Set-Theoretic Geometry

Outline of Talk

1. The Filippov space under CH
2. Its demise under PFA and its survival under MA
3. Smooth arcs in the plane
4. Some questions

All spaces are T_3 (Hausdorff and regular); usually they’re compact.

References

Some recent papers (in order of date):
[1] K. Kunen, Locally Connected HL Compacta
 preprint available.
 preprint available, soon · · · · · · .
 preprint available, eventually, maybe · · · · · · .

These have references to the work of the many other people mentioned.

See my home page
http://www.math.wisc.edu/~kunen/
Quick Overview of Topics (1)(2)

Possible Question PQ (never “officially” asked):
 Is there a compact *locally connected* hereditarily Lindelöf (HL) space which is not metrizable (≠ not second countable)?
 Maybe hereditarily separable (HS) also?

Possible reason for asking
 The double arrow space DAS (Alexandroff and Urysohn 1929) is compact, HL, HS, and not metrizable, but totally disconnected.
 It’s also a compact LOTS: -------------------------------

PQ asks: Is there a *locally* connected version of the DAS?
 The cone over DAS is connected, but not locally connected.

Filippov 1969: Answer to PQ is yes under CH.
 His space is also HS — it’s a “2D” version of DAS.
 He used a Luzin (1914) set, which is refuted by MA + ¬CH, so

Published Question (1982) P. Nyikos and/or M. E. Rudin: does
 MA + ¬CH ⇒ the answer to PQ is “no”?
 Note: HS = HL now (Juhász and Szentmiklóssy).

My answer: no — MA + ¬CH ⊬ the answer to PQ is “no”.
 The Filippov construction succeeds
 iff there is a *weakly Luzin set*.

 Weakly Luzin sets are consistent with MA + ¬CH
 but refuted by PFA.
 but PQ is still open under PFA.

Some background \[\downarrow\]
HS and HL

H = hereditarily S = separable L = Lindelöf.
HS means all subspaces are separable.

If X is 2nd countable (= separable metric):

then all subspaces of X are 2nd countable,

and hence separable and Lindelöf,

so X is HS and HL.

The DAS is compact and HS and HL and not 2nd countable.

It’s also a compact LOTS.

The DAS is totally disconnected.

The cone over DAS is connected, but not locally connected.

Points
(other than the top one)
don’t have arbitrarily small connected neighborhoods.

PQ was: Is there a compact *locally connected* HL (and HS) space which is not 2nd countable?
The Double Arrow Space

Basic construction:
Start with \(E \subseteq (0, 1) \subseteq [0, 1] \).
Get space \(\Phi_E \) from \([0, 1]\) by replacing each \(x \in E \) by a pair of neighboring points, \(x^-, x^+ \).
Natural map \(\pi_E : \Phi_E \rightarrow [0, 1] \).

Picture for \(E = \{x, y, z\} \):

\[
\begin{array}{cccccc}
x^- & x^+ & y^- & y^+ & z^- & z^+ \\
& & & & & \pi \\
x & y & z & & &
\end{array}
\]

Observe (exercise):
1. \(\Phi_E \) is always compact and HS and HL.
2. \(\Phi_E \) is 2\(^{nd}\) countable iff \(|E| \leq \aleph_0 \).
3. \(\Phi_E \) is never locally connected when \(E \) is infinite.

So let \(|E| \geq \aleph_1 \)

The official DAS has \(E = (0, 1) \).

Hint for (1): use the equivalent characterizations:
- \(X \) is HS iff \(X \) has no left-separated \(\omega_1 \)-sequence.
- \(X \) is HL iff \(X \) has no right-separated \(\omega_1 \)-sequence.

The sequence \(\langle x_\alpha : \alpha < \omega_1 \rangle \) is:
- left separated iff each \(x_\alpha \notin \text{cl}\{x_\xi : \xi < \alpha\} \) bad
- right separated iff each \(x_\alpha \notin \text{cl}\{x_\xi : \xi > \alpha\} \) bad
- discrete iff each \(x_\alpha \notin \text{cl}\{x_\xi : \xi \neq \alpha\} \) worse

The Filippov space: change \([0, 1]\) to \([0, 1]^2\) (or \([0, 1]^n\)),
change pairs of points \(S^0 \) to circles \(S^1 \) (or \(S^{n-1} \)).
Then the space is locally connected.
Basic construction:
Start with \(E \subseteq (0, 1)^2 \subseteq [0, 1]^2 \).
Get space \(\Phi_E \) from \([0, 1]^2 \) by replacing each \(x \in E \)
by a copy of a circle \(C_x \).
Natural map \(\pi_E : \Phi_E \rightarrow [0, 1]^2 \) identifies
\(C_x \) back to \(x \).

Topology:
\(\pi^{-1}(U) \) is open for all open \(U \subseteq [0, 1]^2 \).
Also, \(N(x, \varepsilon, \alpha, \beta) \) are open for \(x \in E, r > 0, \alpha, \beta \) are “angles”.
Contains: points on the arc \((\alpha, \beta)\) of \(C_x \)
plus points/circles at distance \(< \varepsilon \) from \(x \)
in directions lying in \((\alpha, \beta)\).

Picture for \(E = \{a, b, c, d\} \); \(N(b, 1/2, 200^\circ, 250^\circ) \) shown:

The \(C_x \) are circles
not discs.
The insides are gone
The radii are
“infinitesimal”
Only point \(a \) gets
replaced by \(C_a \).
More Filippov space

Observe (exercise)
1. Φ_E is always compact and rarely HS or HL.
2. Φ_E is 2nd countable iff $|E| \leq \aleph_0$.
3. Φ_E is always connected and locally connected.

Problem with HS/HL:
If E has \aleph_1 points like a, b, c (going roughly NW–SE)
then there will be an uncountable discrete subset
Choose a point on the SW part of each circle.

Filippov’s solution: Let E be a Luzin set.
Then Φ_E is HS and HL — so, all is well under CH.

Problem: What if there are no Luzin sets (say, under MA(\aleph_1))?

My solution: Let E be a weakly Luzin set.
This is consistent with MA(\aleph_1).
Then Φ_E is still HS and HL.

But, under PFA (or just SOCA) the construction fails:
Every uncountable $E \subseteq \mathbb{R}^2$ has \aleph_1 points
lined up roughly in some direction, as are a, b, c.
Weakly Luzin Sets

Fix an uncountable $E \subseteq \mathbb{R}^2$. Then E is
- Luzin iff all nowhere dense subsets of E are countable.
- weakly Luzin iff all *skinny* subsets of E are countable.
- T *skinny* iff the set of “directions” between pairs of points: $\hat{T} := \{(x - y)/\|x - y\| : \{x, y\} \in [T]^2\}$ is not dense in the unit circle.

Equivalently, rotating T so that $(0, 1) \notin \text{cl}(\hat{T})$,
$T \subseteq$ the graph of a uniformly Lipschitz function.

Skinny sets are nowhere dense, so Luzin sets are weakly Luzin.
But weakly Luzin sets are consistent with MA(\aleph_1).

Theorem (ZFC). E is weakly Luzin iff
- Φ_E is HS iff Φ_E is HL iff
- Φ_E has no uncountable discrete subsets.

Under PFA (or just SOCA), every uncountable $E \subseteq \mathbb{R}^2$ has uncountable *very* skinny subsets.

very skinny ??????
Very Skinny Sets

Under PFA (or just SOCA), every uncountable $E \subseteq \mathbb{R}^2$ has uncountable very skinny subsets.

For $0 \leq \varepsilon \leq \pi/2$, call $T \subseteq \mathbb{R}^2 \ \varepsilon$-directed iff for some "direction" $v \in S^1$:
\[
\angle(\pm v, (x - y)/\|x - y\|) \leq \varepsilon \quad \forall \{x, y\} \in [T]^2.
\]

Every T is $\pi/2$–directed. T is 0–directed iff $T \subseteq$ some straight line. T is skinny iff T is ε–directed for some $\varepsilon < \pi/2$.

SOCA implies $\forall E \in [\mathbb{R}^2]^\aleph_1 \ \forall \varepsilon > 0 \ \exists T \in [E]^\aleph_1 [T \text{ is } \varepsilon$–directed].

Picture of 12°–directed, with $v = 45^\circ$ (NE-SW).

\[\hat{T} \subset S^1\]

Connecting the dots, we see that T lies on a rectifiable arc:
\[
\text{length } \leq \sqrt{2}/\cos(12^\circ) \quad \text{(if the picture is in the unit square)}
\]
But the arc need not be smooth — it can have angles.

Even better, we can get a smooth (C^1) arc A which meets E in an uncountable set.
Then $\forall \varepsilon > 0, A$ is a finite union of ε–directed arcs.
We need to remove some dots · · · · · · ·
Smooth Arcs

Definitions:
“arc” = “homeomorphic to an interval”.
The arc A is C^k ($k \geq 1$) iff A is rectifiable and
if $g : [0, b] \rightarrow A$ is a homeomorphism using arc length
as a parameter, then $g \in C^k([0, b], \mathbb{R}^2)$.

Theorem (PFA). Every uncountable $E \subseteq \mathbb{R}^2$ meets some
C^1 arc in an uncountable set.

A weakly Luzin set is a counter-example consistent with MA(\aleph_1).

The theorem is false in ZFC for C^2; there is a perfect $E \subseteq \mathbb{R}^2$
which meets each C^2 arc in a finite set.

Technical Question. Is SOCA sufficient?
The proof needs MA(\aleph_1) (or $p > \aleph_1$) plus OCA$_{[ARS]}$.

9
Getting Smooth Arcs

Theorem (PFA). Every uncountable \(E \subseteq \mathbb{R}^2 \) meets some \(C^1 \) arc in an uncountable set.

Proof in three steps.

1. By SOCA and deleting some points and rotating coordinates, WLOG \(E \subseteq L \), where \(L \) is (the graph of) a function on \([0, 1]\) and is uniformly Lipschitz: \(|L(x) - L(y)|/|x - y| \leq 6\).

2. Apply PFA to get a “thin” compact set \(Q \subseteq \mathbb{R} \) and continuous \(g : Q \to \mathbb{R} \) such that, setting \(f = L|Q:\)
 a. \(f \cap E \) is uncountable.
 b. \(f' = g \) in the sense that \((f(x_1) - f(x_2))/(x_1 - x_2) \to g(x)\) uniformly as \(x_1, x_2 \to x \) (\(x_1, x_2, x \in Q \)).

3. Following Hermite (1901), extend \(f, g \) to \(\bar{f} \in C^1(\mathbb{R}) \) and \(\bar{g} \in C(\mathbb{R}) \) with \(\bar{f}' = \bar{g} \); so \(\bar{f} \) is the desired arc.

More on (2): The general fact (under PFA) is:
Let \(X \) be a Polish space, \(K \) a compact metric space, \(E \) an uncountable subset of \(X \) and \(h \in C([X]^2, K) \).
Then there is a compact set \(Q \subseteq X \) such that \(Q \cap E \) is uncountable and \(h|[Q]^2 \) extends to some \(\tilde{h} \in C(Q \times Q, K) \).

Here, \(X = [0, 1], \quad K = [-6, 6] \)
and \(h(\{x, y\}) = (L(x) - L(y))/(x - y) \).
Then \(f(x) = L(x) \) and \(g(x) = \tilde{h}(x, x) \) (for \(x \in Q \)).
Questions and Minor Improvements

Thm (PFA). Let X be a Polish space, K a compact metric space, E an uncountable subset of X and $h \in C([X]^2, K)$.
Then there is a compact set $Q \subseteq X$ such that $Q \cap E$ is uncountable and $h|_{[Q]^2}$ extends to some $\tilde{h} \in C(Q \times Q, K)$.

Minor improvements, with similar but somewhat more tedious proofs.

In this Theorem: Actually, if $|E| = \aleph_1$,
you can cover E by \aleph_0 such compact sets, Q_n (for $n \in \omega$)
(with corresponding \tilde{h}_n).

In the last theorem:
Theorem (PFA). Every uncountable $E \subseteq \mathbb{R}^2$ meets some C^1 arc in an uncountable set.
Actually, if $|E| = \aleph_1$, then you can cover E
by \aleph_0 such arcs.

Two general questions:

Question 1: Is there something general behind the “actually”?

Question 2: Can you derive such results directly from their (easier) ZFC analogs?
Question 1

Assume, say, PFA.
Assume that all uncountable sets E

meet a “nice” set in an uncountable set. \hspace{1cm} (A)

Then when $|E| = \aleph_1$, can we cover E by \aleph_0 “nice” sets? \hspace{1cm} (B)

Example 1 (MA(\aleph_1)). Yes

In the plane, “nice” = “a Cantor set”.

Example 2 (ZFC). No

In ω_1, “nice” = “nonstationary”.

Example 3 (PFA). Yes

In the plane, “nice” = “a C^1 arc”.

Example 4 (PFA). Yes

X is a separable metric space, $[X]^2 = W_0 \cup W_1$; W_0, W_1 open

Consider $E \subseteq X$. “nice” is “W_0–connected or W_1–connected”.

(A) follows from SOCA but (B) is OCA$_{[ARS]}$.

Example 5 (ZFC). No \hspace{1cm} (the actual SOCA)

Like (4), but W_0 is open and W_1 is closed.

There’s a ZFC example where (A) is true and (B) is false.

Example 6 (PFA, say). I don’t know.

X is a separable metric space, $[X]^3 = W_0 \cup W_1$; W_0, W_1 open.

“nice” is “W_0–homogeneous or W_1–homogeneous”.

(A) *could* fail (Blass, 1981), but assume it holds $\forall E \subseteq X$.

Then does (B) hold?

Question 1 is: is there something more general going on here?
Question 2

Remark. “perfect set” versions of PFA partition results are often ZFC theorems and easier to prove.

Assume, say, PFA. Let X be a Polish space.

Assume that for all perfect $P \subseteq X$

there is a “nice” perfect $Q \subseteq P$ \hspace{1cm} (C)

Then do all uncountable sets meet a “nice” perfect set in an uncountable set? \hspace{1cm} (A)

Example 1 (MA(\aleph_1)). Yes. In the plane, “nice” = “a Cantor set”.

(C): by Cantor, essentially.

(A): see our January 2008 logic qual.

Example 3 (PFA). Yes. In the plane, “nice” = “a C^1 arc”.

(C) is fairly easy.

Example 5 (PFA). Yes.

$[X]^2 = W_0 \cup W_1$; W_0 is open and W_1 is closed.

“nice” is “W_0–connected or W_1–connected”.

(C) is from Galvin (1968); (A) is SOCA.

Example 7 (ZFC). No.

$[X]^2 = W_0 \cup W_1$; W_0, W_1 Borel.

“nice” is “W_0–connected or W_1–connected”.

(C) is by Mycielski (1964) + Galvin (1968)

\lnot(A) is by Sierpiński (1933) ($\omega_1 \not\leftrightarrow (\omega_1)^2$)

+ Rothberger (1944)

Question 2 is: Can we use PFA once to show that the hard thing always follows from the easy thing (when it does)?
Remarks on Arcs

I already said:
Theorem (PFA). Every uncountable \(E \subseteq \mathbb{R}^2 \) meets some \(C^1 \) arc in an uncountable set.
This is false in ZFC for \(C^2 \); there is a perfect \(E \subseteq \mathbb{R}^2 \) which meets each \(C^2 \) arc in a finite set.
MA(\(\aleph_1 \)) isn’t sufficient; let \(E \) be weakly Luzin.

Are the definitions right?
“arc” always means: a set \(A \) homeomorphic to an interval:
\[A = g([a, b]), \text{ where } g : [a, b] \rightarrow \mathbb{R}^2 \text{ is 1-1 and continuous.} \]
Then \(A \) is \(C^k \) (\(k \geq 1 \)) iff \(g \) can be chosen so that \(g \in C^k([a, b], \mathbb{R}^2) \) and \(g'(t) \neq 0 \) for all \(t \);
equivalently, it’s \(C^k \) using arc length as a parameter.

Why the “\(g'(t) \neq 0 \)” ? If we drop it, call \(A \) weakly \(C^k \).

\(C^k \) captures the geometric notion of “smooth – no corners”.
Polygonal paths are weakly \(C^\infty \)

Slow down to 0 at the corners.
Use functions like \(e^{-1/t^2} \).

“weakly \(C^k \)” captures the physical notion of “smooth ride”.

The theorems change:
Theorem (MA(\(\aleph_1 \))). Every uncountable \(E \subseteq \mathbb{R}^2 \) meets some weakly \(C^\infty \) arc in an uncountable set.
actually, is covered by \(\aleph_0 \) such arcs if \(|E| = \aleph_1 \).
Remarks on PQ

PQ is now: Is it consistent (perhaps following from PFA) that every compact locally connected HL (equivalently, HS) space is 2nd countable?

It doesn’t follow just from MA(\(\aleph_1\)).

The answer would be “yes” if the answer to Fremlin’s Question is “yes”:

FQ: Is it consistent (perhaps following from PFA) that every compact HL (and hence HS) space has a 2-1 map onto a compact metric space?

The DAS and the cone over the DAS (which is connected) have such maps, but a locally connected HL compactum with such a map (even zero-dimensional-to-one) must be compact metric itself.