, 1, $\varphi/2$, $\varphi \cdot \psi$.
 Quantifiers \sup, \inf.

First order structures with the discrete metric are continuous structures.
Continuous Model Theory

First Order versus Continuous Logic

- First order logic:
 Universe set M, equality symbol \equiv.
 Functions $F : M^k \to M$, relations $P : M^k \to \{\top, \bot\}$.
 Formulas take truth values in $\{\top, \bot\}$.
 Connectives $\varphi \land \psi, \varphi \lor \psi, \neg \varphi$.
 Quantifiers \forall, \exists.

- Continuous logic:
 Complete metric space N of diameter 1, distance d.
 Uniformly continuous functions and relations.
 Formulas take truth values in $[0, 1]$.
 Connectives $0, 1, \varphi/2, \varphi \dot{-} \psi$.
 Quantifiers sup, inf.
First Order versus Continuous Logic

- **First order logic:**
 Universe set M, equality symbol $=$. Functions $F : M^k \to M$, relations $P : M^k \to \{\top, \bot\}$. Formulas take truth values in $\{\top, \bot\}$. Connectives $\varphi \land \psi, \varphi \lor \psi, \neg \varphi$. Quantifiers \forall, \exists.

- **Continuous logic:**
 Complete metric space N of diameter 1, distance d. Uniformly continuous functions and relations. Formulas take truth values in $[0, 1]$. Connectives 0, 1, $\varphi/2$, $\varphi \cdot \psi$. Quantifiers sup, inf.

- First order structures with the discrete metric are continuous structures.
Vocabulary: A set of function and relation symbols.
Vocabulary: A set of function and relation symbols.

Prestructure $\mathcal{N} = (N, d, \ldots)$: Bounded pseudometric with uniformly continuous functions and relations.
Continuous Model Theory

Continuous Structures

- Vocabulary: A set of function and relation symbols.
- Prestructure $\mathcal{N} = (N, d, \ldots)$: Bounded pseudometric with uniformly continuous functions and relations.
- One-sorted example: Normed linear spaces.
- Two-sorted example: Randomizations.
Vocabulary: A set of function and relation symbols.

Prestructure $\mathcal{N} = (N, d, \ldots)$: Bounded pseudometric with uniformly continuous functions and relations.

One-sorted example: Normed linear spaces.

Two-sorted example: Randomizations.

Structure: Prestructure where d is a complete metric.
Continuous Model Theory

Continuous Structures

- Vocabulary: A set of function and relation symbols.
- Prestructure $\mathcal{N} = (\mathcal{N}, d, \ldots)$: Bounded pseudometric with uniformly continuous functions and relations.
- One-sorted example: Normed linear spaces.
- Two-sorted example: Randomizations.
- Structure: Prestructure where d is a complete metric.
- The completion of \mathcal{N} is a structure $\hat{\mathcal{N}}$. To get $\hat{\mathcal{N}}$: identify elements of distance 0 and complete the metric.
Continuous Model Theory

Continuous Structures

- Vocabulary: A set of function and relation symbols.
- Prestructure $\mathcal{N} = (N, d, \ldots)$: Bounded pseudometric with uniformly continuous functions and relations.
- One-sorted example: Normed linear spaces.
- Two-sorted example: Randomizations.
- Structure: Prestructure where d is a complete metric.
- The **completion** of \mathcal{N} is a structure $\hat{\mathcal{N}}$. To get $\hat{\mathcal{N}}$: identify elements of distance 0 and complete the metric.
- $\mathcal{N} \models \varphi$ means the sentence φ has value 0 in \mathcal{N}.

Randomized Models and Continuous Logic

H. Jerome Keisler

Introduction
Continuous Model Theory
Randomization Theory, T^R
Separable Models
Stability
Continuous Model Theory

Continuous Structures

- Vocabulary: A set of function and relation symbols.
- Prestructure $\mathcal{N} = (N, d, \ldots)$: Bounded pseudometric with uniformly continuous functions and relations.
- One-sorted example: Normed linear spaces.
- Two-sorted example: Randomizations.
- Structure: Prestructure where d is a complete metric.
- The completion of \mathcal{N} is a structure $\hat{\mathcal{N}}$. To get $\hat{\mathcal{N}}$: identify elements of distance 0 and complete the metric.
- $\mathcal{N} \models \varphi$ means the sentence φ has value 0 in \mathcal{N}.
- Complete theory of \mathcal{N}: $Th(\mathcal{N}) = \{ \varphi : \mathcal{N} \models \varphi \}$.
Continuous Model Theory

Continuous Structures

- Vocabulary: A set of function and relation symbols.
- Prestructure $\mathcal{N} = (\mathcal{N}, d, \ldots)$: Bounded pseudometric with uniformly continuous functions and relations.
- One-sorted example: Normed linear spaces.
- Two-sorted example: Randomizations.
- Structure: Prestructure where d is a complete metric.
- The **completion** of \mathcal{N} is a structure \mathcal{N}. To get \mathcal{N}: identify elements of distance 0 and complete the metric.
- $\mathcal{N} \models \varphi$ means the sentence φ has value 0 in \mathcal{N}.
- Complete theory of \mathcal{N}: $Th(\mathcal{N}) = \{ \varphi : \mathcal{N} \models \varphi \}$.
- Elementary equivalence $\mathcal{N}_1 \equiv \mathcal{N}_2$: $Th(\mathcal{N}_1) = Th(\mathcal{N}_2)$.
- For each \mathcal{N}, $\mathcal{N} \equiv \mathcal{N}$.
Many notions and results from first order model theory have analogues in continuous model theory. For instance:
Many notions and results from first order model theory have analogues in continuous model theory. For instance:

- Ultraproducts and Los’s theorem work for continuous logic.
Many notions and results from first order model theory have analogues in continuous model theory. For instance:

- Ultraproducts and Los’s theorem work for continuous logic.
- Compactness: Any continuous theory which is finitely satisfiable is satisfiable.
Many notions and results from first order model theory have analogues in continuous model theory. For instance:

- **Ultraproducts and Los’s theorem work for continuous logic.**
- **Compactness:** Any continuous theory which is finitely satisfiable is satisfiable.
- **The type** of an n-tuple \bar{a} in \mathcal{N} is the function p mapping each formula φ to its value $\varphi^p \in [0, 1]$ in \mathcal{N} at \bar{a}.

For a theory U, the Stone space $S_n(U)$ is the set of all types of n-tuples in models of U.

$S_n(U)$ is compact Hausdorff, with basic closed sets $\{p: \varphi^p \in C\}$ where φ is a formula and C is closed.
Continuous Model Theory

Compactness and Types

Many notions and results from first order model theory have analogues in continuous model theory. For instance:

- Ultraproducts and Los’s theorem work for continuous logic.
- Compactness: Any continuous theory which is finitely satisfiable is satisfiable.
- The type of an n-tuple \bar{a} in \mathcal{N} is the function p mapping each formula φ to its value $\varphi^p \in [0, 1]$ in \mathcal{N} at \bar{a}.
- For a theory U, the Stone space $S_n(U)$ is the set of all types of n-tuples in models of U.

Many notions and results from first order model theory have analogues in continuous model theory. For instance:

- Ultraproducts and Los’s theorem work for continuous logic.
- Compactness: Any continuous theory which is finitely satisfiable is satisfiable.
- The type of an \(n \)-tuple \(\bar{a} \) in \(\mathcal{N} \) is the function \(p \) mapping each formula \(\varphi \) to its value \(\varphi^p \in [0, 1] \) in \(\mathcal{N} \) at \(\bar{a} \).
- For a theory \(U \), the Stone space \(S_n(U) \) is the set of all types of \(n \)-tuples in models of \(U \).
- \(S_n(U) \) is compact Hausdorff, with basic closed sets \(\{ p : \varphi^p \in C \} \) where \(\varphi \) is a formula and \(C \) is closed.
The Randomization Theory T^R

Vocabulary

T is a complete first order theory with vocabulary L. We always assume $T \models \exists x \exists y x \neq y$.

The randomization theory T^R has vocabulary L^R with:

- Two sorts, K for random elements and B for events.
- An n-ary function $\left[\phi(\cdot) \right]$ of sort $K^n \rightarrow B$ for each first order formula $\phi(\cdot)$ with n free variables.
- A unary relation μ of sort B for the probability of an event.
- The Boolean operations $\top, \bot, \sqcap, \sqcup, \neg$ of sort B.
- Distance relations d_K for sort K and d_B for sort B.
- $\forall x (\phi(x) \leq r)$ means $(\sup x \phi(x)) \leq r$.
- $\exists x (\phi(x) \leq r)$ means $(\inf x \phi(x)) \leq r$.
- $u = v$ means $d_B(u, v) = 0$.
Vocabulary

T is a complete first order theory with vocabulary L. We always assume $T \models \exists x \exists y x \neq y$.

The randomization theory T^R has vocabulary L^R with:

- Two sorts, K for random elements and B for events.
The Randomization Theory T^R

Vocabulary

T is a complete first order theory with vocabulary L. We always assume $T \models \exists x \exists y x \neq y$.

The randomization theory T^R has vocabulary L^R with:

- Two sorts, K for random elements and B for events.
- An n-ary function $[\varphi(\cdot)]$ of sort $K^n \to B$ for each first order formula $\varphi(\cdot)$ with n free variables.
The Randomization Theory T^R

Vocabulary

T is a complete first order theory with vocabulary L. We always assume $T \models \exists x \exists y \ x \neq y$.

The randomization theory T^R has vocabulary L^R with:

- Two sorts, K for random elements and B for events.
- An n-ary function $\llbracket \varphi(\cdot) \rrbracket$ of sort $K^n \to B$ for each first order formula $\varphi(\cdot)$ with n free variables.
- A unary relation μ of sort B for the probability of an event.
The Randomization Theory T^R

Vocabulary

T is a complete first order theory with vocabulary L. We always assume $T \models \exists x \exists y \, x \neq y$.
The randomization theory T^R has vocabulary L^R with:

- Two sorts, K for random elements and B for events.
- An n-ary function $[\varphi(\cdot)]$ of sort $K^n \to B$ for each first order formula $\varphi(\cdot)$ with n free variables.
- A unary relation μ of sort B for the probability of an event.
- The Boolean operations $\top, \bot, \sqcap, \sqcup, \neg$ of sort B.
The Randomization Theory T^R

Vocabulary

T is a complete first order theory with vocabulary L. We always assume $T \models \exists x \exists y x \neq y$.
The **randomization theory** T^R has vocabulary L^R with:

- Two sorts, K for random elements and B for events.
- An n-ary function $[\varphi(\cdot)]$ of sort $K^n \rightarrow B$ for each first order formula $\varphi(\cdot)$ with n free variables.
- A unary relation μ of sort B for the probability of an event.
- The Boolean operations $\top, \bot, \land, \lor, \neg$ of sort B.
- Distance relations d_K for sort K and d_B for sort B.

$\forall x (\varphi(x) \leq r)$ means $(\sup x \varphi(x)) \leq r$.
$\exists x (\varphi(x) \leq r)$ means $(\inf x \varphi(x)) \leq r$.
$u = v$ means $d_B(u, v) = 0$.
The Randomization Theory T^R

Vocabulary

T is a complete first order theory with vocabulary L. We always assume $T \models \exists x \exists y x \neq y$.

The randomization theory T^R has vocabulary L^R with:

- Two sorts, K for random elements and B for events.
- An n-ary function $[\varphi(\cdot)]$ of sort $K^n \to B$ for each first order formula $\varphi(\cdot)$ with n free variables.
- A unary relation μ of sort B for the probability of an event.
- The Boolean operations $\top, \bot, \cap, \cup, \neg$ of sort B.
- Distance relations d_K for sort K and d_B for sort B.
- $\forall x (\varphi(x) \leq r)$ means $(\sup_x \varphi(x)) \leq r$.
- $\exists x (\varphi(x) \leq r)$ means $(\inf_x \varphi(x)) \leq r$.
- $u \triangleq v$ means $d_B(u, v) = 0$.
Axioms

Validity Axioms: \(\forall \vec{x} (\lbrack \psi(\vec{x}) \rbrack \trianglerighteq \top) \)
where \(\forall \vec{x} \psi(\vec{x}) \) is logically valid in first order logic.
The Randomization Theory T^R

Axioms

- **Validity Axioms**: $\forall \bar{x} (\models \psi(\bar{x})) \vdash T$
 where $\forall \bar{x} \psi(\bar{x})$ is logically valid in first order logic.

- **Transfer Axioms**: $\models \varphi$ where $\varphi \in T$.

The Randomization Theory T^R

Axioms

- Validity Axioms: $\forall \vec{x} (\models \psi(\vec{x})) \vdash T$
 where $\forall \vec{x} \psi(\vec{x})$ is logically valid in first order logic.
- Transfer Axioms: $\models \varphi \vdash T$ where $\varphi \in T$.
- The usual Boolean algebra axioms in sort B.
The Randomization Theory T^R

Axioms

- **Validity Axioms**: $\forall\vec{x}(\models\psi(\vec{x})) \vdash \top$
 where $\forall\vec{x} \psi(\vec{x})$ is logically valid in first order logic.

- **Transfer Axioms**: $\models\varphi \vdash \top$ where $\varphi \in T$.

- The usual Boolean algebra axioms in sort B.

- **Distance Axioms**:
 $\forall x \forall y d_K(x, y) = 1 - \mu [x = y]$
 $\forall u \forall v d_B(u, v) = \mu(u \Delta v)$
The Randomization Theory T^R

Axioms

- Validity Axioms: $\forall \bar{x}(\llbracket \psi(\bar{x}) \rrbracket \models \top)$
 where $\forall \bar{x} \psi(\bar{x})$ is logically valid in first order logic.
- Transfer Axioms: $\llbracket \varphi \rrbracket \models \top$ where $\varphi \in T$.
- The usual Boolean algebra axioms in sort \mathbb{B}.
- Distance Axioms:
 $\forall x \forall y \ d_\mathcal{K}(x, y) = 1 - \mu(\llbracket x = y \rrbracket)$
 $\forall u \forall v \ d_\mathbb{B}(u, v) = \mu(u \Delta v)$
- Event Axiom: $\forall u \exists x \exists y (u \models \llbracket x = y \rrbracket)$
The Randomization Theory T^R

Axioms

- **Validity Axioms:** $\forall \vec{x}(\models \psi(\vec{x})) \vdash \top$
 where $\forall \vec{x} \psi(\vec{x})$ is logically valid in first order logic.

- **Transfer Axioms:** $\models \varphi \vdash \top$ where $\varphi \in T$.

- The usual Boolean algebra axioms in sort B.

- **Distance Axioms:**
 \[
 \forall x \forall y \ d_K(x, y) = 1 - \mu[\models x = y] \\
 \forall u \forall v \ d_B(u, v) = \mu(u \Delta v)
 \]

- **Event Axiom:** $\forall u \exists x \exists y (u \models [\models x = y])$

- **Fullness Axiom:** $\forall \vec{y} \exists x ([\models \varphi(x, \vec{y})] \models [(\exists x \varphi)(\vec{y})])$
The Randomization Theory T^R

Axioms

- **Validity Axioms:** $\forall \vec{x}(\llbracket \psi(\vec{x}) \rrbracket \models \top)$
 where $\forall \vec{x} \psi(\vec{x})$ is logically valid in first order logic.
- **Transfer Axioms:** $\llbracket \varphi \rrbracket \models \top$ where $\varphi \in T$.
- The usual Boolean algebra axioms in sort B.
- **Distance Axioms:**
 $\forall x \forall y \ d_K(x, y) = 1 - \mu(\llbracket x = y \rrbracket)$
 $\forall u \forall v \ d_B(u, v) = \mu(u \Delta v)$
- **Event Axiom:** $\forall u \exists x \exists y (u \models \llbracket x = y \rrbracket)$
- **Fullness Axiom:** $\forall \vec{y} \exists x (\llbracket \varphi(x, \vec{y}) \rrbracket \models \llbracket (\exists x \varphi)(\vec{y}) \rrbracket)$
- **Measure Axioms:** $\mu[\top] = 1 \land \mu[\bot] = 0$
 $\forall u \forall v (\mu(u) + \mu(v) = \mu(u \uplus v) + \mu(u \cap v))$
The Randomization Theory T^R

Axioms

- **Validity Axioms:** $\forall \vec{x}(\models \psi(\vec{x})) \vdash \top$
 where $\forall \vec{x} \psi(\vec{x})$ is logically valid in first order logic.

- **Transfer Axioms:** $\models \varphi \vdash \top$ where $\varphi \in T$.

- The usual Boolean algebra axioms in sort B.

- **Distance Axioms:**

 $\forall x \forall y \ d_K(x, y) = 1 - \mu[\models x = y]$

 $\forall u \forall \nu \ d_B(u, \nu) = \mu(u \Delta \nu)$

- **Event Axiom:** $\forall \nu \exists x \exists y (\nu \vdash [x = y])$

- **Fullness Axiom:** $\forall \vec{y} \exists x ([\models \varphi(x, \vec{y})] \vdash [\exists x \varphi(\vec{y})])$

- **Measure Axioms:**

 $\mu[\top] = 1 \land \mu[\bot] = 0$

 $\forall u \forall \nu (\mu(u) + \mu(\nu) = \mu(u \sqcup \nu) + \mu(u \sqcap \nu))$

- **Atomless Axiom:** $\forall u \exists \nu (\mu(u \sqcap \nu) = \mu(u)/2)$
The Theorem

T^R is a complete theory.
The Randomization Theory T^R

Models

Theorem

T^R is a complete theory.

Theorem

Each randomization of a model of T is a premodel of T^R.
The Randomization Theory T^R

Models

Theorem

T^R is a complete theory.

Theorem

Each randomization of a model of T is a premodel of T^R.

Theorem

For each $\mathcal{M} \models T$, each model of T^R is isomorphic to the completion of a randomization of \mathcal{M}.
The Randomization Theory T^R

Models

Theorem

T^R is a complete theory.

Theorem

Each randomization of a model of T is a premodel of T^R.

Theorem

For each $\mathcal{M} \models T$, each model of T^R is isomorphic to the completion of a randomization of \mathcal{M}.

Theorem

The theory T^R admits strong quantifier elimination. That is, every formula φ in L^R is T^R-equivalent to a formula in L^R with the same free variables and no quantifiers.
The next theorem shows that we may identify types $p \in S_n(T^R)$ with regular Borel probability measures on $S_n(T)$.
The Randomization Theory T^R

Types

The next theorem shows that we may identify types $p \in S_n(T^R)$ with regular Borel probability measures on $S_n(T)$.

Theorem

(i) For each type $p \in S_n(T^R)$, the function

$$\{ q \in S_n(T) : \varphi(\bar{x}) \in q \} \mapsto (\mu[\varphi(\bar{x})])^p$$

is a regular Borel probability measure ν_p on $S_n(T)$.

(ii) The mapping $p \mapsto \nu_p$ is a bijection from $S_n(T^R)$ onto the space of all regular Borel probability measures on $S_n(T)$.
Hereafter, assume the vocabularies are countable.

Definition

A first order or continuous theory U is ω-categorical if any two separable models of U are isomorphic.
Hereafter, assume the vocabularies are countable.

Definition

A first order or continuous theory U is ω-**categorical** if any two separable models of U are isomorphic.

Theorem

T is ω-categorical if and only if T^R is ω-categorical.
Given a structure \mathcal{N} and subset $A \subseteq N$, \mathcal{N}_A is \mathcal{N} with extra constants for the elements of A.

By an n-type over \mathcal{N}_A we mean an element of $S_n(Th(\mathcal{N}_A))$, i.e., the type of an n-tuple in some model of $Th(\mathcal{N}_A)$.

Definition

\mathcal{N} is ω-saturated if for each finite $A \subseteq N$, every type over \mathcal{N}_A is realized in \mathcal{N}.
Given a structure \mathcal{N} and subset $A \subseteq N$, \mathcal{N}_A is \mathcal{N} with extra constants for the elements of A.
By an **n-type over** \mathcal{N}_A we mean an element of $S_n(Th(\mathcal{N}_A))$, i.e., the type of an n-tuple in some model of $Th(\mathcal{N}_A)$.

Definition

\mathcal{N} is **ω-saturated** if for each finite $A \subseteq N$, every type over \mathcal{N}_A is realized in \mathcal{N}.

Theorem

T has a countable ω-saturated model if and only if T^R has a separable ω-saturated model.
Definition

\mathcal{N} is elementarily embeddable in \mathcal{N}' if there is a map $h : \mathcal{N} \to \mathcal{N}'$ preserving the truth value of every formula. \mathcal{N} is prime if it is elementarily embeddable in every $\mathcal{N}' \equiv \mathcal{N}$.

Every prime model is separable.
Definition

\(\mathcal{N} \) is **elementarily embeddable** in \(\mathcal{N}' \) if there is a map \(h : \mathcal{N} \to \mathcal{N}' \) preserving the truth value of every formula.

\(\mathcal{N} \) is **prime** if it is elementarily embeddable in every \(\mathcal{N}' \equiv \mathcal{N} \).

Every prime model is separable.

Theorem

\(T \) has a prime model if and only if \(T^R \) has a prime model.
ω-Stable Theories

Definition
A first order or continuous theory U is ω-stable if for every model \mathcal{N} of U and countable set $A \subseteq N$, $Th(\mathcal{N}_A)$ has a separable model which realizes every type over \mathcal{N}_A.

Theorem
T is ω-stable if and only if T^R is ω-stable.
ω-Stable Theories

Definition
A first order or continuous theory U is ω-stable if for every model \mathcal{N} of U and countable set $A \subseteq N$, $Th(\mathcal{N}_A)$ has a separable model which realizes every type over \mathcal{N}_A.

Theorem
T is ω-stable if and only if T^R is ω-stable.
Let λ be an infinite cardinal.

Definition

A first order or continuous theory U is λ-**stable** if for every model \mathcal{N} of U and set $A \subseteq N$ of cardinality λ, $Th(\mathcal{N}_A)$ has a model of density λ that realizes every type over \mathcal{N}_A.

U is **stable** if U is λ-stable for some λ.
Stability

Stable Theories

Let \(\lambda \) be an infinite cardinal.

Definition

A first order or continuous theory \(U \) is \(\lambda \)-**stable** if for every model \(N \) of \(U \) and set \(A \subseteq N \) of cardinality \(\lambda \), \(Th(N_A) \) has a model of density \(\lambda \) that realizes every type over \(N_A \).

\(U \) is **stable** if \(U \) is \(\lambda \)-stable for some \(\lambda \).

Theorem (Ben Yaacov)

\(T \) is stable if and only if \(T^R \) is stable.
Let λ be an infinite cardinal.

Definition

A first order or continuous theory U is λ-**stable** if for every model N of U and set $A \subseteq N$ of cardinality λ, $Th(N_A)$ has a model of density λ that realizes every type over N_A.

U is **stable** if U is λ-stable for some λ.

Theorem (Ben Yaacov)

T is stable if and only if T^R is stable.

Theorem (Ben Yaacov)

T is dependent if and only if T^R is dependent.
Problem

Which properties of T carry over to T^R?
Problem

Which properties of T carry over to T^R?

Definition

U is superstable if U is λ-stable for all $\lambda \geq 2^\omega$.
Problem

Which properties of T carry over to T^R?

Definition

U is **superstable** if U is λ-stable for all $\lambda \geq 2^\omega$.

Problem

If T is superstable, must T^R be superstable?
Problem

Which properties of T carry over to T^R?

Definition

U is superstable if U is λ-stable for all $\lambda \geq 2^{\omega}$.

Problem

If T is superstable, must T^R be superstable?

Thanks for listening!