https://www.math.wisc.edu/wiki/api.php?action=feedcontributions&user=Jeanluc&feedformat=atomUW-Math Wiki - User contributions [en]2020-01-27T06:57:43ZUser contributionsMediaWiki 1.30.1https://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=18502Colloquia2019-11-28T19:01:17Z<p>Jeanluc: /* Abstracts */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
<br />
<br />
==Fall 2019==<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Sept 6 '''Room 911'''<br />
| Will Sawin (Columbia)<br />
| [[#Will Sawin (Columbia) | On Chowla's Conjecture over F_q[T] ]]<br />
| Marshall<br />
|-<br />
|Sept 13<br />
| [https://www.math.ksu.edu/~soibel/ Yan Soibelman] (Kansas State)<br />
|[[#Yan Soibelman (Kansas State)| Riemann-Hilbert correspondence and Fukaya categories ]]<br />
| Caldararu<br />
|<br />
|-<br />
|Sept 16 '''Monday Room 911'''<br />
| [http://mate.dm.uba.ar/~alidick/ Alicia Dickenstein] (Buenos Aires)<br />
|[[#Alicia Dickenstein (Buenos Aires)| Algebra and geometry in the study of enzymatic cascades ]]<br />
| Craciun<br />
|<br />
|-<br />
|Sept 20<br />
| [https://math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|[[#Jianfeng Lu (Duke) | How to "localize" the computation?]]<br />
| Qin<br />
|<br />
|-<br />
|Sept 26 '''Thursday 3-4 pm Room 911'''<br />
| [http://eugeniacheng.com/ Eugenia Cheng] (School of the Art Institute of Chicago)<br />
| [[#Eugenia Cheng (School of the Art Institute of Chicago)| Character vs gender in mathematics and beyond ]]<br />
| Marshall / Friends of UW Madison Libraries<br />
|<br />
|-<br />
|Sept 27<br />
|<br />
|<br />
|-<br />
|Oct 4<br />
|<br />
|<br />
|-<br />
|Oct 11<br />
| Omer Mermelstein (Madison)<br />
| [[#Omer Mermelstein (Madison)| Generic flat pregeometries ]]<br />
|Andrews<br />
|<br />
|-<br />
|Oct 18<br />
| Shamgar Gurevich (Madison)<br />
| [[#Shamgar Gurevich (Madison) | Harmonic Analysis on GL(n) over Finite Fields ]]<br />
| Marshall<br />
|-<br />
|Oct 25<br />
|<br />
|-<br />
|Nov 1<br />
|Elchanan Mossel (MIT)<br />
|Distinguished Lecture<br />
|Roch<br />
|-<br />
|Nov 8<br />
|Jose Rodriguez (UW-Madison)<br />
|[[#Jose Rodriguez (UW-Madison) | Nearest Point Problems and Euclidean Distance Degrees]]<br />
|Erman<br />
|-<br />
|Nov 13 '''Wednesday 4-5pm'''<br />
|Ananth Shankar (MIT)<br />
|Exceptional splitting of abelian surfaces<br />
|-<br />
|Nov 20 '''Wednesday 4-5pm'''<br />
|Franca Hoffman (Caltech)<br />
|[[#Franca Hoffman (Caltech) | Gradient Flows: From PDE to Data Analysis]]<br />
|Smith<br />
|-<br />
|Nov 22<br />
| Jeffrey Danciger (UT Austin)<br />
| [[#Jeffrey Danciger (UT Austin) | "Affine geometry and the Auslander Conjecture"]]<br />
| Kent<br />
|-<br />
|Nov 25 '''Monday 4-5 pm Room 911'''<br />
|Tatyana Shcherbina (Princeton)<br />
| [[# Tatyana Shcherbina (Princeton)| "Random matrix theory and supersymmetry techniques"]]<br />
|Roch<br />
|-<br />
|Nov 29<br />
|Thanksgiving<br />
|<br />
|-<br />
|Dec 2 '''Monday 4-5pm'''<br />
|Tingran Gao (University of Chicago)<br />
| [[#Tingran Gao (University of Chicago)| "Manifold Learning on Fibre Bundles"]]<br />
|Smith<br />
|-<br />
|Dec 4 '''Wednesday 4-5 pm'''<br />
|Andrew Zimmer<br />
| Intrinsic and extrinsic geometries in several complex variables<br />
|Gong<br />
|-<br />
|Dec 6<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Dec 9 '''Monday 4-5 pm'''<br />
|Hui Yu (Columbia)<br />
|[[#Hui Yu (Columbia)|Singular sets in obstacle problems]]<br />
|Tran<br />
|-<br />
|Dec 11 '''Wednesday'''<br />
|Nick Higham (Manchester)<br />
|[[#Nick Higham (Manchester)|LAA lecture: Challenges in Multivalued Matrix Functions]]<br />
|Brualdi<br />
|<br />
|-<br />
|Dec 13<br />
|Reserved for job talk<br />
|<br />
|}<br />
<br />
==Spring 2020==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|<br />
|-<br />
|Jan 24<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Jan 29 '''Wednesday 4-5 pm'''<br />
|[https://ajzucker.wordpress.com/ Andy Zucker] (Lyon)<br />
|<br />
|Soskova/Lempp<br />
|<br />
|-<br />
|Jan 31<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 7<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 14<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 21<br />
|Shai Evra (IAS)<br />
|<br />
|Gurevich<br />
|<br />
|-<br />
|Feb 28<br />
|Brett Wick (Washington University, St. Louis)<br />
|<br />
|Seeger<br />
|-<br />
|March 6<br />
| Jessica Fintzen (Michigan)<br />
|<br />
|Marshall<br />
|-<br />
|March 13<br />
|<br />
|-<br />
|March 20<br />
|Spring break<br />
|<br />
|-<br />
|March 27<br />
|(Moduli Spaces Conference)<br />
|<br />
|Boggess, Sankar<br />
|-<br />
|April 3<br />
|Caroline Turnage-Butterbaugh (Carleton College)<br />
|<br />
|Marshall<br />
|-<br />
|April 10<br />
| Sarah Koch (Michigan)<br />
|<br />
| Bruce (WIMAW)<br />
|-<br />
|April 17<br />
|Song Sun (Berkeley)<br />
|<br />
|Huang<br />
|-<br />
|April 24<br />
|Natasa Sesum (Rutgers University)<br />
|<br />
|Angenent<br />
|-<br />
|May 1<br />
|Robert Lazarsfeld (Stony Brook)<br />
|Distinguished lecture<br />
|Erman<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
<br />
===Will Sawin (Columbia)===<br />
<br />
Title: On Chowla's Conjecture over F_q[T]<br />
<br />
Abstract: The Mobius function in number theory is a sequences of 1s, <br />
-1s, and 0s, which is simple to define and closely related to the <br />
prime numbers. Its behavior seems highly random. Chowla's conjecture <br />
is one precise formalization of this randomness, and has seen recent <br />
work by Matomaki, Radziwill, Tao, and Teravainen making progress on <br />
it. In joint work with Mark Shusterman, we modify this conjecture by <br />
replacing the natural numbers parameterizing this sequence with <br />
polynomials over a finite field. Under mild conditions on the finite <br />
field, we are able to prove a strong form of this conjecture. The <br />
proof is based on taking a geometric perspective on the problem, and <br />
succeeds because we are able to simplify the geometry using a trick <br />
based on the strange properties of polynomial derivatives over finite <br />
fields.<br />
<br />
<br />
===Yan Soibelman (Kansas State)===<br />
<br />
Title: Riemann-Hilbert correspondence and Fukaya categories<br />
<br />
Abstract: In this talk I am going to discuss the role of Fukaya categories in the Riemann-Hilbert correspondence<br />
for differential, q-difference and elliptic difference equations in dimension one.<br />
This approach not only gives a unified answer for several versions of the Riemann-Hilbert correspondence but also leads to a natural formulation<br />
of the non-abelian Hodge theory in dimension one. It also explains why periodic monopoles<br />
should appear as harmonic objects in this generalized non-abelian Hodge theory.<br />
All that is a part of the bigger project ``Holomorphic Floer theory",<br />
joint with Maxim Kontsevich.<br />
<br />
<br />
===Alicia Dickenstein (Buenos Aires)===<br />
<br />
Title: Algebra and geometry in the study of enzymatic cascades<br />
<br />
Abstract: In recent years, techniques from computational and real algebraic geometry have been successfully used to address mathematical challenges in systems biology. The algebraic theory of chemical reaction systems aims to understand their dynamic behavior by taking advantage of the inherent algebraic structure in the kinetic equations, and does not need the determination of the parameters a priori, which can be theoretically or practically impossible.<br />
I will give a gentle introduction to general results based on the network structure. In particular, I will describe a general framework for biological systems, called MESSI systems, that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, and include many networks that model post-translational modifications of proteins inside the cell. I will also outline recent methods to address the important question of multistationarity, in particular in the study of enzymatic cascades, and will point out some of the mathematical challenges that arise from this application.<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
===Eugenia Cheng (School of the Art Institute of Chicago)===<br />
<br />
Title: Character vs gender in mathematics and beyond<br />
<br />
Abstract: This presentation will be based on my experience of being a female mathematician, and teaching mathematics at all levels from elementary school to grad school. The question of why women are under-represented in mathematics is complex and there are no simple answers, only many many contributing factors. I will focus on character traits, and argue that if we focus on this rather than gender we can have a more productive and less divisive conversation. To try and focus on characters rather than genders I will introduce gender-neutral character adjectives "ingressive" and "congressive" to replace masculine and feminine. I will share my experience of teaching congressive abstract mathematics to art students, in a congressive way, and the possible effects this could have for everyone in mathematics, not just women.<br />
<br />
<br />
===Omer Mermelstein (Madison)===<br />
<br />
Title: Generic flat pregeometries<br />
<br />
Abstract: In model theory, the tamest of structures are the strongly minimal ones -- those in which every equation in a single variable has either finitely many or cofinitely many solution. Algebraically closed fields and vector spaces are the canonical examples. Zilber’s conjecture, later refuted by Hrushovski, states that the source of geometric complexity in a strongly minimal structure must be algebraic. The property of "flatness" (strict gammoid) of a geometry (matroid) is that which guarantees Hrushovski's construction is devoid of any associative structure.<br />
The majority of the talk will explain what flatness is, how it should be thought of, and how closely it relates to hypergraphs and Hrushovski's construction method. Model theory makes an appearance only in the second part, where I will share results pertaining to the specific family of geometries arising from Hrushovski's methods.<br />
<br />
<br />
===Shamgar Gurevich (Madison)===<br />
<br />
Title: Harmonic Analysis on GL(n) over Finite Fields.<br />
<br />
Abstract: There are many formulas that express interesting properties of a finite group G in terms of sums over its characters. For evaluating or estimating these sums, one of the most salient quantities to understand is the character ratio:<br />
<br />
trace(ρ(g)) / dim(ρ),<br />
<br />
for an irreducible representation ρ of G and an element g of G. For example, Diaconis and Shahshahani stated a formula of the mentioned type for analyzing certain random walks on G.<br />
<br />
Recently, we discovered that for classical groups G over finite fields there is a natural invariant of representations that provides strong information on the character ratio. We call this invariant rank. <br />
<br />
This talk will discuss the notion of rank for the group GLn over finite fields, demonstrate how it controls the character ratio, and explain how one can apply the results to verify mixing time and rate for certain random walks.<br />
<br />
This is joint work with Roger Howe (Yale and Texas AM). The numerics for this work was carried by Steve Goldstein (Madison)<br />
<br />
<br />
===Jose Rodriguez (UW-Madison)===<br />
<br />
Abstract: Determining the closest point to a model (subset of Euclidean space) is an important problem in many applications in science,<br />
engineering, and statistics. One way to solve this problem is by minimizing the squared Euclidean distance function using a gradient<br />
descent approach. However, when there are multiple local minima, there is no guarantee of convergence to the true global minimizer.<br />
An alternative method is to determine the critical points of an objective function on the model.<br />
In algebraic statistics, the models of interest are algebraic sets, i.e., solution sets to a system of multivariate polynomial equations. In this situation, the number of critical points of the squared Euclidean distance function on the model’s Zariski closure is a topological invariant called the Euclidean distance degree (ED degree).<br />
In this talk, I will present some models from computer vision and statistics that may be described as algebraic sets. Moreover,<br />
I will describe a topological method for determining a Euclidean distance degree and a numerical algebraic geometry approach for<br />
determining critical points of the squared Euclidean distance function.<br />
<br />
<br />
===Ananth Shankar (MIT)===<br />
<br />
Abstract: An abelian surface 'splits' if it admits a non-trivial map to some elliptic curve. It is well known that the set of abelian surfaces that split are sparse in the set of all abelian surfaces. Nevertheless, we prove that there are infinitely many split abelian surfaces in arithmetic one-parameter families of generically non-split abelian surfaces. I will describe this work, and if time permits, mention generalizations of this result to the setting of K3 surfaces, as well as applications to the dynamics of hecke orbits. This is joint work with Tang, Maulik-Tang, and Shankar-Tang-Tayou.<br />
<br />
<br />
===Franca Hoffman (Caltech)===<br />
<br />
Title: Gradient Flows: From PDE to Data Analysis.<br />
<br />
Abstract: Certain diffusive PDEs can be viewed as infinite-dimensional gradient flows. This fact has led to the development of new tools in various areas of mathematics ranging from PDE theory to data science. In this talk, we focus on two different directions: model-driven approaches and data-driven approaches.<br />
In the first part of the talk we use gradient flows for analyzing non-linear and non-local aggregation-diffusion equations when the corresponding energy functionals are not necessarily convex. Moreover, the gradient flow structure enables us to make connections to well-known functional inequalities, revealing possible links between the optimizers of these inequalities and the equilibria of certain aggregation-diffusion PDEs.<br />
In the second part, we use and develop gradient flow theory to design novel tools for data analysis. We draw a connection between gradient flows and Ensemble Kalman methods for parameter estimation. We introduce the Ensemble Kalman Sampler - a derivative-free methodology for model calibration and uncertainty quantification in expensive black-box models. The interacting particle dynamics underlying our algorithm can be approximated by a novel gradient flow structure in a modified Wasserstein metric which reflects particle correlations. The geometry of this modified Wasserstein metric is of independent theoretical interest.<br />
<br />
<br />
=== Jeffrey Danciger (UT Austin) ===<br />
<br />
Title: Affine geometry and the Auslander Conjecture<br />
<br />
Abstract: The Auslander Conjecture is an analogue of Bieberbach’s theory of Euclidean crystallographic groups in the setting of affine geometry. It predicts that a complete affine manifold (a manifold equipped with a complete torsion-free flat affine connection) which is compact must have virtually solvable fundamental group. The conjecture is known up to dimension six, but is known to fail if the compactness assumption is removed, even in low dimensions. We discuss some history of this conjecture, give some basic examples, and then survey some recent advances in the study of non-compact complete affine manifolds with non-solvable fundamental group. <br />
Tools from the deformation theory of pseudo-Riemannian hyperbolic manifolds and also from higher Teichm&uuml;ller theory will enter the picture.<br />
<br />
<br />
=== Tatyana Shcherbina (Princeton) ===<br />
<br />
Title: Random matrix theory and supersymmetry techniques<br />
<br />
Abstract: Starting from the works of Erdos, Yau, Schlein with coauthors, the significant progress in understanding the universal behavior of many random graph and random matrix models were achieved. However for the random matrices with a special structure our understanding is still very limited. In this talk I am going to overview applications of another approach to the study of the local eigenvalues statistics in random matrix theory based on so-called supersymmetry techniques (SUSY). SUSY approach is based on the representation of the determinant as an integral over the Grassmann (anticommuting) variables. Combining this representation with the representation of an inverse determinant as an integral over the Gaussian complex field, SUSY allows to obtain an integral representation for the main spectral characteristics of random matrices such as limiting density, correlation functions, the resolvent's elements, etc. This method is widely (and successfully) used in the physics literature and is potentially very powerful but the rigorous control of the integral representations, which can be obtained by this method, is quite difficult, and it requires powerful analytic and statistical mechanics tools. In this talk we will discuss some recent progress in application of SUSY to the analysis of local spectral characteristics of the prominent ensemble of random band matrices, i.e. random matrices<br />
whose entries become negligible if their distance from the main diagonal exceeds a certain parameter called the band width. <br />
<br />
<br />
=== Tingran Gao (University of Chicago) ===<br />
<br />
Title: Manifold Learning on Fibre Bundles<br />
<br />
Abstract: Spectral geometry has played an important role in modern geometric data analysis, where the technique is widely known as Laplacian eigenmaps or diffusion maps. In this talk, we present a geometric framework that studies graph representations of complex datasets, where each edge of the graph is equipped with a non-scalar transformation or correspondence. This new framework models such a dataset as a fibre bundle with a connection, and interprets the collection of pairwise functional relations as defining a horizontal diffusion process on the bundle driven by its projection on the base. The eigenstates of this horizontal diffusion process encode the “consistency” among objects in the dataset, and provide a lens through which the geometry of the dataset can be revealed. We demonstrate an application of this geometric framework on evolutionary anthropology.<br />
<br />
<br />
=== Andrew Zimmer (LSU) ===<br />
<br />
Title: Intrinsic and extrinsic geometries in several complex variables<br />
<br />
Abstract: A bounded domain in complex Euclidean space, despite being one of the simplest types of manifolds, has a number of interesting geometric structures. When the domain is pseudoconvex, it has a natural intrinsic geometry: the complete Kaehler-Einstein metric constructed by Cheng-Yau and Mok-Yau. When the domain is smoothly bounded, there is also a natural extrinsic structure: the CR-geometry of the boundary. In this talk, I will describe connections between these intrinsic and extrinsic geometries. Then, I will discuss how these connections can lead to new analytic results.<br />
<br />
<br />
=== Hui Yu (Columbia) ===<br />
<br />
Title: Singular sets in obstacle problems<br />
<br />
Abstract: One of the most important free boundary problems is the obstacle problem. The regularity of its free boundary has been studied for over half a century. In this talk, we review some classical results as well as exciting new developments. In particular, we discuss the recent resolution of the regularity of the singular set for the fully nonlinear obstacle problem. This talk is based on a joint work with Ovidiu Savin at Columbia University.<br />
<br />
<br />
=== Nick Higham (Manchester) ===<br />
<br />
Title: Challenges in Multivalued Matrix Functions<br />
<br />
Abstract: In this lecture I will discuss multivalued matrix functions that arise in solving various kinds of matrix equations. The matrix logarithm is the prototypical example, and my first interaction with Hans Schneider was about this function. Another example is the Lambert W function of a matrix, which is much less well known but has been attracting recent interest. A theme of the talk is the importance of choosing appropriate principal values and making sure that the correct choices of signs and branches are used,<br />
both in theory and in computation. I will give examples where incorrect results have previously been obtained.<br />
<br />
I focus on matrix inverse trigonometric and inverse hyperbolic functions, beginning by investigating existence and characterization. Turning to the principal values, various functional identities are derived, some of which are new even in the scalar case, including a “round trip” formula that relates acos(cos A) to A and similar formulas for the other inverse functions. Key tools used in the derivations are the matrix unwinding function and the matrix sign function.<br />
<br />
A new inverse scaling and squaring type algorithm employing a Schur decomposition and variable-degree Pade approximation is derived for computing acos, and it is shown how it can also be used to compute asin, acosh, and asinh.<br />
<br />
== Future Colloquia ==<br />
[[Colloquia/Fall 2020| Fall 2020]]<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Spring2019|Spring 2019]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=18501Colloquia2019-11-28T19:00:49Z<p>Jeanluc: /* Mathematics Colloquium */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
<br />
<br />
==Fall 2019==<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Sept 6 '''Room 911'''<br />
| Will Sawin (Columbia)<br />
| [[#Will Sawin (Columbia) | On Chowla's Conjecture over F_q[T] ]]<br />
| Marshall<br />
|-<br />
|Sept 13<br />
| [https://www.math.ksu.edu/~soibel/ Yan Soibelman] (Kansas State)<br />
|[[#Yan Soibelman (Kansas State)| Riemann-Hilbert correspondence and Fukaya categories ]]<br />
| Caldararu<br />
|<br />
|-<br />
|Sept 16 '''Monday Room 911'''<br />
| [http://mate.dm.uba.ar/~alidick/ Alicia Dickenstein] (Buenos Aires)<br />
|[[#Alicia Dickenstein (Buenos Aires)| Algebra and geometry in the study of enzymatic cascades ]]<br />
| Craciun<br />
|<br />
|-<br />
|Sept 20<br />
| [https://math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|[[#Jianfeng Lu (Duke) | How to "localize" the computation?]]<br />
| Qin<br />
|<br />
|-<br />
|Sept 26 '''Thursday 3-4 pm Room 911'''<br />
| [http://eugeniacheng.com/ Eugenia Cheng] (School of the Art Institute of Chicago)<br />
| [[#Eugenia Cheng (School of the Art Institute of Chicago)| Character vs gender in mathematics and beyond ]]<br />
| Marshall / Friends of UW Madison Libraries<br />
|<br />
|-<br />
|Sept 27<br />
|<br />
|<br />
|-<br />
|Oct 4<br />
|<br />
|<br />
|-<br />
|Oct 11<br />
| Omer Mermelstein (Madison)<br />
| [[#Omer Mermelstein (Madison)| Generic flat pregeometries ]]<br />
|Andrews<br />
|<br />
|-<br />
|Oct 18<br />
| Shamgar Gurevich (Madison)<br />
| [[#Shamgar Gurevich (Madison) | Harmonic Analysis on GL(n) over Finite Fields ]]<br />
| Marshall<br />
|-<br />
|Oct 25<br />
|<br />
|-<br />
|Nov 1<br />
|Elchanan Mossel (MIT)<br />
|Distinguished Lecture<br />
|Roch<br />
|-<br />
|Nov 8<br />
|Jose Rodriguez (UW-Madison)<br />
|[[#Jose Rodriguez (UW-Madison) | Nearest Point Problems and Euclidean Distance Degrees]]<br />
|Erman<br />
|-<br />
|Nov 13 '''Wednesday 4-5pm'''<br />
|Ananth Shankar (MIT)<br />
|Exceptional splitting of abelian surfaces<br />
|-<br />
|Nov 20 '''Wednesday 4-5pm'''<br />
|Franca Hoffman (Caltech)<br />
|[[#Franca Hoffman (Caltech) | Gradient Flows: From PDE to Data Analysis]]<br />
|Smith<br />
|-<br />
|Nov 22<br />
| Jeffrey Danciger (UT Austin)<br />
| [[#Jeffrey Danciger (UT Austin) | "Affine geometry and the Auslander Conjecture"]]<br />
| Kent<br />
|-<br />
|Nov 25 '''Monday 4-5 pm Room 911'''<br />
|Tatyana Shcherbina (Princeton)<br />
| [[# Tatyana Shcherbina (Princeton)| "Random matrix theory and supersymmetry techniques"]]<br />
|Roch<br />
|-<br />
|Nov 29<br />
|Thanksgiving<br />
|<br />
|-<br />
|Dec 2 '''Monday 4-5pm'''<br />
|Tingran Gao (University of Chicago)<br />
| [[#Tingran Gao (University of Chicago)| "Manifold Learning on Fibre Bundles"]]<br />
|Smith<br />
|-<br />
|Dec 4 '''Wednesday 4-5 pm'''<br />
|Andrew Zimmer<br />
| Intrinsic and extrinsic geometries in several complex variables<br />
|Gong<br />
|-<br />
|Dec 6<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Dec 9 '''Monday 4-5 pm'''<br />
|Hui Yu (Columbia)<br />
|[[#Hui Yu (Columbia)|Singular sets in obstacle problems]]<br />
|Tran<br />
|-<br />
|Dec 11 '''Wednesday'''<br />
|Nick Higham (Manchester)<br />
|[[#Nick Higham (Manchester)|LAA lecture: Challenges in Multivalued Matrix Functions]]<br />
|Brualdi<br />
|<br />
|-<br />
|Dec 13<br />
|Reserved for job talk<br />
|<br />
|}<br />
<br />
==Spring 2020==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|<br />
|-<br />
|Jan 24<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Jan 29 '''Wednesday 4-5 pm'''<br />
|[https://ajzucker.wordpress.com/ Andy Zucker] (Lyon)<br />
|<br />
|Soskova/Lempp<br />
|<br />
|-<br />
|Jan 31<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 7<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 14<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 21<br />
|Shai Evra (IAS)<br />
|<br />
|Gurevich<br />
|<br />
|-<br />
|Feb 28<br />
|Brett Wick (Washington University, St. Louis)<br />
|<br />
|Seeger<br />
|-<br />
|March 6<br />
| Jessica Fintzen (Michigan)<br />
|<br />
|Marshall<br />
|-<br />
|March 13<br />
|<br />
|-<br />
|March 20<br />
|Spring break<br />
|<br />
|-<br />
|March 27<br />
|(Moduli Spaces Conference)<br />
|<br />
|Boggess, Sankar<br />
|-<br />
|April 3<br />
|Caroline Turnage-Butterbaugh (Carleton College)<br />
|<br />
|Marshall<br />
|-<br />
|April 10<br />
| Sarah Koch (Michigan)<br />
|<br />
| Bruce (WIMAW)<br />
|-<br />
|April 17<br />
|Song Sun (Berkeley)<br />
|<br />
|Huang<br />
|-<br />
|April 24<br />
|Natasa Sesum (Rutgers University)<br />
|<br />
|Angenent<br />
|-<br />
|May 1<br />
|Robert Lazarsfeld (Stony Brook)<br />
|Distinguished lecture<br />
|Erman<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
<br />
===Will Sawin (Columbia)===<br />
<br />
Title: On Chowla's Conjecture over F_q[T]<br />
<br />
Abstract: The Mobius function in number theory is a sequences of 1s, <br />
-1s, and 0s, which is simple to define and closely related to the <br />
prime numbers. Its behavior seems highly random. Chowla's conjecture <br />
is one precise formalization of this randomness, and has seen recent <br />
work by Matomaki, Radziwill, Tao, and Teravainen making progress on <br />
it. In joint work with Mark Shusterman, we modify this conjecture by <br />
replacing the natural numbers parameterizing this sequence with <br />
polynomials over a finite field. Under mild conditions on the finite <br />
field, we are able to prove a strong form of this conjecture. The <br />
proof is based on taking a geometric perspective on the problem, and <br />
succeeds because we are able to simplify the geometry using a trick <br />
based on the strange properties of polynomial derivatives over finite <br />
fields.<br />
<br />
<br />
===Yan Soibelman (Kansas State)===<br />
<br />
Title: Riemann-Hilbert correspondence and Fukaya categories<br />
<br />
Abstract: In this talk I am going to discuss the role of Fukaya categories in the Riemann-Hilbert correspondence<br />
for differential, q-difference and elliptic difference equations in dimension one.<br />
This approach not only gives a unified answer for several versions of the Riemann-Hilbert correspondence but also leads to a natural formulation<br />
of the non-abelian Hodge theory in dimension one. It also explains why periodic monopoles<br />
should appear as harmonic objects in this generalized non-abelian Hodge theory.<br />
All that is a part of the bigger project ``Holomorphic Floer theory",<br />
joint with Maxim Kontsevich.<br />
<br />
<br />
===Alicia Dickenstein (Buenos Aires)===<br />
<br />
Title: Algebra and geometry in the study of enzymatic cascades<br />
<br />
Abstract: In recent years, techniques from computational and real algebraic geometry have been successfully used to address mathematical challenges in systems biology. The algebraic theory of chemical reaction systems aims to understand their dynamic behavior by taking advantage of the inherent algebraic structure in the kinetic equations, and does not need the determination of the parameters a priori, which can be theoretically or practically impossible.<br />
I will give a gentle introduction to general results based on the network structure. In particular, I will describe a general framework for biological systems, called MESSI systems, that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, and include many networks that model post-translational modifications of proteins inside the cell. I will also outline recent methods to address the important question of multistationarity, in particular in the study of enzymatic cascades, and will point out some of the mathematical challenges that arise from this application.<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
===Eugenia Cheng (School of the Art Institute of Chicago)===<br />
<br />
Title: Character vs gender in mathematics and beyond<br />
<br />
Abstract: This presentation will be based on my experience of being a female mathematician, and teaching mathematics at all levels from elementary school to grad school. The question of why women are under-represented in mathematics is complex and there are no simple answers, only many many contributing factors. I will focus on character traits, and argue that if we focus on this rather than gender we can have a more productive and less divisive conversation. To try and focus on characters rather than genders I will introduce gender-neutral character adjectives "ingressive" and "congressive" to replace masculine and feminine. I will share my experience of teaching congressive abstract mathematics to art students, in a congressive way, and the possible effects this could have for everyone in mathematics, not just women.<br />
<br />
<br />
===Omer Mermelstein (Madison)===<br />
<br />
Title: Generic flat pregeometries<br />
<br />
Abstract: In model theory, the tamest of structures are the strongly minimal ones -- those in which every equation in a single variable has either finitely many or cofinitely many solution. Algebraically closed fields and vector spaces are the canonical examples. Zilber’s conjecture, later refuted by Hrushovski, states that the source of geometric complexity in a strongly minimal structure must be algebraic. The property of "flatness" (strict gammoid) of a geometry (matroid) is that which guarantees Hrushovski's construction is devoid of any associative structure.<br />
The majority of the talk will explain what flatness is, how it should be thought of, and how closely it relates to hypergraphs and Hrushovski's construction method. Model theory makes an appearance only in the second part, where I will share results pertaining to the specific family of geometries arising from Hrushovski's methods.<br />
<br />
<br />
===Shamgar Gurevich (Madison)===<br />
<br />
Title: Harmonic Analysis on GL(n) over Finite Fields.<br />
<br />
Abstract: There are many formulas that express interesting properties of a finite group G in terms of sums over its characters. For evaluating or estimating these sums, one of the most salient quantities to understand is the character ratio:<br />
<br />
trace(ρ(g)) / dim(ρ),<br />
<br />
for an irreducible representation ρ of G and an element g of G. For example, Diaconis and Shahshahani stated a formula of the mentioned type for analyzing certain random walks on G.<br />
<br />
Recently, we discovered that for classical groups G over finite fields there is a natural invariant of representations that provides strong information on the character ratio. We call this invariant rank. <br />
<br />
This talk will discuss the notion of rank for the group GLn over finite fields, demonstrate how it controls the character ratio, and explain how one can apply the results to verify mixing time and rate for certain random walks.<br />
<br />
This is joint work with Roger Howe (Yale and Texas AM). The numerics for this work was carried by Steve Goldstein (Madison)<br />
<br />
<br />
===Jose Rodriguez (UW-Madison)===<br />
<br />
Abstract: Determining the closest point to a model (subset of Euclidean space) is an important problem in many applications in science,<br />
engineering, and statistics. One way to solve this problem is by minimizing the squared Euclidean distance function using a gradient<br />
descent approach. However, when there are multiple local minima, there is no guarantee of convergence to the true global minimizer.<br />
An alternative method is to determine the critical points of an objective function on the model.<br />
In algebraic statistics, the models of interest are algebraic sets, i.e., solution sets to a system of multivariate polynomial equations. In this situation, the number of critical points of the squared Euclidean distance function on the model’s Zariski closure is a topological invariant called the Euclidean distance degree (ED degree).<br />
In this talk, I will present some models from computer vision and statistics that may be described as algebraic sets. Moreover,<br />
I will describe a topological method for determining a Euclidean distance degree and a numerical algebraic geometry approach for<br />
determining critical points of the squared Euclidean distance function.<br />
<br />
<br />
===Ananth Shankar (MIT)===<br />
<br />
Abstract: An abelian surface 'splits' if it admits a non-trivial map to some elliptic curve. It is well known that the set of abelian surfaces that split are sparse in the set of all abelian surfaces. Nevertheless, we prove that there are infinitely many split abelian surfaces in arithmetic one-parameter families of generically non-split abelian surfaces. I will describe this work, and if time permits, mention generalizations of this result to the setting of K3 surfaces, as well as applications to the dynamics of hecke orbits. This is joint work with Tang, Maulik-Tang, and Shankar-Tang-Tayou.<br />
<br />
<br />
===Franca Hoffman (Caltech)===<br />
<br />
Title: Gradient Flows: From PDE to Data Analysis.<br />
<br />
Abstract: Certain diffusive PDEs can be viewed as infinite-dimensional gradient flows. This fact has led to the development of new tools in various areas of mathematics ranging from PDE theory to data science. In this talk, we focus on two different directions: model-driven approaches and data-driven approaches.<br />
In the first part of the talk we use gradient flows for analyzing non-linear and non-local aggregation-diffusion equations when the corresponding energy functionals are not necessarily convex. Moreover, the gradient flow structure enables us to make connections to well-known functional inequalities, revealing possible links between the optimizers of these inequalities and the equilibria of certain aggregation-diffusion PDEs.<br />
In the second part, we use and develop gradient flow theory to design novel tools for data analysis. We draw a connection between gradient flows and Ensemble Kalman methods for parameter estimation. We introduce the Ensemble Kalman Sampler - a derivative-free methodology for model calibration and uncertainty quantification in expensive black-box models. The interacting particle dynamics underlying our algorithm can be approximated by a novel gradient flow structure in a modified Wasserstein metric which reflects particle correlations. The geometry of this modified Wasserstein metric is of independent theoretical interest.<br />
<br />
<br />
=== Jeffrey Danciger (UT Austin) ===<br />
<br />
Title: Affine geometry and the Auslander Conjecture<br />
<br />
Abstract: The Auslander Conjecture is an analogue of Bieberbach’s theory of Euclidean crystallographic groups in the setting of affine geometry. It predicts that a complete affine manifold (a manifold equipped with a complete torsion-free flat affine connection) which is compact must have virtually solvable fundamental group. The conjecture is known up to dimension six, but is known to fail if the compactness assumption is removed, even in low dimensions. We discuss some history of this conjecture, give some basic examples, and then survey some recent advances in the study of non-compact complete affine manifolds with non-solvable fundamental group. <br />
Tools from the deformation theory of pseudo-Riemannian hyperbolic manifolds and also from higher Teichm&uuml;ller theory will enter the picture.<br />
<br />
<br />
=== Tatyana Shcherbina (Princeton) ===<br />
<br />
Title: Random matrix theory and supersymmetry techniques<br />
<br />
Abstract: Starting from the works of Erdos, Yau, Schlein with coauthors, the significant progress in understanding the universal behavior of many random graph and random matrix models were achieved. However for the random matrices with a special structure our understanding is still very limited. In this talk I am going to overview applications of another approach to the study of the local eigenvalues statistics in random matrix theory based on so-called supersymmetry techniques (SUSY). SUSY approach is based on the representation of the determinant as an integral over the Grassmann (anticommuting) variables. Combining this representation with the representation of an inverse determinant as an integral over the Gaussian complex field, SUSY allows to obtain an integral representation for the main spectral characteristics of random matrices such as limiting density, correlation functions, the resolvent's elements, etc. This method is widely (and successfully) used in the physics literature and is potentially very powerful but the rigorous control of the integral representations, which can be obtained by this method, is quite difficult, and it requires powerful analytic and statistical mechanics tools. In this talk we will discuss some recent progress in application of SUSY to the analysis of local spectral characteristics of the prominent ensemble of random band matrices, i.e. random matrices<br />
whose entries become negligible if their distance from the main diagonal exceeds a certain parameter called the band width. <br />
<br />
<br />
=== Tingran Gao (University of Chicago) ===<br />
<br />
Title: Manifold Learning on Fibre Bundles<br />
<br />
Abstract: Spectral geometry has played an important role in modern geometric data analysis, where the technique is widely known as Laplacian eigenmaps or diffusion maps. In this talk, we present a geometric framework that studies graph representations of complex datasets, where each edge of the graph is equipped with a non-scalar transformation or correspondence. This new framework models such a dataset as a fibre bundle with a connection, and interprets the collection of pairwise functional relations as defining a horizontal diffusion process on the bundle driven by its projection on the base. The eigenstates of this horizontal diffusion process encode the “consistency” among objects in the dataset, and provide a lens through which the geometry of the dataset can be revealed. We demonstrate an application of this geometric framework on evolutionary anthropology.<br />
<br />
<br />
=== Andrew Zimmer (LSU) ===<br />
<br />
Title: Intrinsic and extrinsic geometries in several complex variables<br />
<br />
Abstract: A bounded domain in complex Euclidean space, despite being one of the simplest types of manifolds, has a number of interesting geometric structures. When the domain is pseudoconvex, it has a natural intrinsic geometry: the complete Kaehler-Einstein metric constructed by Cheng-Yau and Mok-Yau. When the domain is smoothly bounded, there is also a natural extrinsic structure: the CR-geometry of the boundary. In this talk, I will describe connections between these intrinsic and extrinsic geometries. Then, I will discuss how these connections can lead to new analytic results.<br />
<br />
<br />
=== Nick Higham (Manchester) ===<br />
<br />
Title: Challenges in Multivalued Matrix Functions<br />
<br />
Abstract: In this lecture I will discuss multivalued matrix functions that arise in solving various kinds of matrix equations. The matrix logarithm is the prototypical example, and my first interaction with Hans Schneider was about this function. Another example is the Lambert W function of a matrix, which is much less well known but has been attracting recent interest. A theme of the talk is the importance of choosing appropriate principal values and making sure that the correct choices of signs and branches are used,<br />
both in theory and in computation. I will give examples where incorrect results have previously been obtained.<br />
<br />
I focus on matrix inverse trigonometric and inverse hyperbolic functions, beginning by investigating existence and characterization. Turning to the principal values, various functional identities are derived, some of which are new even in the scalar case, including a “round trip” formula that relates acos(cos A) to A and similar formulas for the other inverse functions. Key tools used in the derivations are the matrix unwinding function and the matrix sign function.<br />
<br />
A new inverse scaling and squaring type algorithm employing a Schur decomposition and variable-degree Pade approximation is derived for computing acos, and it is shown how it can also be used to compute asin, acosh, and asinh.<br />
<br />
<br />
=== Hui Yu (Columbia) ===<br />
<br />
Title: Singular sets in obstacle problems<br />
<br />
Abstract: One of the most important free boundary problems is the obstacle problem. The regularity of its free boundary has been studied for over half a century. In this talk, we review some classical results as well as exciting new developments. In particular, we discuss the recent resolution of the regularity of the singular set for the fully nonlinear obstacle problem. This talk is based on a joint work with Ovidiu Savin at Columbia University.<br />
<br />
== Future Colloquia ==<br />
[[Colloquia/Fall 2020| Fall 2020]]<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Spring2019|Spring 2019]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=18500Colloquia2019-11-28T18:58:45Z<p>Jeanluc: /* Abstracts */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
<br />
<br />
==Fall 2019==<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Sept 6 '''Room 911'''<br />
| Will Sawin (Columbia)<br />
| [[#Will Sawin (Columbia) | On Chowla's Conjecture over F_q[T] ]]<br />
| Marshall<br />
|-<br />
|Sept 13<br />
| [https://www.math.ksu.edu/~soibel/ Yan Soibelman] (Kansas State)<br />
|[[#Yan Soibelman (Kansas State)| Riemann-Hilbert correspondence and Fukaya categories ]]<br />
| Caldararu<br />
|<br />
|-<br />
|Sept 16 '''Monday Room 911'''<br />
| [http://mate.dm.uba.ar/~alidick/ Alicia Dickenstein] (Buenos Aires)<br />
|[[#Alicia Dickenstein (Buenos Aires)| Algebra and geometry in the study of enzymatic cascades ]]<br />
| Craciun<br />
|<br />
|-<br />
|Sept 20<br />
| [https://math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|[[#Jianfeng Lu (Duke) | How to "localize" the computation?]]<br />
| Qin<br />
|<br />
|-<br />
|Sept 26 '''Thursday 3-4 pm Room 911'''<br />
| [http://eugeniacheng.com/ Eugenia Cheng] (School of the Art Institute of Chicago)<br />
| [[#Eugenia Cheng (School of the Art Institute of Chicago)| Character vs gender in mathematics and beyond ]]<br />
| Marshall / Friends of UW Madison Libraries<br />
|<br />
|-<br />
|Sept 27<br />
|<br />
|<br />
|-<br />
|Oct 4<br />
|<br />
|<br />
|-<br />
|Oct 11<br />
| Omer Mermelstein (Madison)<br />
| [[#Omer Mermelstein (Madison)| Generic flat pregeometries ]]<br />
|Andrews<br />
|<br />
|-<br />
|Oct 18<br />
| Shamgar Gurevich (Madison)<br />
| [[#Shamgar Gurevich (Madison) | Harmonic Analysis on GL(n) over Finite Fields ]]<br />
| Marshall<br />
|-<br />
|Oct 25<br />
|<br />
|-<br />
|Nov 1<br />
|Elchanan Mossel (MIT)<br />
|Distinguished Lecture<br />
|Roch<br />
|-<br />
|Nov 8<br />
|Jose Rodriguez (UW-Madison)<br />
|[[#Jose Rodriguez (UW-Madison) | Nearest Point Problems and Euclidean Distance Degrees]]<br />
|Erman<br />
|-<br />
|Nov 13 '''Wednesday 4-5pm'''<br />
|Ananth Shankar (MIT)<br />
|Exceptional splitting of abelian surfaces<br />
|-<br />
|Nov 20 '''Wednesday 4-5pm'''<br />
|Franca Hoffman (Caltech)<br />
|[[#Franca Hoffman (Caltech) | Gradient Flows: From PDE to Data Analysis]]<br />
|Smith<br />
|-<br />
|Nov 22<br />
| Jeffrey Danciger (UT Austin)<br />
| [[#Jeffrey Danciger (UT Austin) | "Affine geometry and the Auslander Conjecture"]]<br />
| Kent<br />
|-<br />
|Nov 25 '''Monday 4-5 pm Room 911'''<br />
|Tatyana Shcherbina (Princeton)<br />
| [[# Tatyana Shcherbina (Princeton)| "Random matrix theory and supersymmetry techniques"]]<br />
|Roch<br />
|-<br />
|Nov 29<br />
|Thanksgiving<br />
|<br />
|-<br />
|Dec 2 '''Monday 4-5pm'''<br />
|Tingran Gao (University of Chicago)<br />
| [[#Tingran Gao (University of Chicago)| "Manifold Learning on Fibre Bundles"]]<br />
|Smith<br />
|-<br />
|Dec 4 '''Wednesday 4-5 pm'''<br />
|Andrew Zimmer<br />
| Intrinsic and extrinsic geometries in several complex variables<br />
|Gong<br />
|-<br />
|Dec 6<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Dec 9 '''Monday 4-5 pm'''<br />
|Hui Yu (Columbia)<br />
| [[#Hui Yu (Columbia)| Singular sets in obstacle problems]]<br />
|Tran<br />
|-<br />
|Dec 11 '''Wednesday'''<br />
|Nick Higham (Manchester)<br />
|LAA lecture<br />
|Brualdi<br />
|<br />
|-<br />
|Dec 13<br />
|Reserved for job talk<br />
|<br />
|}<br />
<br />
==Spring 2020==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|<br />
|-<br />
|Jan 24<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Jan 29 '''Wednesday 4-5 pm'''<br />
|[https://ajzucker.wordpress.com/ Andy Zucker] (Lyon)<br />
|<br />
|Soskova/Lempp<br />
|<br />
|-<br />
|Jan 31<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 7<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 14<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Feb 21<br />
|Shai Evra (IAS)<br />
|<br />
|Gurevich<br />
|<br />
|-<br />
|Feb 28<br />
|Brett Wick (Washington University, St. Louis)<br />
|<br />
|Seeger<br />
|-<br />
|March 6<br />
| Jessica Fintzen (Michigan)<br />
|<br />
|Marshall<br />
|-<br />
|March 13<br />
|<br />
|-<br />
|March 20<br />
|Spring break<br />
|<br />
|-<br />
|March 27<br />
|(Moduli Spaces Conference)<br />
|<br />
|Boggess, Sankar<br />
|-<br />
|April 3<br />
|Caroline Turnage-Butterbaugh (Carleton College)<br />
|<br />
|Marshall<br />
|-<br />
|April 10<br />
| Sarah Koch (Michigan)<br />
|<br />
| Bruce (WIMAW)<br />
|-<br />
|April 17<br />
|Song Sun (Berkeley)<br />
|<br />
|Huang<br />
|-<br />
|April 24<br />
|Natasa Sesum (Rutgers University)<br />
|<br />
|Angenent<br />
|-<br />
|May 1<br />
|Robert Lazarsfeld (Stony Brook)<br />
|Distinguished lecture<br />
|Erman<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
<br />
===Will Sawin (Columbia)===<br />
<br />
Title: On Chowla's Conjecture over F_q[T]<br />
<br />
Abstract: The Mobius function in number theory is a sequences of 1s, <br />
-1s, and 0s, which is simple to define and closely related to the <br />
prime numbers. Its behavior seems highly random. Chowla's conjecture <br />
is one precise formalization of this randomness, and has seen recent <br />
work by Matomaki, Radziwill, Tao, and Teravainen making progress on <br />
it. In joint work with Mark Shusterman, we modify this conjecture by <br />
replacing the natural numbers parameterizing this sequence with <br />
polynomials over a finite field. Under mild conditions on the finite <br />
field, we are able to prove a strong form of this conjecture. The <br />
proof is based on taking a geometric perspective on the problem, and <br />
succeeds because we are able to simplify the geometry using a trick <br />
based on the strange properties of polynomial derivatives over finite <br />
fields.<br />
<br />
<br />
===Yan Soibelman (Kansas State)===<br />
<br />
Title: Riemann-Hilbert correspondence and Fukaya categories<br />
<br />
Abstract: In this talk I am going to discuss the role of Fukaya categories in the Riemann-Hilbert correspondence<br />
for differential, q-difference and elliptic difference equations in dimension one.<br />
This approach not only gives a unified answer for several versions of the Riemann-Hilbert correspondence but also leads to a natural formulation<br />
of the non-abelian Hodge theory in dimension one. It also explains why periodic monopoles<br />
should appear as harmonic objects in this generalized non-abelian Hodge theory.<br />
All that is a part of the bigger project ``Holomorphic Floer theory",<br />
joint with Maxim Kontsevich.<br />
<br />
<br />
===Alicia Dickenstein (Buenos Aires)===<br />
<br />
Title: Algebra and geometry in the study of enzymatic cascades<br />
<br />
Abstract: In recent years, techniques from computational and real algebraic geometry have been successfully used to address mathematical challenges in systems biology. The algebraic theory of chemical reaction systems aims to understand their dynamic behavior by taking advantage of the inherent algebraic structure in the kinetic equations, and does not need the determination of the parameters a priori, which can be theoretically or practically impossible.<br />
I will give a gentle introduction to general results based on the network structure. In particular, I will describe a general framework for biological systems, called MESSI systems, that describe Modifications of type Enzyme-Substrate or Swap with Intermediates, and include many networks that model post-translational modifications of proteins inside the cell. I will also outline recent methods to address the important question of multistationarity, in particular in the study of enzymatic cascades, and will point out some of the mathematical challenges that arise from this application.<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
===Eugenia Cheng (School of the Art Institute of Chicago)===<br />
<br />
Title: Character vs gender in mathematics and beyond<br />
<br />
Abstract: This presentation will be based on my experience of being a female mathematician, and teaching mathematics at all levels from elementary school to grad school. The question of why women are under-represented in mathematics is complex and there are no simple answers, only many many contributing factors. I will focus on character traits, and argue that if we focus on this rather than gender we can have a more productive and less divisive conversation. To try and focus on characters rather than genders I will introduce gender-neutral character adjectives "ingressive" and "congressive" to replace masculine and feminine. I will share my experience of teaching congressive abstract mathematics to art students, in a congressive way, and the possible effects this could have for everyone in mathematics, not just women.<br />
<br />
<br />
===Omer Mermelstein (Madison)===<br />
<br />
Title: Generic flat pregeometries<br />
<br />
Abstract: In model theory, the tamest of structures are the strongly minimal ones -- those in which every equation in a single variable has either finitely many or cofinitely many solution. Algebraically closed fields and vector spaces are the canonical examples. Zilber’s conjecture, later refuted by Hrushovski, states that the source of geometric complexity in a strongly minimal structure must be algebraic. The property of "flatness" (strict gammoid) of a geometry (matroid) is that which guarantees Hrushovski's construction is devoid of any associative structure.<br />
The majority of the talk will explain what flatness is, how it should be thought of, and how closely it relates to hypergraphs and Hrushovski's construction method. Model theory makes an appearance only in the second part, where I will share results pertaining to the specific family of geometries arising from Hrushovski's methods.<br />
<br />
<br />
===Shamgar Gurevich (Madison)===<br />
<br />
Title: Harmonic Analysis on GL(n) over Finite Fields.<br />
<br />
Abstract: There are many formulas that express interesting properties of a finite group G in terms of sums over its characters. For evaluating or estimating these sums, one of the most salient quantities to understand is the character ratio:<br />
<br />
trace(ρ(g)) / dim(ρ),<br />
<br />
for an irreducible representation ρ of G and an element g of G. For example, Diaconis and Shahshahani stated a formula of the mentioned type for analyzing certain random walks on G.<br />
<br />
Recently, we discovered that for classical groups G over finite fields there is a natural invariant of representations that provides strong information on the character ratio. We call this invariant rank. <br />
<br />
This talk will discuss the notion of rank for the group GLn over finite fields, demonstrate how it controls the character ratio, and explain how one can apply the results to verify mixing time and rate for certain random walks.<br />
<br />
This is joint work with Roger Howe (Yale and Texas AM). The numerics for this work was carried by Steve Goldstein (Madison)<br />
<br />
<br />
===Jose Rodriguez (UW-Madison)===<br />
<br />
Abstract: Determining the closest point to a model (subset of Euclidean space) is an important problem in many applications in science,<br />
engineering, and statistics. One way to solve this problem is by minimizing the squared Euclidean distance function using a gradient<br />
descent approach. However, when there are multiple local minima, there is no guarantee of convergence to the true global minimizer.<br />
An alternative method is to determine the critical points of an objective function on the model.<br />
In algebraic statistics, the models of interest are algebraic sets, i.e., solution sets to a system of multivariate polynomial equations. In this situation, the number of critical points of the squared Euclidean distance function on the model’s Zariski closure is a topological invariant called the Euclidean distance degree (ED degree).<br />
In this talk, I will present some models from computer vision and statistics that may be described as algebraic sets. Moreover,<br />
I will describe a topological method for determining a Euclidean distance degree and a numerical algebraic geometry approach for<br />
determining critical points of the squared Euclidean distance function.<br />
<br />
<br />
===Ananth Shankar (MIT)===<br />
<br />
Abstract: An abelian surface 'splits' if it admits a non-trivial map to some elliptic curve. It is well known that the set of abelian surfaces that split are sparse in the set of all abelian surfaces. Nevertheless, we prove that there are infinitely many split abelian surfaces in arithmetic one-parameter families of generically non-split abelian surfaces. I will describe this work, and if time permits, mention generalizations of this result to the setting of K3 surfaces, as well as applications to the dynamics of hecke orbits. This is joint work with Tang, Maulik-Tang, and Shankar-Tang-Tayou.<br />
<br />
<br />
===Franca Hoffman (Caltech)===<br />
<br />
Title: Gradient Flows: From PDE to Data Analysis.<br />
<br />
Abstract: Certain diffusive PDEs can be viewed as infinite-dimensional gradient flows. This fact has led to the development of new tools in various areas of mathematics ranging from PDE theory to data science. In this talk, we focus on two different directions: model-driven approaches and data-driven approaches.<br />
In the first part of the talk we use gradient flows for analyzing non-linear and non-local aggregation-diffusion equations when the corresponding energy functionals are not necessarily convex. Moreover, the gradient flow structure enables us to make connections to well-known functional inequalities, revealing possible links between the optimizers of these inequalities and the equilibria of certain aggregation-diffusion PDEs.<br />
In the second part, we use and develop gradient flow theory to design novel tools for data analysis. We draw a connection between gradient flows and Ensemble Kalman methods for parameter estimation. We introduce the Ensemble Kalman Sampler - a derivative-free methodology for model calibration and uncertainty quantification in expensive black-box models. The interacting particle dynamics underlying our algorithm can be approximated by a novel gradient flow structure in a modified Wasserstein metric which reflects particle correlations. The geometry of this modified Wasserstein metric is of independent theoretical interest.<br />
<br />
<br />
=== Jeffrey Danciger (UT Austin) ===<br />
<br />
Title: Affine geometry and the Auslander Conjecture<br />
<br />
Abstract: The Auslander Conjecture is an analogue of Bieberbach’s theory of Euclidean crystallographic groups in the setting of affine geometry. It predicts that a complete affine manifold (a manifold equipped with a complete torsion-free flat affine connection) which is compact must have virtually solvable fundamental group. The conjecture is known up to dimension six, but is known to fail if the compactness assumption is removed, even in low dimensions. We discuss some history of this conjecture, give some basic examples, and then survey some recent advances in the study of non-compact complete affine manifolds with non-solvable fundamental group. <br />
Tools from the deformation theory of pseudo-Riemannian hyperbolic manifolds and also from higher Teichm&uuml;ller theory will enter the picture.<br />
<br />
<br />
=== Tatyana Shcherbina (Princeton) ===<br />
<br />
Title: Random matrix theory and supersymmetry techniques<br />
<br />
Abstract: Starting from the works of Erdos, Yau, Schlein with coauthors, the significant progress in understanding the universal behavior of many random graph and random matrix models were achieved. However for the random matrices with a special structure our understanding is still very limited. In this talk I am going to overview applications of another approach to the study of the local eigenvalues statistics in random matrix theory based on so-called supersymmetry techniques (SUSY). SUSY approach is based on the representation of the determinant as an integral over the Grassmann (anticommuting) variables. Combining this representation with the representation of an inverse determinant as an integral over the Gaussian complex field, SUSY allows to obtain an integral representation for the main spectral characteristics of random matrices such as limiting density, correlation functions, the resolvent's elements, etc. This method is widely (and successfully) used in the physics literature and is potentially very powerful but the rigorous control of the integral representations, which can be obtained by this method, is quite difficult, and it requires powerful analytic and statistical mechanics tools. In this talk we will discuss some recent progress in application of SUSY to the analysis of local spectral characteristics of the prominent ensemble of random band matrices, i.e. random matrices<br />
whose entries become negligible if their distance from the main diagonal exceeds a certain parameter called the band width. <br />
<br />
<br />
=== Tingran Gao (University of Chicago) ===<br />
<br />
Title: Manifold Learning on Fibre Bundles<br />
<br />
Abstract: Spectral geometry has played an important role in modern geometric data analysis, where the technique is widely known as Laplacian eigenmaps or diffusion maps. In this talk, we present a geometric framework that studies graph representations of complex datasets, where each edge of the graph is equipped with a non-scalar transformation or correspondence. This new framework models such a dataset as a fibre bundle with a connection, and interprets the collection of pairwise functional relations as defining a horizontal diffusion process on the bundle driven by its projection on the base. The eigenstates of this horizontal diffusion process encode the “consistency” among objects in the dataset, and provide a lens through which the geometry of the dataset can be revealed. We demonstrate an application of this geometric framework on evolutionary anthropology.<br />
<br />
<br />
=== Andrew Zimmer (LSU) ===<br />
<br />
Title: Intrinsic and extrinsic geometries in several complex variables<br />
<br />
Abstract: A bounded domain in complex Euclidean space, despite being one of the simplest types of manifolds, has a number of interesting geometric structures. When the domain is pseudoconvex, it has a natural intrinsic geometry: the complete Kaehler-Einstein metric constructed by Cheng-Yau and Mok-Yau. When the domain is smoothly bounded, there is also a natural extrinsic structure: the CR-geometry of the boundary. In this talk, I will describe connections between these intrinsic and extrinsic geometries. Then, I will discuss how these connections can lead to new analytic results.<br />
<br />
<br />
=== Nick Higham (Manchester) ===<br />
<br />
Title: Challenges in Multivalued Matrix Functions<br />
<br />
Abstract: In this lecture I will discuss multivalued matrix functions that arise in solving various kinds of matrix equations. The matrix logarithm is the prototypical example, and my first interaction with Hans Schneider was about this function. Another example is the Lambert W function of a matrix, which is much less well known but has been attracting recent interest. A theme of the talk is the importance of choosing appropriate principal values and making sure that the correct choices of signs and branches are used,<br />
both in theory and in computation. I will give examples where incorrect results have previously been obtained.<br />
<br />
I focus on matrix inverse trigonometric and inverse hyperbolic functions, beginning by investigating existence and characterization. Turning to the principal values, various functional identities are derived, some of which are new even in the scalar case, including a “round trip” formula that relates acos(cos A) to A and similar formulas for the other inverse functions. Key tools used in the derivations are the matrix unwinding function and the matrix sign function.<br />
<br />
A new inverse scaling and squaring type algorithm employing a Schur decomposition and variable-degree Pade approximation is derived for computing acos, and it is shown how it can also be used to compute asin, acosh, and asinh.<br />
<br />
<br />
=== Hui Yu (Columbia) ===<br />
<br />
Title: Singular sets in obstacle problems<br />
<br />
Abstract: One of the most important free boundary problems is the obstacle problem. The regularity of its free boundary has been studied for over half a century. In this talk, we review some classical results as well as exciting new developments. In particular, we discuss the recent resolution of the regularity of the singular set for the fully nonlinear obstacle problem. This talk is based on a joint work with Ovidiu Savin at Columbia University.<br />
<br />
== Future Colloquia ==<br />
[[Colloquia/Fall 2020| Fall 2020]]<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Spring2019|Spring 2019]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=18406Applied/Physical Applied Math2019-11-13T17:36:12Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|Convection-induced singularity suppression in the Keller-Segel and other nonlinear PDEs<br />
|-<br />
|Sept. 26<br />
|Son<br />
|State-constraint static Hamilton-Jacobi equations in nested domains<br />
|-<br />
|Oct. 3<br />
|Hongfei<br />
|Microswimmers interacting with walls<br />
|-<br />
|Oct. 10<br />
|Alex Townsend<br />
|The ultraspherical spectral method<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
||Pak, Feng and Stone, [https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/viscous-marangoni-migration-of-a-drop-in-a-poiseuille-flow-at-low-surface-peclet-numbers/2504CA0D4BC84B06E2E33DA39DE93355 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers].<br />
|-<br />
|Oct. 31<br />
|''no meeting''<br />
|<br />
|-<br />
|Nov. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 14<br />
|Bryan<br />
|Vanneste, [https://journals.aps.org/pre/abstract/10.1103/PhysRevE.81.036701 Estimating generalized Lyapunov exponents for products of random matrices]<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2019|Spring 2019]]<br />
*[[Applied/Physical_Applied_Math/Fall2018|Fall 2018]]<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=SIAM_Student_Chapter_Seminar&diff=18318SIAM Student Chapter Seminar2019-11-04T15:43:16Z<p>Jeanluc: /* Past Semesters */</p>
<hr />
<div>__NOTOC__<br />
<br />
*'''When:''' Most Friday at 11:30am<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~xshen/ Xiao Shen]<br />
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright] <br />
*'''To join the SIAM Chapter mailing list:''' email [join-siam-chapter@lists.wisc.edu].<br />
<br />
<br><br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 27, Oct. 4 <br />
|[http://www.math.wisc.edu/~xshen/ Xiao Shen] (Math)<br />
|''[[#Sep 27, Oct 4: Xiao Shen (Math)|The corner growth model]]''<br />
|-<br />
|Oct. 11<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Oct. 18 <br />
|[https://scholar.google.com/citations?user=7cVl9IkAAAAJ&hl=en Bhumesh Kumar] (EE)<br />
|''[[#Oct 18: Bhumesh Kumar (EE)|Non-stationary Stochastic Approximation]]''<br />
|<br />
|-<br />
|-<br />
|Oct. 25 <br />
|Max Bacharach (Math)<br />
|''[[#Oct 25:|Coalescent with Recombination]]''<br />
|-<br />
|-<br />
|Nov. 1<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Nov. 8<br />
|<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
=== Sep 27, Oct 4: Xiao Shen (Math) ===<br />
'''The corner growth model'''<br />
<br />
Imagine there is an arbitrary amount of donuts attached to the integer points of Z^2. The goal is to pick an optimal up-right path which allows you to eat as much donuts as possible along the way. We will look at some basic combinatorial observations, and how specific probability distribution would help us to study this model.<br />
<br />
=== Oct 18: Bhumesh Kumar (EE) ===<br />
'''Non-stationary Stochastic Approximation'''<br />
<br />
Abstract: Robbins–Monro pioneered a general framework for stochastic approximation to find roots of a function with just noisy evaluations.With applications in optimization, signal processing and control theory there is resurged interest in time-varying aka non-stationary functions. This works addresses that premise by providing explicit, all time, non-asymptotic tracking error bounds via Alekseev's nonlinear variations of constant formula. <br />
<br />
Reference: https://arxiv.org/abs/1802.07759 (To appear in Mathematics of Control, Signals and Systems)<br />
<br />
=== Oct 25: Max Bacharach (Math) ===<br />
'''Coalescent with Recombination'''<br />
<br />
I will talk about the continuous time coalescent with mutation and recombination, with a focus on introducing key concepts related to genetic distance and evolutionary relatedness. The talk will be informal and accessible.<br />
<br />
<br><br />
<br />
== Past Semesters ==<br />
*[[SIAM_Student_Chapter_Seminar/Fall2018|Fall 2018]]<br />
*[[SIAM_Student_Chapter_Seminar/Spring2017|Spring 2017]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=SIAM_Student_Chapter_Seminar/Spring2017&diff=18317SIAM Student Chapter Seminar/Spring20172019-11-04T15:42:48Z<p>Jeanluc: Create page from old website.</p>
<hr />
<div>= Spring 2017<br />
<br />
Date Speaker Title<br />
<br />
March 17 Polly Yu Zeeman deceleration: motivation, simulation and experiment<br />
<br />
March 31 Alisha Zachariah Low Complexity (RADAR) Channel Estimation<br />
<br />
April 14 Jim Brunner Robust permanence of polynomial dynamical systems<br />
<br />
April 28 Zachary Charles Subspace clustering with missing data<br />
<br />
<br />
<br />
<br />
<br />
<br />
Abstracts (2017 Spring)<br />
April 28: Zachary Charles<br />
Title: Subspace clustering with missing data<br />
<br />
Abstract: In many applications (recommender systems, GPS, medical records) we want to recover a matrix given from an incomplete sampling of its entries. Up to this point, work in this area has focused on the case that the underlying matrix is low rank. Unfortunately, this low-rank assumption is often not true in real-life settings. We instead consider the case when the columns of the matrix come from a union of low rank subspaces. This type of model has already been used to great effect in computer vision and image processing. We will show that by clustering the incomplete data points in to groups according to the subspace they come from, we can often recover the true matrix efficiently. This is ongoing work with Rebecca Willett and Amin Jalali.<br />
<br />
Note from the speaker: The talk will hopefully be of interest to anybody who enjoys optimization, machine learning, high-dimensional probability, or convex analysis. However, I will not assume background in any of those areas.<br />
<br />
April 14: Jim Brunner<br />
Title: Robust permanence of polynomial dynamical systems<br />
<br />
Abstract: A ``permanent" dynamical system is one whose positive solutions stay bounded away from zero and infinity. The permanence property has important applications in biochemistry, cell biology, and ecology. Inspired by reaction network theory, we define a class of polynomial dynamical systems called {\it tropically endotactic}. We show that these polynomial dynamical systems are permanent, irrespective to the values of (possibly time-dependent) parameters in these systems. These results generalize the permanence of 2D reversible and weakly reversible mass-action systems.<br />
<br />
Comment on the abstract (from Jim): While this talk sounds like a technical analysis talk, I want to emphasize that the interesting thing for the SIAM student chapter is not so much the result but instead the method of proof. I’ll introduce a thing called a “differential inclusion” and try to convince people that we can analyze ODE systems with polynomial right hand sides by turning our heads and squinting at them in the correct way.<br />
<br />
March 31: Alisha Zachariah<br />
Title: Low Complexity (RADAR) Channel Estimation<br />
<br />
Abstract: Several forms of wireless communication involve estimating the channel through which signals are sent. In this talk we will focus on the RADAR channel. My main motivation in this talk is to present an algebraic channel model that has a sophisticated underlying structure. I will present an existing algorithm that uses this and then develop a low complexity improvement that the structure suggests.<br />
<br />
March 17: Polly Yu<br />
Title: Zeeman deceleration: motivation, simulation and experiment<br />
<br />
Abstract: Granted there will be a lot of 'I don't know's, allow me to introduce the idea of cooling a particle beam by magnetic field. Specifically, I will talk about hydrogen atoms, and how to experimentally implement this cooling. Numerical simulation results will be presented along with pretty pictures. Some experimental data (for the non-decelerated beam) will also be presented; they don't look as pretty, but they remind us that experiments are hard, so patience needed when working with experimentalists.</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=SIAM_Student_Chapter_Seminar&diff=18316SIAM Student Chapter Seminar2019-11-04T15:39:25Z<p>Jeanluc: </p>
<hr />
<div>__NOTOC__<br />
<br />
*'''When:''' Most Friday at 11:30am<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~xshen/ Xiao Shen]<br />
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright] <br />
*'''To join the SIAM Chapter mailing list:''' email [join-siam-chapter@lists.wisc.edu].<br />
<br />
<br><br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 27, Oct. 4 <br />
|[http://www.math.wisc.edu/~xshen/ Xiao Shen] (Math)<br />
|''[[#Sep 27, Oct 4: Xiao Shen (Math)|The corner growth model]]''<br />
|-<br />
|Oct. 11<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Oct. 18 <br />
|[https://scholar.google.com/citations?user=7cVl9IkAAAAJ&hl=en Bhumesh Kumar] (EE)<br />
|''[[#Oct 18: Bhumesh Kumar (EE)|Non-stationary Stochastic Approximation]]''<br />
|<br />
|-<br />
|-<br />
|Oct. 25 <br />
|Max Bacharach (Math)<br />
|''[[#Oct 25:|Coalescent with Recombination]]''<br />
|-<br />
|-<br />
|Nov. 1<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Nov. 8<br />
|<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
=== Sep 27, Oct 4: Xiao Shen (Math) ===<br />
'''The corner growth model'''<br />
<br />
Imagine there is an arbitrary amount of donuts attached to the integer points of Z^2. The goal is to pick an optimal up-right path which allows you to eat as much donuts as possible along the way. We will look at some basic combinatorial observations, and how specific probability distribution would help us to study this model.<br />
<br />
=== Oct 18: Bhumesh Kumar (EE) ===<br />
'''Non-stationary Stochastic Approximation'''<br />
<br />
Abstract: Robbins–Monro pioneered a general framework for stochastic approximation to find roots of a function with just noisy evaluations.With applications in optimization, signal processing and control theory there is resurged interest in time-varying aka non-stationary functions. This works addresses that premise by providing explicit, all time, non-asymptotic tracking error bounds via Alekseev's nonlinear variations of constant formula. <br />
<br />
Reference: https://arxiv.org/abs/1802.07759 (To appear in Mathematics of Control, Signals and Systems)<br />
<br />
=== Oct 25: Max Bacharach (Math) ===<br />
'''Coalescent with Recombination'''<br />
<br />
I will talk about the continuous time coalescent with mutation and recombination, with a focus on introducing key concepts related to genetic distance and evolutionary relatedness. The talk will be informal and accessible.<br />
<br />
<br><br />
<br />
== Past Semesters ==<br />
*[[SIAM_Student_Chapter_Seminar/Fall2018|Fall 2018]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=SIAM_Student_Chapter_Seminar/Fall2018&diff=18315SIAM Student Chapter Seminar/Fall20182019-11-04T15:38:11Z<p>Jeanluc: Created page with "__NOTOC__ == Fall 2018 == {| cellpadding="8" !align="left" | date !align="left" | speaker !align="left" | title |- | Sept. 12 |[http://www.math.wisc.edu/~ke/ Ke Chen] (Math..."</p>
<hr />
<div>__NOTOC__<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
| Sept. 12<br />
|[http://www.math.wisc.edu/~ke/ Ke Chen] (Math)<br />
|''[[#Sep 12: Ke Chen (Math)|Inverse Problem in Optical Tomography]]''<br />
|-<br />
| Spet. 26 <br />
|[http://www.math.wisc.edu/~kehlert/ Kurt Ehlert] (Math)<br />
|''[[#Sept 26: Kurt Ehlert (Math)| How to bet when gambling]]''<br />
|-<br />
| Oct. 10 <br />
|[http://TBD Zachary Hansen] (Atmospheric and Oceanic Sciences)<br />
|''[[#Oct 10: Zachary Hansen (Atmospheric and Oceanic Sciences)| Land-Ocean contrast in lightning ]]''<br />
|-<br />
| Oct. 24 <br />
|[http://TBD Xuezhou Zhang] (Computer Science)<br />
|''[[#Oct 24: Xuezhou Zhang (Computer Science)| An Optimal Control Approach to Sequential Machine Teaching ]]''<br />
|-<br />
| Nov. 7 <br />
|[http://TBD Cancelled] <br />
|''[[#Nov 7: Cancelled| ]]''<br />
|-<br />
| Nov. 21 <br />
|[http://TBD Cancelled due to Thanksgiving] <br />
|''[[#Nov 21: Cancelled| ]]''<br />
|-<br />
| Nov. 28 <br />
|[http://TBD Xiaowu Dai] (Statistics) <br />
|''[[#Nov 28: Xiaowu Dai (Statistics)| Toward the Theoretical Understanding of Large-batch Training in Stochastic Gradient Descent ]]''<br />
|-<br />
|<br />
|}<br />
<br />
<br />
== Abstract ==<br />
<br />
=== Sep 12: Ke Chen (Math) ===<br />
Inverse Problem in Optical Tomography<br />
<br />
I will briefly talk about my researches on the inverse problems of radiative transfer equations, which is usually used as a model to describe the transport of neutrons or other particles in a certain media. Such inverse problems considers the following question: given the knowledge of multiple data collected at the boundary of the domain of interest, is it possible to reconstruct the optical property of the interior of media? In this talk, I will show you that stability of this problem is deteriorating as the Knudsen number is getter smaller. The talk will be introductory and anyone graduate is welcome to join us.<br />
<br />
=== Sept 26: Kurt Ehlert (Math) ===<br />
How to bet when gambling<br />
<br />
When gambling, typically casinos have an edge. But sometimes we can gain an edge by counting cards or other means. And sometimes we have an edge in the biggest casino of all: the financial markets. When we do have an advantage, then we still need to decide how much to bet. Bet too little, and we leave money on the table. Bet too much, and we risk financial ruin. We will discuss the "Kelly criterion", which is a betting strategy that is optimal in many senses.<br />
<br />
=== Oct 10: Zachary Hansen (Atmospheric and Oceanic Sciences) ===<br />
Land-Ocean contrast in lightning<br />
<br />
Land surfaces have orders of magnitude more lightning flashes than ocean surfaces. One explanation for this difference is that land surfaces may generate greater convective available potential energy (CAPE), which fuels stronger thunderstorms. Using a high resolution cloud-resolving atmospheric model, we test whether an island can produce stronger thunderstorms just by having a land-like surface. We find that the island alters the distribution of rainfall but does not produce stronger storms. An equilibrium state known as boundary layer quasi-equilibrium follows, and is explored in more detail.<br />
<br />
=== Oct 24: Xuezhou Zhang (Computer Science) ===<br />
An Optimal Control Approach to Sequential Machine Teaching<br />
<br />
Given a sequential learning algorithm and a target model, sequential machine teaching aims to find the shortest training sequence to drive the learning algorithm to the target model. We present the first principled way to find such shortest training sequences. Our key insight is to formulate sequential machine teaching as a time-optimal control problem. This allows us to solve sequential teaching by leveraging key theoretical and computational tools developed over the past 60 years in the optimal control community. Specifically, we study the Pontryagin Maximum Principle, which yields a necessary condition for opti- mality of a training sequence. We present analytic, structural, and numerical implica- tions of this approach on a case study with a least-squares loss function and gradient de- scent learner. We compute optimal train- ing sequences for this problem, and although the sequences seem circuitous, we find that they can vastly outperform the best available heuristics for generating training sequences.<br />
<br />
=== Nov 7: Cancelled ===<br />
<br />
=== Nov 21: Cancelled ===<br />
<br />
=== Nov 28: Xiaowu Dai (Statistics) ===<br />
Toward the Theoretical Understanding of Large-batch Training in Stochastic Gradient Descent<br />
<br />
Stochastic gradient descent (SGD) is almost ubiquitously used for training nonconvex optimization tasks including deep neural networks. Recently, a hypothesis that "large batch SGD tends to converge to sharp minimizers of training function" has received increasing attention. We develop some new theory to give a justification of this hypothesis. In particular, we provide new properties of SGD in both finite-time and asymptotic regimes, with the tools from empirical processes and Partial Differential Equations. A connection between the stochasticity in SGD and the idea of smoothing splines in nonparametric statistics is also built. We include numerical experiments to corroborate these theoretical findings.</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=SIAM_Student_Chapter_Seminar&diff=18314SIAM Student Chapter Seminar2019-11-04T15:34:41Z<p>Jeanluc: /* Abstract */</p>
<hr />
<div>__NOTOC__<br />
<br />
*'''When:''' Most Friday at 11:30am<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~xshen/ Xiao Shen]<br />
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright] <br />
*'''To join the SIAM Chapter mailing list:''' email [join-siam-chapter@lists.wisc.edu].<br />
<br />
<br><br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 27, Oct. 4 <br />
|[http://www.math.wisc.edu/~xshen/ Xiao Shen] (Math)<br />
|''[[#Sep 27, Oct 4: Xiao Shen (Math)|The corner growth model]]''<br />
|-<br />
|Oct. 11<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Oct. 18 <br />
|[https://scholar.google.com/citations?user=7cVl9IkAAAAJ&hl=en Bhumesh Kumar] (EE)<br />
|''[[#Oct 18: Bhumesh Kumar (EE)|Non-stationary Stochastic Approximation]]''<br />
|<br />
|-<br />
|-<br />
|Oct. 25 <br />
|Max Bacharach (Math)<br />
|''[[#Oct 25:|Coalescent with Recombination]]''<br />
|-<br />
|-<br />
|Nov. 1<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Nov. 8<br />
|<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
=== Sep 27, Oct 4: Xiao Shen (Math) ===<br />
'''The corner growth model'''<br />
<br />
Imagine there is an arbitrary amount of donuts attached to the integer points of Z^2. The goal is to pick an optimal up-right path which allows you to eat as much donuts as possible along the way. We will look at some basic combinatorial observations, and how specific probability distribution would help us to study this model.<br />
<br />
=== Oct 18: Bhumesh Kumar (EE) ===<br />
'''Non-stationary Stochastic Approximation'''<br />
<br />
Abstract: Robbins–Monro pioneered a general framework for stochastic approximation to find roots of a function with just noisy evaluations.With applications in optimization, signal processing and control theory there is resurged interest in time-varying aka non-stationary functions. This works addresses that premise by providing explicit, all time, non-asymptotic tracking error bounds via Alekseev's nonlinear variations of constant formula. <br />
<br />
Reference: https://arxiv.org/abs/1802.07759 (To appear in Mathematics of Control, Signals and Systems)<br />
<br />
=== Oct 25: Max Bacharach (Math) ===<br />
'''Coalescent with Recombination'''<br />
<br />
I will talk about the continuous time coalescent with mutation and recombination, with a focus on introducing key concepts related to genetic distance and evolutionary relatedness. The talk will be informal and accessible.<br />
<br />
<br></div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=SIAM_Student_Chapter_Seminar&diff=18313SIAM Student Chapter Seminar2019-11-04T15:33:35Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
*'''When:''' Most Friday at 11:30am<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~xshen/ Xiao Shen]<br />
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright] <br />
*'''To join the SIAM Chapter mailing list:''' email [join-siam-chapter@lists.wisc.edu].<br />
<br />
<br><br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 27, Oct. 4 <br />
|[http://www.math.wisc.edu/~xshen/ Xiao Shen] (Math)<br />
|''[[#Sep 27, Oct 4: Xiao Shen (Math)|The corner growth model]]''<br />
|-<br />
|Oct. 11<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Oct. 18 <br />
|[https://scholar.google.com/citations?user=7cVl9IkAAAAJ&hl=en Bhumesh Kumar] (EE)<br />
|''[[#Oct 18: Bhumesh Kumar (EE)|Non-stationary Stochastic Approximation]]''<br />
|<br />
|-<br />
|-<br />
|Oct. 25 <br />
|Max Bacharach (Math)<br />
|''[[#Oct 25:|Coalescent with Recombination]]''<br />
|-<br />
|-<br />
|Nov. 1<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Nov. 8<br />
|<br />
|<br />
|}<br />
<br />
== Abstract ==<br />
<br />
=== Sep 27, Oct 4: Xiao Shen (Math) ===<br />
'''The corner growth model'''<br />
<br />
Imagine there is an arbitrary amount of donuts attached to the integer points of Z^2. The goal is to pick an optimal up-right path which allows you to eat as much donuts as possible along the way. We will look at some basic combinatorial observations, and how specific probability distribution would help us to study this model.<br />
<br />
=== Oct 18: Bhumesh Kumar (EE) ===<br />
'''Non-stationary Stochastic Approximation'''<br />
<br />
Abstract: Robbins–Monro pioneered a general framework for stochastic approximation to find roots of a function with just noisy evaluations.With applications in optimization, signal processing and control theory there is resurged interest in time-varying aka non-stationary functions. This works addresses that premise by providing explicit, all time, non-asymptotic tracking error bounds via Alekseev's nonlinear variations of constant formula. <br />
<br />
Reference: https://arxiv.org/abs/1802.07759 (To appear in Mathematics of Control, Signals and Systems)<br />
<br />
=== Oct 25: Max Bacharach (Math) ===<br />
'''Coalescent with Recombination'''<br />
<br />
I will talk about the continuous time coalescent with mutation and recombination, with a focus on introducing key concepts related to genetic distance and evolutionary relatedness. The talk will be informal and accessible.<br />
<br />
<br></div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=SIAM_Student_Chapter_Seminar&diff=18312SIAM Student Chapter Seminar2019-11-04T15:32:31Z<p>Jeanluc: </p>
<hr />
<div>__NOTOC__<br />
<br />
*'''When:''' Most Friday at 11:30am<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~xshen/ Xiao Shen]<br />
*'''Faculty advisers:''' [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://pages.cs.wisc.edu/~swright/ Steve Wright] <br />
*'''To join the SIAM Chapter mailing list:''' email [join-siam-chapter@lists.wisc.edu].<br />
<br />
<br><br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 27, Oct. 4 <br />
|[http://www.math.wisc.edu/~xshen/ Xiao Shen] (Math)<br />
|''[[#Sep 27, Oct 4: Xiao Shen (Math)|The corner growth model]]''<br />
|-<br />
|Oct. 11<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Oct. 18 <br />
|[https://scholar.google.com/citations?user=7cVl9IkAAAAJ&hl=en Bhumesh Kumar] (EE)<br />
|''[[#Oct 18: Bhumesh Kumar (EE)|Non-stationary Stochastic Approximation]]''<br />
|<br />
|-<br />
|-<br />
|Oct. 25 <br />
|Max Bacharach<br />
|''[[#Oct 25:|Coalescent with Recombination]]''<br />
|-<br />
|-<br />
|Nov. 1<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Nov. 8<br />
|<br />
|<br />
|}<br />
<br />
== Abstract ==<br />
<br />
=== Sep 27, Oct 4: Xiao Shen (Math) ===<br />
'''The corner growth model'''<br />
<br />
Imagine there is an arbitrary amount of donuts attached to the integer points of Z^2. The goal is to pick an optimal up-right path which allows you to eat as much donuts as possible along the way. We will look at some basic combinatorial observations, and how specific probability distribution would help us to study this model.<br />
<br />
=== Oct 18: Bhumesh Kumar (EE) ===<br />
'''Non-stationary Stochastic Approximation'''<br />
<br />
Abstract: Robbins–Monro pioneered a general framework for stochastic approximation to find roots of a function with just noisy evaluations.With applications in optimization, signal processing and control theory there is resurged interest in time-varying aka non-stationary functions. This works addresses that premise by providing explicit, all time, non-asymptotic tracking error bounds via Alekseev's nonlinear variations of constant formula. <br />
<br />
Reference: https://arxiv.org/abs/1802.07759 (To appear in Mathematics of Control, Signals and Systems)<br />
<br />
=== Oct 25: Max Bacharach (Math) ===<br />
'''Coalescent with Recombination'''<br />
<br />
I will talk about the continuous time coalescent with mutation and recombination, with a focus on introducing key concepts related to genetic distance and evolutionary relatedness. The talk will be informal and accessible.<br />
<br />
<br></div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=SIAM_Student_Chapter_Seminar&diff=18311SIAM Student Chapter Seminar2019-11-04T15:30:06Z<p>Jeanluc: /* Abstract */</p>
<hr />
<div>__NOTOC__<br />
<br />
<br />
<br />
*'''When:''' Most Friday at 11:30 am (see e-mail)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~xshen/ Xiao Shen] <br />
*'''To join the SIAM Chapter mailing list:''' email [join-siam-chapter@lists.wisc.edu].<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 27, Oct. 4 <br />
|[http://www.math.wisc.edu/~xshen/ Xiao Shen] (Math)<br />
|''[[#Sep 27, Oct 4: Xiao Shen (Math)|The corner growth model]]''<br />
|-<br />
|Oct. 11<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Oct. 18 <br />
|[https://scholar.google.com/citations?user=7cVl9IkAAAAJ&hl=en Bhumesh Kumar] (EE)<br />
|''[[#Oct 18: Bhumesh Kumar (EE)|Non-stationary Stochastic Approximation]]''<br />
|<br />
|-<br />
|-<br />
|Oct. 25 <br />
|Max Bacharach<br />
|''[[#Oct 25:|Coalescent with Recombination]]''<br />
|-<br />
|-<br />
|Nov. 1<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Nov. 8<br />
|<br />
|<br />
|}<br />
<br />
== Abstract ==<br />
<br />
=== Sep 27, Oct 4: Xiao Shen (Math) ===<br />
'''The corner growth model'''<br />
<br />
Imagine there is an arbitrary amount of donuts attached to the integer points of Z^2. The goal is to pick an optimal up-right path which allows you to eat as much donuts as possible along the way. We will look at some basic combinatorial observations, and how specific probability distribution would help us to study this model.<br />
<br />
=== Oct 18: Bhumesh Kumar (EE) ===<br />
'''Non-stationary Stochastic Approximation'''<br />
<br />
Abstract: Robbins–Monro pioneered a general framework for stochastic approximation to find roots of a function with just noisy evaluations.With applications in optimization, signal processing and control theory there is resurged interest in time-varying aka non-stationary functions. This works addresses that premise by providing explicit, all time, non-asymptotic tracking error bounds via Alekseev's nonlinear variations of constant formula. <br />
<br />
Reference: https://arxiv.org/abs/1802.07759 (To appear in Mathematics of Control, Signals and Systems)<br />
<br />
=== Oct 25: Max Bacharach (Math) ===<br />
'''Coalescent with Recombination'''<br />
<br />
I will talk about the continuous time coalescent with mutation and recombination, with a focus on introducing key concepts related to genetic distance and evolutionary relatedness. The talk will be informal and accessible.<br />
<br />
<br></div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=SIAM_Student_Chapter_Seminar&diff=18310SIAM Student Chapter Seminar2019-11-04T15:29:56Z<p>Jeanluc: /* Abstract */</p>
<hr />
<div>__NOTOC__<br />
<br />
<br />
<br />
*'''When:''' Most Friday at 11:30 am (see e-mail)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~xshen/ Xiao Shen] <br />
*'''To join the SIAM Chapter mailing list:''' email [join-siam-chapter@lists.wisc.edu].<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 27, Oct. 4 <br />
|[http://www.math.wisc.edu/~xshen/ Xiao Shen] (Math)<br />
|''[[#Sep 27, Oct 4: Xiao Shen (Math)|The corner growth model]]''<br />
|-<br />
|Oct. 11<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Oct. 18 <br />
|[https://scholar.google.com/citations?user=7cVl9IkAAAAJ&hl=en Bhumesh Kumar] (EE)<br />
|''[[#Oct 18: Bhumesh Kumar (EE)|Non-stationary Stochastic Approximation]]''<br />
|<br />
|-<br />
|-<br />
|Oct. 25 <br />
|Max Bacharach<br />
|''[[#Oct 25:|Coalescent with Recombination]]''<br />
|-<br />
|-<br />
|Nov. 1<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Nov. 8<br />
|<br />
|<br />
|}<br />
<br />
== Abstract ==<br />
<br />
=== Sep 27, Oct 4: Xiao Shen (Math) ===<br />
'''The corner growth model'''<br />
<br />
Imagine there is an arbitrary amount of donuts attached to the integer points of Z^2. The goal is to pick an optimal up-right path which allows you to eat as much donuts as possible along the way. We will look at some basic combinatorial observations, and how specific probability distribution would help us to study this model.<br />
<br />
<br />
=== Oct 18: Bhumesh Kumar (EE) ===<br />
'''Non-stationary Stochastic Approximation'''<br />
<br />
Abstract: Robbins–Monro pioneered a general framework for stochastic approximation to find roots of a function with just noisy evaluations.With applications in optimization, signal processing and control theory there is resurged interest in time-varying aka non-stationary functions. This works addresses that premise by providing explicit, all time, non-asymptotic tracking error bounds via Alekseev's nonlinear variations of constant formula. <br />
<br />
Reference: https://arxiv.org/abs/1802.07759 (To appear in Mathematics of Control, Signals and Systems)<br />
<br />
=== Oct 25: Max Bacharach (Math) ===<br />
'''Coalescent with Recombination'''<br />
<br />
I will talk about the continuous time coalescent with mutation and recombination, with a focus on introducing key concepts related to genetic distance and evolutionary relatedness. The talk will be informal and accessible.<br />
<br />
<br></div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=SIAM_Student_Chapter_Seminar&diff=18309SIAM Student Chapter Seminar2019-11-04T15:29:14Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
<br />
<br />
*'''When:''' Most Friday at 11:30 am (see e-mail)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~xshen/ Xiao Shen] <br />
*'''To join the SIAM Chapter mailing list:''' email [join-siam-chapter@lists.wisc.edu].<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 27, Oct. 4 <br />
|[http://www.math.wisc.edu/~xshen/ Xiao Shen] (Math)<br />
|''[[#Sep 27, Oct 4: Xiao Shen (Math)|The corner growth model]]''<br />
|-<br />
|Oct. 11<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Oct. 18 <br />
|[https://scholar.google.com/citations?user=7cVl9IkAAAAJ&hl=en Bhumesh Kumar] (EE)<br />
|''[[#Oct 18: Bhumesh Kumar (EE)|Non-stationary Stochastic Approximation]]''<br />
|<br />
|-<br />
|-<br />
|Oct. 25 <br />
|Max Bacharach<br />
|''[[#Oct 25:|Coalescent with Recombination]]''<br />
|-<br />
|-<br />
|Nov. 1<br />
|''no seminar''<br />
|<br />
|-<br />
|-<br />
|Nov. 8<br />
|<br />
|<br />
|}<br />
<br />
== Abstract ==<br />
<br />
=== Sep 27, Oct 4: Xiao Shen (Math) ===<br />
'''The corner growth model'''<br />
<br />
Imagine there is an arbitrary amount of donuts attached to the integer points of Z^2. The goal is to pick an optimal up-right path which allows you to eat as much donuts as possible along the way. We will look at some basic combinatorial observations, and how specific probability distribution would help us to study this model.<br />
<br />
<br />
=== Oct 18: Bhumesh Kumar (EE) ===<br />
'''Non-stationary Stochastic Approximation'''<br />
<br />
Abstract: Robbins–Monro pioneered a general framework for stochastic approximation to find roots of a function with just noisy evaluations.With applications in optimization, signal processing and control theory there is resurged interest in time-varying aka non-stationary functions. This works addresses that premise by providing explicit, all time, non-asymptotic tracking error bounds via Alekseev's nonlinear variations of constant formula. <br />
<br />
Reference: https://arxiv.org/abs/1802.07759 (To appear in Mathematics of Control, Signals and Systems)<br />
<br />
=== Oct 25 ===<br />
'''Coalescent with Recombination'''<br />
<br />
I will talk about the continuous time coalescent with mutation and recombination, with a focus on introducing key concepts related to genetic distance and evolutionary relatedness. The talk will be informal and accessible.<br />
<br />
<br></div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=18301Applied/Physical Applied Math2019-11-04T12:25:35Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|Convection-induced singularity suppression in the Keller-Segel and other nonlinear PDEs<br />
|-<br />
|Sept. 26<br />
|Son<br />
|State-constraint static Hamilton-Jacobi equations in nested domains<br />
|-<br />
|Oct. 3<br />
|Hongfei<br />
|Microswimmers interacting with walls<br />
|-<br />
|Oct. 10<br />
|Alex Townsend<br />
|The ultraspherical spectral method<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
||Pak, Feng and Stone, [https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/viscous-marangoni-migration-of-a-drop-in-a-poiseuille-flow-at-low-surface-peclet-numbers/2504CA0D4BC84B06E2E33DA39DE93355 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers].<br />
|-<br />
|Oct. 31<br />
|''no meeting''<br />
|<br />
|-<br />
|Nov. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 14<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2019|Spring 2019]]<br />
*[[Applied/Physical_Applied_Math/Fall2018|Fall 2018]]<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=18275Applied/Physical Applied Math2019-10-29T08:58:13Z<p>Jeanluc: Archive Fall 2018 and Spring 2019</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|Convection-induced singularity suppression in the Keller-Segel and other nonlinear PDEs<br />
|-<br />
|Sept. 26<br />
|Son<br />
|State-constraint static Hamilton-Jacobi equations in nested domains<br />
|-<br />
|Oct. 3<br />
|Hongfei<br />
|Microswimmers interacting with walls<br />
|-<br />
|Oct. 10<br />
|Alex Townsend<br />
|The ultraspherical spectral method<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
||Pak, Feng and Stone, [https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/viscous-marangoni-migration-of-a-drop-in-a-poiseuille-flow-at-low-surface-peclet-numbers/2504CA0D4BC84B06E2E33DA39DE93355 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers].<br />
|-<br />
|Oct. 31<br />
|''no meeting''<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2019|Spring 2019]]<br />
*[[Applied/Physical_Applied_Math/Fall2018|Fall 2018]]<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math/Spring2019&diff=18274Applied/Physical Applied Math/Spring20192019-10-29T08:57:43Z<p>Jeanluc: Created page with "== Spring 2019 == {| cellpadding="8" !align="left" | date !align="left" | speaker !align="left" | title |- |Jan. 24 | |''Faculty Meeting'' |- |Jan. 31 |Jean-Luc |Organizati..."</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math/Fall2018&diff=18273Applied/Physical Applied Math/Fall20182019-10-29T08:56:53Z<p>Jeanluc: Created page with "== Fall 2018 == {| cellpadding="8" !align="left" | date !align="left" | speaker !align="left" | title |- |Jan. 31 |Jean-Luc |Organizational meeting; J-LT speaks on Aldous a..."</p>
<hr />
<div>== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=18272Applied/Physical Applied Math2019-10-29T08:56:08Z<p>Jeanluc: /* Archived semesters */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|Convection-induced singularity suppression in the Keller-Segel and other nonlinear PDEs<br />
|-<br />
|Sept. 26<br />
|Son<br />
|State-constraint static Hamilton-Jacobi equations in nested domains<br />
|-<br />
|Oct. 3<br />
|Hongfei<br />
|Microswimmers interacting with walls<br />
|-<br />
|Oct. 10<br />
|Alex Townsend<br />
|The ultraspherical spectral method<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
||Pak, Feng and Stone, [https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/viscous-marangoni-migration-of-a-drop-in-a-poiseuille-flow-at-low-surface-peclet-numbers/2504CA0D4BC84B06E2E33DA39DE93355 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers].<br />
|-<br />
|Oct. 31<br />
|''no meeting''<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2019|Spring 2019]]<br />
*[[Applied/Physical_Applied_Math/Fall2018|Fall 2018]]<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=18271Applied/Physical Applied Math2019-10-29T08:54:14Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|Convection-induced singularity suppression in the Keller-Segel and other nonlinear PDEs<br />
|-<br />
|Sept. 26<br />
|Son<br />
|State-constraint static Hamilton-Jacobi equations in nested domains<br />
|-<br />
|Oct. 3<br />
|Hongfei<br />
|Microswimmers interacting with walls<br />
|-<br />
|Oct. 10<br />
|Alex Townsend<br />
|The ultraspherical spectral method<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
||Pak, Feng and Stone, [https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/viscous-marangoni-migration-of-a-drop-in-a-poiseuille-flow-at-low-surface-peclet-numbers/2504CA0D4BC84B06E2E33DA39DE93355 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers].<br />
|-<br />
|Oct. 31<br />
|''no meeting''<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF19&diff=18238Applied/ACMS/absF192019-10-24T08:16:28Z<p>Jeanluc: /* Jean-Luc Thiffeault */</p>
<hr />
<div>= ACMS Abstracts: Fall 2019 =<br />
<br />
=== Leonardo Andrés Zepeda Núñez ===<br />
<br />
Title: Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics<br />
<br />
Abstract: Recently, the surge of interest in deep neural learning has dramatically improved image and signal processing, which has fueled breakthroughs in many domains such as drug discovery, genomics, and automatic translation. These advances have been further applied to scientific computing and, in particular, to electronic structure computations. In this case, the main objective is to directly compute the electron density, which encodes most of information of the system, thus bypassing the computationally intensive solution of the Kohn-Sham equations. However, similar to neural networks for image processing, the performance of the methods depends spectacularly on the physical and analytical intuition incorporated in the network, and on the training stage.<br />
<br />
In this talk, I will show how to build a network that respects physical symmetries and locality. I will show how to train the networks and how such properties impact the performance of the resulting network. Finally, I will present several examples for small yet realistic chemical systems.<br />
<br />
<br />
=== Daniel Floryan (UW-Madison) ===<br />
<br />
Title: Flexible Inertial Swimmers<br />
<br />
Abstract: Inertial swimmers deform their bodies and fins to push against the water and propel themselves forward. The deformation is driven partly by active musculature, and partly by passive elasticity. The interaction between elasticity and hydrodynamics confers features on the swimmers not enjoyed by their rigid friends, for example, boosts in speed when flapping at certain frequencies. We explain the salient features of flexible swimmers by drawing ideas from airfoils, vibrating beams, and flags flapping in the wind. The presence of fluid drag has important consequences. We also explore optimal arrangements of flexibility. (It turns out that nature is quite good.)<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local <br />
region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
=== Mitch Bushuk (GFDL/Princeton) ===<br />
<br />
Title: Arctic Sea Ice Predictability in a Changing Cryosphere<br />
<br />
Abstract: Forty years of satellite observations have documented a striking decline in the areal extent of Arctic sea ice. The loss of sea ice has impacts on the climate system, human populations, ecosystems, and natural environments across a broad range of spatial and temporal scales. These changes have motivated significant research interest in the predictability and prediction of Arctic sea ice on seasonal-to-interannual timescales. In this talk, I will address two related questions: (1) What is the inherent predictability of Arctic sea ice and what physical mechanisms underlie this predictability? and (2) How can this knowledge be leveraged to improve operational sea ice predictions? I will present findings on the relative roles of the ocean, sea ice, and atmosphere in controlling Arctic sea ice predictability. I will also present evidence for an Arctic spring predictability barrier, which may impose a sharp limit on our ability to make skillful predictions of the summer sea ice minimum. <br />
<br />
<br />
=== Qin Li (UW-Madison) ===<br />
<br />
Title: The power of randomness in scientific computing<br />
<br />
Abstract: Most numerical methods in scientific computing are deterministic. Traditionally, accuracy has been the target while the cost was not the concern. However, in this era of big data, we incline to relax the strict requirements on the accuracy to reduce numerical cost. Introducing randomness in the numerical solvers could potentially speed up the computation significantly at small sacrifice of accuracy. In this talk, I'd like to show two concrete examples how this is done: first on random sketching in experimental design, and the second on numerical homgenization, hoping the discussion can shed light on potential other applications. Joint work with Ke Chen, Jianfeng Lu, Kit Newton and Stephen Wright.<br />
<br />
<br />
=== Joel Nishimura (Arizona State) ===<br />
<br />
Title: Random graph models with fixed degree sequences: choices, consequences and irreducibility proofs for sampling<br />
<br />
Abstract: Determining which features of an empirical graph are noteworthy frequently relies upon the ability to sample random graphs with constrained properties. Since empirical graphs have distinctive degree sequences, one of the most popular random graph models is the configuration model, which produces a graph uniformly at random from the set of graphs with a fixed degree sequence. While it is commonly treated as though there is only a single configuration model, one sampled via stub-matching, there are many, depending on whether self-loops and multiedges are allowed and whether edge stubs are labeled or not. We show, these different configuration models can lead to drastically, sometimes opposite, interpretations of empirical graphs. In order to sample from these different configuration models, we review and develop the underpinnings of Markov chain Monte Carlo methods based upon double-edge swaps. We also present new results on the irreducibility of the Markov chain for graphs with self-loops, either proving irreducibility or exactly characterizing the degree sequences for which the Markov chain is reducible. This work completes the study of the irreducibility of double edge-swap Markov chains (and the related Curveball Markov chain) for all combinations of allowing self-loops, multiple self-loops and/or multiedges. <br />
<br />
<br />
=== Alex Townsend (Cornell) ===<br />
<br />
Title: Why are so many matrices and tensors of low rank in computational mathematics?<br />
<br />
Abstract: Matrices and tensors that appear in computational mathematics are so often well-approximated by low-rank objects. Since random ("average") matrices are almost surely of full rank, mathematics needs to explain the abundance of low-rank structures. We will give various methodologies that allow one to begin to understand the prevalence of compressible matrices and tensors and we hope to reveal an underlying link between disparate applications. In particular, we will show how one can connect the singular values of a matrix with displacement structure to a rational approximation problem that highlights fundamental connections between polynomial interpolation, Krylov methods, and fast Toeplitz solvers.<br />
<br />
<br />
=== Prashant G. Mehta ===<br />
<br />
Title: What is the Lagrangian for Nonlinear Filtering?<br />
<br />
Abstract: There is a certain magic involved in recasting the equations in Physics, and the algorithms in Engineering, in variational terms. The most classical of these ‘magics’ is the Lagrange’s formulation of the Newtonian mechanics. An accessible modern take on all this and more appears in the February 19, 2019 issue of The New Yorker magazine: https://www.newyorker.com/science/elements/a-different-kind-of-theory-of-everything?reload=true <br />
<br />
My talk is concerned with a variational (optimal control type) formulation of the problem of nonlinear filtering/estimation. Such formulations are referred to as duality between optimal estimation and optimal control. The first duality principle appears in the seminal (1961) paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic optimal control problem. <br />
<br />
In my talk, I will describe a generalization of the Kalman-Bucy duality theory to nonlinear filtering. The generalization is an exact extension, in the sense that the dual optimal control problem has the same minimum variance structure for linear and nonlinear filtering problems. Kalman-Bucy’s classical result is shown to be a special case. During the talk, I will also attempt to review other types of duality relationships that have appeared over the years for the problem of linear and nonlinear filtering. <br />
<br />
This is joint work with Jin Won Kim and Sean Meyn. The talk is based on the following papers: https://arxiv.org/pdf/1903.11195.pdf and https://arxiv.org/pdf/1904.01710.pdf.<br />
<br />
<br />
=== Jean-Luc Thiffeault ===<br />
<br />
Title: Shape matters: A Brownian swimmer in a channel<br />
<br />
Abstract: We consider a simple model of a two-dimensional microswimmer with fixed swimming speed. The direction of swimming changes according to<br />
a Brownian process, and the swimmer is interacting with boundaries. This is a standard model for a simple microswimmer, or a confined<br />
wormlike chain polymer. The shape of the swimmer determines the range of allowable values that its degrees of freedom can assume --- its<br />
configuration space. Using natural assumptions about reflection of the swimmer at boundaries, we compute the swimmer's invariant<br />
distribution across a channel consisting of two parallel walls, and the statistics of spreading in the longitudinal direction. This gives<br />
us the effective diffusion constant of the swimmer's large scale motion. When the swimmer is longer than the channel width, it cannot<br />
reverse, and we then compute the mean drift velocity of the swimmer. This model offers insight into experiments of scattering of swimmers<br />
from boundaries, and serves as an exactly-solvable baseline when comparing to more complex models. This is joint work with Hongfei Chen.<br />
<br />
=== Tan Bui (UT-Austin) ===<br />
<br />
Title: Scalable Algorithms for Data-driven Inverse and Learning Problems<br />
<br />
Abstract: Inverse problems and uncertainty quantification (UQ) are pervasive in scientific discovery and decision-making for complex, natural, engineered, and societal systems. They are perhaps the most popular mathematical approaches for enabling predictive scientific simulations that integrate observational/experimental data, simulations and/or models. Unfortunately, inverse/UQ problems for practical complex systems possess these the simultaneous challenges: the large-scale forward problem challenge, the high dimensional parameter space challenge, and the big data challenge.<br />
<br />
To address the first challenge, we have developed parallel high-order (hybridized) discontinuous Galerkin methods to discretize complex forward PDEs. <br />
To address the second challenge, we have developed various approaches from model reduction to advanced Markov chain Monte Carlo methods to effectively explore high dimensional parameter spaces to compute posterior statistics. To address the last challenge, we have developed a randomized misfit approach that uncovers the interplay between the Johnson-Lindenstrauss and the Morozov's discrepancy principle to significantly reduce the dimension of the data without compromising the quality of the inverse solutions.<br />
<br />
In this talk we selectively present scalable and rigorous approaches to tackle these challenges for PDE-governed Bayesian inverse problems. Various numerical results for simple to complex PDEs will be presented to verify our algorithms and theoretical findings. If time permits, we will present our recent work on scientific machine learning for inverse and learning problems.</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=18114Applied/Physical Applied Math2019-10-07T13:55:15Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|Convection-induced singularity suppression in the Keller-Segel and other nonlinear PDEs<br />
|-<br />
|Sept. 26<br />
|Son<br />
|State-constraint static Hamilton-Jacobi equations in nested domains<br />
|-<br />
|Oct. 3<br />
|Hongfei<br />
|Microswimmers interacting with walls<br />
|-<br />
|Oct. 10<br />
|Alex Townsend<br />
|The ultraspherical spectral method<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
|<br />
|-<br />
|Oct. 31<br />
|<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=18087Applied/ACMS2019-10-02T12:14:48Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Daniel Floryan (UW-Madison)|Flexible Inertial Swimmers]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#Mitch Bushuk (GFDL/Princeton)|Arctic Sea Ice Predictability in a Changing Cryosphere]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|How to "localize" the computation?]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[http://www.math.wisc.edu/~qinli/ Qin Li] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Qin Li (UW-Madison)|The power of randomness in scientific computing]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|Random graph models with fixed degree sequences: choices, consequences and irreducibility proofs for sampling]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[http://mehta.mechse.illinois.edu/ Prashant G. Mehta] (UIUC)<br />
|''[[Applied/ACMS/absF19#Prashant G. Mehta (UIUC)|What is the Lagrangian for Nonlinear Filtering?]]''<br />
| Chen<br />
|-<br />
| Oct 25<br />
|[https://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Jean-Luc Thiffeault|Shape matters: A Brownian microswimmer interacting with walls]]''<br />
| <br />
|-<br />
| Nov 1<br />
|[https://users.oden.utexas.edu/~tanbui/ Tan Bui] (UT-Austin)<br />
|''[[Applied/ACMS/absF19#Tan Bui (UT-Austin)|Title: TBA]]''<br />
| Li<br />
|-<br />
| Nov 8<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
| <br />
|-<br />
| Nov 15<br />
|[https://www.math.wisc.edu/~pgera/ Prerna Gera] (UW)<br />
|''[[Applied/ACMS/absF19#Prerna Gera (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF19&diff=18086Applied/ACMS/absF192019-10-02T12:12:34Z<p>Jeanluc: /* ACMS Abstracts: Fall 2019 */</p>
<hr />
<div>= ACMS Abstracts: Fall 2019 =<br />
<br />
=== Leonardo Andrés Zepeda Núñez ===<br />
<br />
Title: Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics<br />
<br />
Abstract: Recently, the surge of interest in deep neural learning has dramatically improved image and signal processing, which has fueled breakthroughs in many domains such as drug discovery, genomics, and automatic translation. These advances have been further applied to scientific computing and, in particular, to electronic structure computations. In this case, the main objective is to directly compute the electron density, which encodes most of information of the system, thus bypassing the computationally intensive solution of the Kohn-Sham equations. However, similar to neural networks for image processing, the performance of the methods depends spectacularly on the physical and analytical intuition incorporated in the network, and on the training stage.<br />
<br />
In this talk, I will show how to build a network that respects physical symmetries and locality. I will show how to train the networks and how such properties impact the performance of the resulting network. Finally, I will present several examples for small yet realistic chemical systems.<br />
<br />
<br />
=== Daniel Floryan (UW-Madison) ===<br />
<br />
Title: Flexible Inertial Swimmers<br />
<br />
Abstract: Inertial swimmers deform their bodies and fins to push against the water and propel themselves forward. The deformation is driven partly by active musculature, and partly by passive elasticity. The interaction between elasticity and hydrodynamics confers features on the swimmers not enjoyed by their rigid friends, for example, boosts in speed when flapping at certain frequencies. We explain the salient features of flexible swimmers by drawing ideas from airfoils, vibrating beams, and flags flapping in the wind. The presence of fluid drag has important consequences. We also explore optimal arrangements of flexibility. (It turns out that nature is quite good.)<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local <br />
region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
=== Mitch Bushuk (GFDL/Princeton) ===<br />
<br />
Title: Arctic Sea Ice Predictability in a Changing Cryosphere<br />
<br />
Abstract: Forty years of satellite observations have documented a striking decline in the areal extent of Arctic sea ice. The loss of sea ice has impacts on the climate system, human populations, ecosystems, and natural environments across a broad range of spatial and temporal scales. These changes have motivated significant research interest in the predictability and prediction of Arctic sea ice on seasonal-to-interannual timescales. In this talk, I will address two related questions: (1) What is the inherent predictability of Arctic sea ice and what physical mechanisms underlie this predictability? and (2) How can this knowledge be leveraged to improve operational sea ice predictions? I will present findings on the relative roles of the ocean, sea ice, and atmosphere in controlling Arctic sea ice predictability. I will also present evidence for an Arctic spring predictability barrier, which may impose a sharp limit on our ability to make skillful predictions of the summer sea ice minimum. <br />
<br />
<br />
=== Qin Li (UW-Madison) ===<br />
<br />
Title: The power of randomness in scientific computing<br />
<br />
Abstract: Most numerical methods in scientific computing are deterministic. Traditionally, accuracy has been the target while the cost was not the concern. However, in this era of big data, we incline to relax the strict requirements on the accuracy to reduce numerical cost. Introducing randomness in the numerical solvers could potentially speed up the computation significantly at small sacrifice of accuracy. In this talk, I'd like to show two concrete examples how this is done: first on random sketching in experimental design, and the second on numerical homgenization, hoping the discussion can shed light on potential other applications. Joint work with Ke Chen, Jianfeng Lu, Kit Newton and Stephen Wright.<br />
<br />
<br />
=== Joel Nishimura (Arizona State) ===<br />
<br />
Title: Random graph models with fixed degree sequences: choices, consequences and irreducibility proofs for sampling<br />
<br />
Abstract: Determining which features of an empirical graph are noteworthy frequently relies upon the ability to sample random graphs with constrained properties. Since empirical graphs have distinctive degree sequences, one of the most popular random graph models is the configuration model, which produces a graph uniformly at random from the set of graphs with a fixed degree sequence. While it is commonly treated as though there is only a single configuration model, one sampled via stub-matching, there are many, depending on whether self-loops and multiedges are allowed and whether edge stubs are labeled or not. We show, these different configuration models can lead to drastically, sometimes opposite, interpretations of empirical graphs. In order to sample from these different configuration models, we review and develop the underpinnings of Markov chain Monte Carlo methods based upon double-edge swaps. We also present new results on the irreducibility of the Markov chain for graphs with self-loops, either proving irreducibility or exactly characterizing the degree sequences for which the Markov chain is reducible. This work completes the study of the irreducibility of double edge-swap Markov chains (and the related Curveball Markov chain) for all combinations of allowing self-loops, multiple self-loops and/or multiedges. <br />
<br />
<br />
=== Prashant G. Mehta ===<br />
<br />
Title: What is the Lagrangian for Nonlinear Filtering?<br />
<br />
Abstract: There is a certain magic involved in recasting the equations in Physics, and the algorithms in Engineering, in variational terms. The most classical of these ‘magics’ is the Lagrange’s formulation of the Newtonian mechanics. An accessible modern take on all this and more appears in the February 19, 2019 issue of The New Yorker magazine: https://www.newyorker.com/science/elements/a-different-kind-of-theory-of-everything?reload=true <br />
<br />
My talk is concerned with a variational (optimal control type) formulation of the problem of nonlinear filtering/estimation. Such formulations are referred to as duality between optimal estimation and optimal control. The first duality principle appears in the seminal (1961) paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic optimal control problem. <br />
<br />
In my talk, I will describe a generalization of the Kalman-Bucy duality theory to nonlinear filtering. The generalization is an exact extension, in the sense that the dual optimal control problem has the same minimum variance structure for linear and nonlinear filtering problems. Kalman-Bucy’s classical result is shown to be a special case. During the talk, I will also attempt to review other types of duality relationships that have appeared over the years for the problem of linear and nonlinear filtering. <br />
<br />
This is joint work with Jin Won Kim and Sean Meyn. The talk is based on the following papers: https://arxiv.org/pdf/1903.11195.pdf and https://arxiv.org/pdf/1904.01710.pdf.<br />
<br />
<br />
=== Jean-Luc Thiffeault ===<br />
<br />
We consider a simple model of a two-dimensional microswimmer with fixed swimming speed. The direction of swimming changes according to<br />
a Brownian process, and the swimmer is interacting with boundaries. This is a standard model for a simple microswimmer, or a confined<br />
wormlike chain polymer. The shape of the swimmer determines the range of allowable values that its degrees of freedom can assume --- its<br />
configuration space. Using natural assumptions about reflection of the swimmer at boundaries, we compute the swimmer's invariant<br />
distribution across a channel consisting of two parallel walls, and the statistics of spreading in the longitudinal direction. This gives<br />
us the effective diffusion constant of the swimmer's large scale motion. When the swimmer is longer than the channel width, it cannot<br />
reverse, and we then compute the mean drift velocity of the swimmer. This model offers insight into experiments of scattering of swimmers<br />
from boundaries, and serves as an exactly-solvable baseline when comparing to more complex models. This is joint work with Hongfei Chen.</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF19&diff=18085Applied/ACMS/absF192019-10-02T12:11:29Z<p>Jeanluc: /* ACMS Abstracts: Fall 2019 */</p>
<hr />
<div>= ACMS Abstracts: Fall 2019 =<br />
<br />
=== Leonardo Andrés Zepeda Núñez ===<br />
<br />
Title: Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics<br />
<br />
Abstract: Recently, the surge of interest in deep neural learning has dramatically improved image and signal processing, which has fueled breakthroughs in many domains such as drug discovery, genomics, and automatic translation. These advances have been further applied to scientific computing and, in particular, to electronic structure computations. In this case, the main objective is to directly compute the electron density, which encodes most of information of the system, thus bypassing the computationally intensive solution of the Kohn-Sham equations. However, similar to neural networks for image processing, the performance of the methods depends spectacularly on the physical and analytical intuition incorporated in the network, and on the training stage.<br />
<br />
In this talk, I will show how to build a network that respects physical symmetries and locality. I will show how to train the networks and how such properties impact the performance of the resulting network. Finally, I will present several examples for small yet realistic chemical systems.<br />
<br />
<br />
=== Daniel Floryan (UW-Madison) ===<br />
<br />
Title: Flexible Inertial Swimmers<br />
<br />
Abstract: Inertial swimmers deform their bodies and fins to push against the water and propel themselves forward. The deformation is driven partly by active musculature, and partly by passive elasticity. The interaction between elasticity and hydrodynamics confers features on the swimmers not enjoyed by their rigid friends, for example, boosts in speed when flapping at certain frequencies. We explain the salient features of flexible swimmers by drawing ideas from airfoils, vibrating beams, and flags flapping in the wind. The presence of fluid drag has important consequences. We also explore optimal arrangements of flexibility. (It turns out that nature is quite good.)<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local <br />
region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
=== Mitch Bushuk (GFDL/Princeton) ===<br />
<br />
Title: Arctic Sea Ice Predictability in a Changing Cryosphere<br />
<br />
Abstract: Forty years of satellite observations have documented a striking decline in the areal extent of Arctic sea ice. The loss of sea ice has impacts on the climate system, human populations, ecosystems, and natural environments across a broad range of spatial and temporal scales. These changes have motivated significant research interest in the predictability and prediction of Arctic sea ice on seasonal-to-interannual timescales. In this talk, I will address two related questions: (1) What is the inherent predictability of Arctic sea ice and what physical mechanisms underlie this predictability? and (2) How can this knowledge be leveraged to improve operational sea ice predictions? I will present findings on the relative roles of the ocean, sea ice, and atmosphere in controlling Arctic sea ice predictability. I will also present evidence for an Arctic spring predictability barrier, which may impose a sharp limit on our ability to make skillful predictions of the summer sea ice minimum. <br />
<br />
<br />
=== Qin Li (UW-Madison) ===<br />
<br />
Title: The power of randomness in scientific computing<br />
<br />
Abstract: Most numerical methods in scientific computing are deterministic. Traditionally, accuracy has been the target while the cost was not the concern. However, in this era of big data, we incline to relax the strict requirements on the accuracy to reduce numerical cost. Introducing randomness in the numerical solvers could potentially speed up the computation significantly at small sacrifice of accuracy. In this talk, I'd like to show two concrete examples how this is done: first on random sketching in experimental design, and the second on numerical homgenization, hoping the discussion can shed light on potential other applications. Joint work with Ke Chen, Jianfeng Lu, Kit Newton and Stephen Wright.<br />
<br />
<br />
=== Joel Nishimura (Arizona State) ===<br />
<br />
Title: Random graph models with fixed degree sequences: choices, consequences and irreducibility proofs for sampling<br />
<br />
Abstract: Determining which features of an empirical graph are noteworthy frequently relies upon the ability to sample random graphs with constrained properties. Since empirical graphs have distinctive degree sequences, one of the most popular random graph models is the configuration model, which produces a graph uniformly at random from the set of graphs with a fixed degree sequence. While it is commonly treated as though there is only a single configuration model, one sampled via stub-matching, there are many, depending on whether self-loops and multiedges are allowed and whether edge stubs are labeled or not. We show, these different configuration models can lead to drastically, sometimes opposite, interpretations of empirical graphs. In order to sample from these different configuration models, we review and develop the underpinnings of Markov chain Monte Carlo methods based upon double-edge swaps. We also present new results on the irreducibility of the Markov chain for graphs with self-loops, either proving irreducibility or exactly characterizing the degree sequences for which the Markov chain is reducible. This work completes the study of the irreducibility of double edge-swap Markov chains (and the related Curveball Markov chain) for all combinations of allowing self-loops, multiple self-loops and/or multiedges. <br />
<br />
<br />
=== Prashant G. Mehta ===<br />
<br />
Title: What is the Lagrangian for Nonlinear Filtering?<br />
<br />
Abstract: There is a certain magic involved in recasting the equations in Physics, and the algorithms in Engineering, in variational terms. The most classical of these ‘magics’ is the Lagrange’s formulation of the Newtonian mechanics. An accessible modern take on all this and more appears in the February 19, 2019 issue of The New Yorker magazine: https://www.newyorker.com/science/elements/a-different-kind-of-theory-of-everything?reload=true <br />
<br />
My talk is concerned with a variational (optimal control type) formulation of the problem of nonlinear filtering/estimation. Such formulations are referred to as duality between optimal estimation and optimal control. The first duality principle appears in the seminal (1961) paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic optimal control problem. <br />
<br />
In my talk, I will describe a generalization of the Kalman-Bucy duality theory to nonlinear filtering. The generalization is an exact extension, in the sense that the dual optimal control problem has the same minimum variance structure for linear and nonlinear filtering problems. Kalman-Bucy’s classical result is shown to be a special case. During the talk, I will also attempt to review other types of duality relationships that have appeared over the years for the problem of linear and nonlinear filtering. <br />
<br />
This is joint work with Jin Won Kim and Sean Meyn. The talk is based on the following papers: https://arxiv.org/pdf/1903.11195.pdf and https://arxiv.org/pdf/1904.01710.pdf.<br />
<br />
<br />
=== Jean-Luc Thiffeault (UW-Madison) ===<br />
<br />
We consider a simple model of a two-dimensional microswimmer with fixed swimming speed. The direction of swimming changes according to<br />
a Brownian process, and the swimmer is interacting with boundaries. This is a standard model for a simple microswimmer, or a confined<br />
wormlike chain polymer. The shape of the swimmer determines the range of allowable values that its degrees of freedom can assume --- its<br />
configuration space. Using natural assumptions about reflection of the swimmer at boundaries, we compute the swimmer's invariant<br />
distribution across a channel consisting of two parallel walls, and the statistics of spreading in the longitudinal direction. This gives<br />
us the effective diffusion constant of the swimmer's large scale motion. When the swimmer is longer than the channel width, it cannot<br />
reverse, and we then compute the mean drift velocity of the swimmer. This model offers insight into experiments of scattering of swimmers<br />
from boundaries, and serves as an exactly-solvable baseline when comparing to more complex models. This is joint work with Hongfei Chen.</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=18084Applied/ACMS2019-10-02T12:08:39Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Daniel Floryan (UW-Madison)|Flexible Inertial Swimmers]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#Mitch Bushuk (GFDL/Princeton)|Arctic Sea Ice Predictability in a Changing Cryosphere]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|How to "localize" the computation?]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[http://www.math.wisc.edu/~qinli/ Qin Li] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Qin Li (UW-Madison)|The power of randomness in scientific computing]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|Random graph models with fixed degree sequences: choices, consequences and irreducibility proofs for sampling]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[http://mehta.mechse.illinois.edu/ Prashant G. Mehta] (UIUC)<br />
|''[[Applied/ACMS/absF19#Prashant G. Mehta (UIUC)|Title: What is the Lagrangian for Nonlinear Filtering?]]''<br />
| Chen<br />
|-<br />
| Oct 25<br />
|[https://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault] (UW-Madison)<br />
|''[[Applied/ACMS/absF19# Jean-Luc Thiffeault|Shape matters: A Brownian microswimmer interacting with walls]]''<br />
| <br />
|-<br />
| Nov 1<br />
|[https://users.oden.utexas.edu/~tanbui/ Tan Bui] (UT-Austin)<br />
|''[[Applied/ACMS/absF19#Tan Bui (UT-Austin)|Title: TBA]]''<br />
| Li<br />
|-<br />
| Nov 8<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
| <br />
|-<br />
| Nov 15<br />
|[https://www.math.wisc.edu/~pgera/ Prerna Gera] (UW)<br />
|''[[Applied/ACMS/absF19#Prerna Gera (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF19&diff=18058Applied/ACMS/absF192019-10-01T12:57:33Z<p>Jeanluc: /* ACMS Abstracts: Fall 2019 */</p>
<hr />
<div>= ACMS Abstracts: Fall 2019 =<br />
<br />
=== Leonardo Andrés Zepeda Núñez ===<br />
<br />
Title: Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics<br />
<br />
Abstract: Recently, the surge of interest in deep neural learning has dramatically improved image and signal processing, which has fueled breakthroughs in many domains such as drug discovery, genomics, and automatic translation. These advances have been further applied to scientific computing and, in particular, to electronic structure computations. In this case, the main objective is to directly compute the electron density, which encodes most of information of the system, thus bypassing the computationally intensive solution of the Kohn-Sham equations. However, similar to neural networks for image processing, the performance of the methods depends spectacularly on the physical and analytical intuition incorporated in the network, and on the training stage.<br />
<br />
In this talk, I will show how to build a network that respects physical symmetries and locality. I will show how to train the networks and how such properties impact the performance of the resulting network. Finally, I will present several examples for small yet realistic chemical systems.<br />
<br />
<br />
=== Daniel Floryan (UW-Madison) ===<br />
<br />
Title: Flexible Inertial Swimmers<br />
<br />
Abstract: Inertial swimmers deform their bodies and fins to push against the water and propel themselves forward. The deformation is driven partly by active musculature, and partly by passive elasticity. The interaction between elasticity and hydrodynamics confers features on the swimmers not enjoyed by their rigid friends, for example, boosts in speed when flapping at certain frequencies. We explain the salient features of flexible swimmers by drawing ideas from airfoils, vibrating beams, and flags flapping in the wind. The presence of fluid drag has important consequences. We also explore optimal arrangements of flexibility. (It turns out that nature is quite good.)<br />
<br />
<br />
=== Jianfeng Lu (Duke) ===<br />
<br />
Title: How to ``localize" the computation?<br />
<br />
It is often desirable to restrict the numerical computation to a local <br />
region to achieve best balance between accuracy and affordability in scientific computing. It is important to avoid artifacts and guarantee predictable modelling while artificial boundary conditions have to be introduced to restrict the computation. In this talk, we will discuss some recent understanding on how to achieve such local computation in the context of topological edge states and elliptic random media.<br />
<br />
<br />
=== Mitch Bushuk (GFDL/Princeton) ===<br />
<br />
Title: Arctic Sea Ice Predictability in a Changing Cryosphere<br />
<br />
Abstract: Forty years of satellite observations have documented a striking decline in the areal extent of Arctic sea ice. The loss of sea ice has impacts on the climate system, human populations, ecosystems, and natural environments across a broad range of spatial and temporal scales. These changes have motivated significant research interest in the predictability and prediction of Arctic sea ice on seasonal-to-interannual timescales. In this talk, I will address two related questions: (1) What is the inherent predictability of Arctic sea ice and what physical mechanisms underlie this predictability? and (2) How can this knowledge be leveraged to improve operational sea ice predictions? I will present findings on the relative roles of the ocean, sea ice, and atmosphere in controlling Arctic sea ice predictability. I will also present evidence for an Arctic spring predictability barrier, which may impose a sharp limit on our ability to make skillful predictions of the summer sea ice minimum. <br />
<br />
<br />
=== Qin Li (UW-Madison) ===<br />
<br />
Title: The power of randomness in scientific computing<br />
<br />
Abstract: Most numerical methods in scientific computing are deterministic. Traditionally, accuracy has been the target while the cost was not the concern. However, in this era of big data, we incline to relax the strict requirements on the accuracy to reduce numerical cost. Introducing randomness in the numerical solvers could potentially speed up the computation significantly at small sacrifice of accuracy. In this talk, I'd like to show two concrete examples how this is done: first on random sketching in experimental design, and the second on numerical homgenization, hoping the discussion can shed light on potential other applications. Joint work with Ke Chen, Jianfeng Lu, Kit Newton and Stephen Wright.<br />
<br />
<br />
=== Joel Nishimura (Arizona State) ===<br />
<br />
Title: Random graph models with fixed degree sequences: choices, consequences and irreducibility proofs for sampling<br />
<br />
Abstract: Determining which features of an empirical graph are noteworthy frequently relies upon the ability to sample random graphs with constrained properties. Since empirical graphs have distinctive degree sequences, one of the most popular random graph models is the configuration model, which produces a graph uniformly at random from the set of graphs with a fixed degree sequence. While it is commonly treated as though there is only a single configuration model, one sampled via stub-matching, there are many, depending on whether self-loops and multiedges are allowed and whether edge stubs are labeled or not. We show, these different configuration models can lead to drastically, sometimes opposite, interpretations of empirical graphs. In order to sample from these different configuration models, we review and develop the underpinnings of Markov chain Monte Carlo methods based upon double-edge swaps. We also present new results on the irreducibility of the Markov chain for graphs with self-loops, either proving irreducibility or exactly characterizing the degree sequences for which the Markov chain is reducible. This work completes the study of the irreducibility of double edge-swap Markov chains (and the related Curveball Markov chain) for all combinations of allowing self-loops, multiple self-loops and/or multiedges. <br />
<br />
<br />
=== Prashant G. Mehta ===<br />
<br />
Title: What is the Lagrangian for Nonlinear Filtering?<br />
<br />
Abstract: There is a certain magic involved in recasting the equations in Physics, and the algorithms in Engineering, in variational terms. The most classical of these ‘magics’ is the Lagrange’s formulation of the Newtonian mechanics. An accessible modern take on all this and more appears in the February 19, 2019 issue of The New Yorker magazine: https://www.newyorker.com/science/elements/a-different-kind-of-theory-of-everything?reload=true <br />
<br />
My talk is concerned with a variational (optimal control type) formulation of the problem of nonlinear filtering/estimation. Such formulations are referred to as duality between optimal estimation and optimal control. The first duality principle appears in the seminal (1961) paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic optimal control problem. <br />
<br />
In my talk, I will describe a generalization of the Kalman-Bucy duality theory to nonlinear filtering. The generalization is an exact extension, in the sense that the dual optimal control problem has the same minimum variance structure for linear and nonlinear filtering problems. Kalman-Bucy’s classical result is shown to be a special case. During the talk, I will also attempt to review other types of duality relationships that have appeared over the years for the problem of linear and nonlinear filtering. <br />
<br />
This is joint work with Jin Won Kim and Sean Meyn. The talk is based on the following papers: https://arxiv.org/pdf/1903.11195.pdf and https://arxiv.org/pdf/1904.01710.pdf.</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=18057Applied/ACMS2019-10-01T12:56:23Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Daniel Floryan (UW-Madison)|Flexible Inertial Swimmers]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#Mitch Bushuk (GFDL/Princeton)|Arctic Sea Ice Predictability in a Changing Cryosphere]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|How to "localize" the computation?]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[http://www.math.wisc.edu/~qinli/ Qin Li] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Qin Li (UW-Madison)|The power of randomness in scientific computing]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|Random graph models with fixed degree sequences: choices, consequences and irreducibility proofs for sampling]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[http://mehta.mechse.illinois.edu/ Prashant G. Mehta] (UIUC)<br />
|''[[Applied/ACMS/absF19#Prashant G. Mehta (UIUC)|Title: What is the Lagrangian for Nonlinear Filtering?]]''<br />
| Chen<br />
|-<br />
| Oct 25<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 1<br />
|[https://users.oden.utexas.edu/~tanbui/ Tan Bui] (UT-Austin)<br />
|''[[Applied/ACMS/absF19#Tan Bui (UT-Austin)|Title: TBA]]''<br />
| Li<br />
|-<br />
| Nov 8<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
| <br />
|-<br />
| Nov 15<br />
|[https://www.math.wisc.edu/~pgera/ Prerna Gera] (UW)<br />
|''[[Applied/ACMS/absF19#Prerna Gera (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=18056Applied/Physical Applied Math2019-10-01T09:35:39Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|Convection-induced singularity suppression in the Keller-Segel and other nonlinear PDEs<br />
|-<br />
|Sept. 26<br />
|Son<br />
|State-constraint static Hamilton-Jacobi equations in nested domains<br />
|-<br />
|Oct. 3<br />
|Hongfei<br />
|Microswimmers interacting with walls<br />
|-<br />
|Oct. 10<br />
|Alex Townsend? Check<br />
|<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
|<br />
|-<br />
|Oct. 31<br />
|<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17928Applied/Physical Applied Math2019-09-18T19:01:45Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|Convection-induced singularity suppression in the Keller-Segel and other nonlinear PDEs<br />
|-<br />
|Sept. 26<br />
|Son<br />
|State-constraint static Hamilton-Jacobi equations in nested domains<br />
|-<br />
|Oct. 3<br />
|Hongfei<br />
|<br />
|-<br />
|Oct. 10<br />
|Alex Townsend? Check<br />
|<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
|<br />
|-<br />
|Oct. 31<br />
|<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17916Applied/Physical Applied Math2019-09-18T14:56:28Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|Convection-induced singularity suppression in the Keller-Segel and other nonlinear PDEs<br />
|-<br />
|Sept. 26<br />
|Son<br />
|<br />
|-<br />
|Oct. 3<br />
|Hongfei<br />
|<br />
|-<br />
|Oct. 10<br />
|Alex Townsend? Check<br />
|<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
|<br />
|-<br />
|Oct. 31<br />
|<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17914Applied/Physical Applied Math2019-09-18T13:29:30Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|Convection-induced singularity suppression in the Keller-Segel and other nonlinear PDEs<br />
|-<br />
|Sept. 26<br />
|Son<br />
|<br />
|-<br />
|Oct. 3<br />
|<br />
|<br />
|-<br />
|Oct. 10<br />
|Alex Townsend? Check<br />
|<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
|<br />
|-<br />
|Oct. 31<br />
|<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17786Applied/Physical Applied Math2019-09-07T12:03:35Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|<br />
|-<br />
|Sept. 26<br />
|Son<br />
|<br />
|-<br />
|Oct. 3<br />
|<br />
|<br />
|-<br />
|Oct. 10<br />
|Alex Townsend? Check<br />
|<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
|<br />
|-<br />
|Oct. 31<br />
|<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17785Applied/Physical Applied Math2019-09-07T12:03:00Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|<br />
|-<br />
|Sept. 26<br />
|Son<br />
|<br />
|-<br />
|Oct. 3<br />
|<br />
|<br />
|-<br />
|Oct. 10<br />
|Alex Townsend? Check<br />
|<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna<br />
|<br />
|-<br />
|Oct. 31<br />
|(J-L away)<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17768Applied/Physical Applied Math2019-09-06T16:01:11Z<p>Jeanluc: /* Fall 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Sept. 5<br />
|<br />
|Organizational meeting<br />
|-<br />
|Sept. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sept. 19<br />
|Yu<br />
|<br />
|-<br />
|Sept. 26<br />
|Son<br />
|<br />
|-<br />
|Oct. 3<br />
|<br />
|<br />
|-<br />
|Oct. 10<br />
|Alex Townsend? Check<br />
|<br />
|-<br />
|Oct. 17<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Oct. 24<br />
|Prerna? (switch with Bryan)<br />
|<br />
|-<br />
|Oct. 31<br />
|(J-L away)<br />
|<br />
|-<br />
|Nov. 7<br />
|Bryan?<br />
|<br />
|-<br />
|Nov. 11<br />
|<br />
|<br />
|-<br />
|Nov. 14<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 21<br />
|<br />
|Practice talks for DFD<br />
|-<br />
|Dec. 5<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Dec. 12<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami (see [https://journals.aps.org/pra/abstract/10.1103/PhysRevA.44.1182 Seifert et al, Shape transformations of vesicles] and [https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-122316-050130?casa_token=lYj2Hmpn0fEAAAAA:269tjv-n7Odyzgam7PniTi5WmNPjP0qVrO7qxV0a8Ox_Tl4fNsawlxTves-ev7vI_h9Sx_0jKfwK Bico et al., Elastocapillarity (Review article)])<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF19&diff=17760Applied/ACMS/absF192019-09-06T09:28:05Z<p>Jeanluc: </p>
<hr />
<div>= ACMS Abstracts: Fall 2019 =<br />
<br />
=== Leonardo Andrés Zepeda Núñez ===<br />
<br />
Title: Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics<br />
<br />
Abstract: Recently, the surge of interest in deep neural learning has dramatically improved image and signal processing, which has fueled breakthroughs in many domains such as drug discovery, genomics, and automatic translation. These advances have been further applied to scientific computing and, in particular, to electronic structure computations. In this case, the main objective is to directly compute the electron density, which encodes most of information of the system, thus bypassing the computationally intensive solution of the Kohn-Sham equations. However, similar to neural networks for image processing, the performance of the methods depends spectacularly on the physical and analytical intuition incorporated in the network, and on the training stage.<br />
<br />
In this talk, I will show how to build a network that respects physical symmetries and locality. I will show how to train the networks and how such properties impact the performance of the resulting network. Finally, I will present several examples for small yet realistic chemical systems.<br />
<br />
<br />
=== Daniel Floryan (UW-Madison) ===<br />
<br />
Title: Flexible Inertial Swimmers<br />
<br />
Abstract: Inertial swimmers deform their bodies and fins to push against the water and propel themselves forward. The deformation is driven partly by active musculature, and partly by passive elasticity. The interaction between elasticity and hydrodynamics confers features on the swimmers not enjoyed by their rigid friends, for example, boosts in speed when flapping at certain frequencies. We explain the salient features of flexible swimmers by drawing ideas from airfoils, vibrating beams, and flags flapping in the wind. The presence of fluid drag has important consequences. We also explore optimal arrangements of flexibility. (It turns out that nature is quite good.)<br />
<br />
=== Prashant G. Mehta ===<br />
<br />
Title: What is the Lagrangian for Nonlinear Filtering?<br />
<br />
Abstract: There is a certain magic involved in recasting the equations in Physics, and the algorithms in Engineering, in variational terms. The most classical of these ‘magics’ is the Lagrange’s formulation of the Newtonian mechanics. An accessible modern take on all this and more appears in the February 19, 2019 issue of The New Yorker magazine: https://www.newyorker.com/science/elements/a-different-kind-of-theory-of-everything?reload=true <br />
<br />
My talk is concerned with a variational (optimal control type) formulation of the problem of nonlinear filtering/estimation. Such formulations are referred to as duality between optimal estimation and optimal control. The first duality principle appears in the seminal (1961) paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic optimal control problem. <br />
<br />
In my talk, I will describe a generalization of the Kalman-Bucy duality theory to nonlinear filtering. The generalization is an exact extension, in the sense that the dual optimal control problem has the same minimum variance structure for linear and nonlinear filtering problems. Kalman-Bucy’s classical result is shown to be a special case. During the talk, I will also attempt to review other types of duality relationships that have appeared over the years for the problem of linear and nonlinear filtering. <br />
<br />
This is joint work with Jin Won Kim and Sean Meyn. The talk is based on the following papers: https://arxiv.org/pdf/1903.11195.pdf and https://arxiv.org/pdf/1904.01710.pdf.</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17759Applied/ACMS2019-09-06T09:25:14Z<p>Jeanluc: </p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|Deep Learning for Electronic Structure Computations: A Tale of Symmetries, Locality, and Physics]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Daniel Floryan (UW-Madison)|Flexible Inertial Swimmers]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|TBA]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[http://mehta.mechse.illinois.edu/ Prashant G. Mehta] (UIUC)<br />
|''[[Applied/ACMS/absF19#Prashant G. Mehta (UIUC)|Title: What is the Lagrangian for Nonlinear Filtering?]]''<br />
| Chen<br />
|-<br />
| Oct 25<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 1<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 8<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
| <br />
|-<br />
| Nov 15<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17686Applied/ACMS2019-08-28T16:08:35Z<p>Jeanluc: </p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[http://dfloryan.mycpanel.princeton.edu/ Daniel Floryan] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| Jean-Luc<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|TBA]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Oct 25<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 1<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 8<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Nov 15<br />
|<br />
|''[[Applied/ACMS/absF19# TBA|TBA]]''<br />
| <br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17431Applied/Physical Applied Math2019-05-08T12:41:19Z<p>Jeanluc: /* Spring 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|May 9<br />
|Saverio<br />
|Internal capillary origami<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17372Applied/Physical Applied Math2019-04-23T16:41:41Z<p>Jeanluc: /* Spring 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|pseudo-Anosov homeomorphisms with large entropy<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17316Applied/Physical Applied Math2019-04-15T17:43:21Z<p>Jeanluc: /* Spring 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|Entanglement of frictionless strings<br />
|-<br />
|Apr. 25<br />
|John<br />
|<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17283Applied/Physical Applied Math2019-04-06T03:27:03Z<p>Jeanluc: /* Spring 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|[https://doi.org/10.1063/1.1675038 Freed, Wiener Integrals and Models of Stiff Polymer Chains]<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|<br />
|-<br />
|Apr. 25<br />
|John<br />
|<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17282Applied/Physical Applied Math2019-04-05T13:08:55Z<p>Jeanluc: /* Spring 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal diffusion-limited aggregation and rotor-router walks with drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|<br />
|-<br />
|Apr. 25<br />
|John<br />
|<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17281Applied/Physical Applied Math2019-04-05T13:08:23Z<p>Jeanluc: /* Spring 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|Internal Diffusion-Limited Aggregation and Rotor-Router Walks with Drift<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|<br />
|-<br />
|Apr. 25<br />
|John<br />
|<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17274Colloquia2019-04-03T16:04:20Z<p>Jeanluc: Jo Nelson title and abstract.</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
==Spring 2019==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Jan 25 '''Room 911'''<br />
| [http://www.users.miamioh.edu/randrib/ Beata Randrianantoanina] (Miami University Ohio) WIMAW<br />
|[[#Beata Randrianantoanina (Miami University Ohio) | Some nonlinear problems in the geometry of Banach spaces and their applications ]]<br />
| Tullia Dymarz<br />
|<br />
|-<br />
|Jan 30 '''Wednesday'''<br />
| Talk rescheduled to Feb 15<br />
|<br />
|-<br />
|Jan 31 '''Thursday'''<br />
| Talk rescheduled to Feb 13<br />
|<br />
|-<br />
|Feb 1<br />
| Talk cancelled due to weather<br />
|<br />
| <br />
|<br />
|-<br />
|Feb 5 '''Tuesday, VV 911'''<br />
| [http://www.math.tamu.edu/~alexei.poltoratski/ Alexei Poltoratski] (Texas A&M University)<br />
|[[#Alexei Poltoratski (Texas A&M)| Completeness of exponentials: Beurling-Malliavin and type problems ]]<br />
| Denisov<br />
|<br />
|-<br />
|Feb 6 '''Wednesday, room 911'''<br />
| [https://lc-tsai.github.io/ Li-Cheng Tsai] (Columbia University)<br />
|[[#Li-Cheng Tsai (Columbia University)| When particle systems meet PDEs ]]<br />
| Anderson<br />
|<br />
|-<br />
|Feb 8<br />
| [https://sites.math.northwestern.edu/~anaber/ Aaron Naber] (Northwestern)<br />
|[[#Aaron Naber (Northwestern) | A structure theory for spaces with lower Ricci curvature bounds ]]<br />
| Street<br />
|<br />
|-<br />
|Feb 11 '''Monday'''<br />
| [https://www2.bc.edu/david-treumann/materials.html David Treumann] (Boston College)<br />
|[[#David Treumann (Boston College) | Twisting things in topology and symplectic topology by pth powers ]]<br />
| Caldararu<br />
|<br />
|-<br />
| Feb 13 '''Wednesday'''<br />
| [http://www.math.tamu.edu/~dbaskin/ Dean Baskin] (Texas A&M)<br />
|[[#Dean Baskin (Texas A&M) | Radiation fields for wave equations ]]<br />
| Street<br />
<br />
|-<br />
| Feb 15 <br />
| [https://services.math.duke.edu/~pierce/ Lillian Pierce] (Duke University)<br />
| [[#Lillian Pierce (Duke University) | Short character sums ]]<br />
| Boston and Street<br />
|<br />
|-<br />
|Feb 22<br />
| [https://people.math.osu.edu/cueto.5/ Angelica Cueto] (Ohio State)<br />
|[[#Angelica Cueto (The Ohio State University)| Lines on cubic surfaces in the tropics ]]<br />
| Erman and Corey<br />
|<br />
|-<br />
|March 4 '''Monday'''<br />
| [http://www-users.math.umn.edu/~sverak/ Vladimir Sverak] (Minnesota) <br />
|[[#Vladimir Sverak (Minnesota) | Wasow lecture "PDE aspects of the Navier-Stokes equations and simpler models" ]]<br />
| Kim<br />
|<br />
|-<br />
|March 8<br />
| [https://orion.math.iastate.edu/jmccullo/index.html Jason McCullough] (Iowa State)<br />
|[[#Jason McCullough (Iowa State)| On the degrees and complexity of algebraic varieties ]]<br />
| Erman<br />
|<br />
|-<br />
|March 15<br />
| <s>[http://www.its.caltech.edu/~maksym/ Maksym Radziwill] (Caltech)</s> <b>Talk cancelled</b><br />
|[[#Maksym Radziwill (Caltech) | <s>Recent progress in multiplicative number theory</s> ]]<br />
| Marshall<br />
|<br />
|-<br />
|March 29<br />
| Jennifer Park (OSU)<br />
|[[#Jennifer Park (OSU) | Rational points on varieties ]]<br />
| Marshall<br />
|<br />
|-<br />
|April 5<br />
| Ju-Lee Kim (MIT)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 12<br />
| Eviatar Procaccia (TAMU)<br />
|[[#Eviatar Procaccia | Can one hear the shape of a random walk? ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 19<br />
| [http://www.math.rice.edu/~jkn3/ Jo Nelson] (Rice University)<br />
|[[#Jo Nelson (Rice)| Contact Invariants and Reeb Dynamics ]]<br />
| Jean-Luc<br />
|<br />
|-<br />
|April 22 '''Monday'''<br />
| [https://justinh.su Justin Hsu] (Madison)<br />
|[[# TBA| TBA ]]<br />
| Lempp<br />
|<br />
|-<br />
|April 26<br />
| [https://www.brown.edu/academics/applied-mathematics/faculty/kavita-ramanan/home Kavita Ramanan] (Brown University)<br />
|[[# TBA| TBA ]]<br />
| WIMAW<br />
|<br />
|-<br />
|May 3<br />
| Tomasz Przebinda (Oklahoma)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Beata Randrianantoanina (Miami University Ohio)===<br />
<br />
Title: Some nonlinear problems in the geometry of Banach spaces and their applications.<br />
<br />
Abstract: Nonlinear problems in the geometry of Banach spaces have been studied since the inception of the field. In this talk I will outline some of the history, some of modern applications, and some open directions of research. The talk will be accessible to graduate students of any field of mathematics.<br />
<br />
===Lillian Pierce (Duke University)===<br />
<br />
Title: Short character sums <br />
<br />
Abstract: A surprisingly diverse array of problems in analytic number theory have at their heart a problem of bounding (from above) an exponential sum, or its multiplicative cousin, a so-called character sum. For example, both understanding the Riemann zeta function or Dirichlet L-functions inside the critical strip, and also counting solutions to Diophantine equations via the circle method or power sieve methods, involve bounding such sums. In general, the sums of interest fall into one of two main regimes: complete sums or incomplete sums, with this latter regime including in particular “short sums.” Short sums are particularly useful, and particularly resistant to almost all known methods. In this talk, we will see what makes a sum “short,” sketch why it would be incredibly powerful to understand short sums, and discuss a curious proof from the 1950’s which is still the best way we know to bound short sums. We will end by describing new work which extends the ideas of this curious proof to bound short sums in much more general situations.<br />
<br />
===Angelica Cueto (The Ohio State University)===<br />
Title: Lines on cubic surfaces in the tropics<br />
<br />
Abstract: Since the beginning of tropical geometry, a persistent challenge has been to emulate tropical versions of classical results in algebraic geometry. The well-know statement <i>any smooth surface of degree three in P^3 contains exactly 27 lines</i> is known to be false tropically. Work of Vigeland from 2007 provides examples of tropical cubic surfaces with infinitely many lines and gives a classification of tropical lines on general smooth tropical surfaces in TP^3.<br />
<br />
In this talk I will explain how to correct this pathology by viewing the surface as a del Pezzo cubic and considering its embedding in P^44 via its anticanonical bundle. The combinatorics of the root system of type E_6 and a tropical notion of convexity will play a central role in the construction. This is joint work in progress with Anand Deopurkar.<br />
<br />
===David Treumann (Boston College)===<br />
<br />
Title: Twisting things in topology and symplectic topology by pth powers<br />
<br />
Abstract: There's an old and popular analogy between circles and finite fields. I'll describe some constructions you can make in Lagrangian Floer theory and in microlocal sheaf theory by taking this analogy extremely literally, the main ingredient is an "F-field." An F-field on a manifold M is a local system of algebraically closed fields of characteristic p. When M is symplectic, maybe an F-field should remind you of a B-field, it can be used to change the Fukaya category in about the same way. On M = S^1 times R^3, this version of the Fukaya category is related to Deligne-Lusztig theory, and I found something like a cluster structure on the Deligne-Lusztig pairing varieties by studying it. On M = S^1 times S^1, Yanki Lekili and I have found that this version of the Fukaya category is related to the equal-characteristic version of the Fargues-Fontaine curve; the relationship is homological mirror symmetry.<br />
<br />
===Dean Baskin (Texas A&M)===<br />
<br />
Title: Radiation fields for wave equations<br />
<br />
Abstract: Radiation fields are rescaled limits of solutions of wave equations near "null infinity" and capture the radiation pattern seen by a distant observer. They are intimately connected with the Fourier and Radon transforms and with scattering theory. In this talk, I will define and discuss radiation fields in a few contexts, with an emphasis on spacetimes that look flat near infinity. The main result is a connection between the asymptotic behavior of the radiation field and a family of quantum objects on an associated asymptotically hyperbolic space.<br />
<br />
===Jianfeng Lu (Duke University)===<br />
<br />
Title: Density fitting: Analysis, algorithm and applications<br />
<br />
Abstract: Density fitting considers the low-rank approximation of pair products of eigenfunctions of Hamiltonian operators. It is a very useful tool with many applications in electronic structure theory. In this talk, we will discuss estimates of upper bound of the numerical rank of the pair products of eigenfunctions. We will also introduce the interpolative separable density fitting (ISDF) algorithm, which reduces the computational scaling of the low-rank approximation and can be used for efficient algorithms for electronic structure calculations. Based on joint works with Chris Sogge, Stefan Steinerberger, Kyle Thicke, and Lexing Ying.<br />
<br />
===Alexei Poltoratski (Texas A&M)===<br />
<br />
Title: Completeness of exponentials: Beurling-Malliavin and type problems<br />
<br />
Abstract: This talk is devoted to two old problems of harmonic analysis mentioned in the title. Both<br />
problems ask when a family of complex exponentials is complete (spans) an L^2-space. The Beruling-Malliavin<br />
problem was solved in the early 1960s and I will present its classical solution along with modern generalizations<br />
and applications. I will then discuss history and recent progress in the type problem, which stood open for<br />
more than 70 years.<br />
<br />
===Li-Cheng Tsai (Columbia University)===<br />
<br />
Title: When particle systems meet PDEs<br />
<br />
Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems.<br />
<br />
===Aaron Naber (Northwestern)===<br />
<br />
Title: A structure theory for spaces with lower Ricci curvature bounds.<br />
<br />
Abstract: One should view manifolds (M^n,g) with lower Ricci curvature bounds as being those manifolds with a well behaved analysis, a point which can be rigorously stated. It thus becomes a natural question, how well behaved or badly behaved can such spaces be? This is a nonlinear analogue to asking how degenerate can a subharmonic or plurisubharmonic function look like. In this talk we give an essentially sharp answer to this question. The talk will require little background, and our time will be spent on understanding the basic statements and examples. The work discussed is joint with Cheeger, Jiang and with Li.<br />
<br />
<br />
===Vladimir Sverak (Minnesota)===<br />
<br />
Title: PDE aspects of the Navier-Stokes equations and simpler models<br />
<br />
Abstract: Does the Navier-Stokes equation give a reasonably complete description of fluid motion? There seems to be no empirical evidence which would suggest a negative answer (in regimes which are not extreme), but from the purely mathematical point of view, the answer may not be so clear. In the lecture, I will discuss some of the possible scenarios and open problems for both the full equations and simplified models.<br />
<br />
<br />
===Jason McCullough (Iowa State)===<br />
<br />
Title: On the degrees and complexity of algebraic varieties<br />
<br />
Abstract: Given a system of polynomial equations in several variables, there are several natural questions regarding its associated solution set (algebraic variety): What is its dimension? Is it smooth or are there singularities? How is it embedded in affine/projective space? Free resolutions encode answers to all of these questions and are computable with modern computer algebra programs. This begs the question: can one bound the computational complexity of a variety in terms of readily available data? I will discuss two recently solved conjectures of Stillman and Eisenbud-Goto, how they relate to each other, and what they say about the complexity of algebraic varieties.<br />
<br />
===Maksym Radziwill (Caltech)===<br />
<br />
Title: Recent progress in multiplicative number theory<br />
<br />
Abstract: Multiplicative number theory aims to understand the ways in which integers factorize, and the distribution of integers with special multiplicative properties (such as primes). It is a central area of analytic number theory with various connections to L-functions, harmonic analysis, combinatorics, probability etc. At the core of the subject lie difficult questions such as the Riemann Hypothesis, and they set a benchmark for its accomplishments.<br />
An outstanding challenge in this field is to understand the multiplicative properties of integers linked by additive conditions, for instance n and n+ 1. A central conjecture making this precise is the Chowla-Elliott conjecture on correlations of multiplicative functions evaluated at consecutive integers. Until recently this conjecture appeared completely out of reach and was thought to be at least as difficult as showing the existence of infinitely many twin primes. These are also the kind of questions that lie beyond the capability of the Riemann Hypothesis. However recently the landscape of multiplicative number theory has been changing and we are no longer so certain about the limitations of our (new) tools. I will discuss the recent progress on these questions.<br />
<br />
===Jennifer Park (OSU)===<br />
<br />
Title: Rational points on varieties<br />
<br />
Abstract: The question of finding rational solutions to systems of polynomial equations has been investigated at least since the days of Pythagoras, but it is still not completely resolved (and in fact, it has been proven that there will never be an algorithm that answers this question!) Nonetheless, we will discuss various techniques that could answer this question in certain cases, and we will outline some conjectures related to this problem as well.<br />
<br />
<br />
===Eviatar Procaccia===<br />
<br />
Title: Can one hear the shape of a random walk?<br />
<br />
Abstract: We consider a Gibbs distribution over random walk paths on the square lattice, proportional to a random weight of the path’s boundary . We show that in the zero temperature limit, the paths condensate around an asymptotic shape. This limit shape is characterized as the minimizer of the functional, mapping open connected subsets of the plane to the sum of their principle eigenvalue and perimeter (with respect to the first passage percolation norm). A prime novel feature of this limit shape is that it is not in the class of Wulff shapes.<br />
Joint work with Marek Biskup (UCLA)<br />
<br />
===Jo Nelson (Rice)===<br />
<br />
Title: Contact Invariants and Reeb Dynamics<br />
<br />
Abstract: Contact geometry is the study of certain geometric structures on odd dimensional smooth manifolds. A contactstructure is a hyperplane field specified by a one form which satisfies a maximum nondegeneracy condition called complete non-integrability. The associated one form is called a contact form and uniquely determines a vector field called the Reeb vector field on the manifold. I will explain how to make use of J-holomorphic curves to obtain a Floer theoretic contact invariant, contact homology, whose chain complex is generated by closed Reeb orbits. In particular, I will explain the pitfalls in defining contact homology and discuss my work, in part joint with Hutchings, which provides rigorous constructions and applications to dynamics via geometric methods. This talk will feature numerous graphics to acclimate people to the realm of contact geometry. <br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17218Applied/Physical Applied Math2019-03-25T16:50:54Z<p>Jeanluc: /* Spring 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|<br />
|-<br />
|Apr. 25<br />
|John<br />
|<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17217Applied/Physical Applied Math2019-03-25T16:50:23Z<p>Jeanluc: /* Physical Applied Math Group Meeting */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|''Faculty Meeting''<br />
|<br />
|-<br />
|Apr. 4<br />
|Ruojun<br />
|<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|<br />
|-<br />
|Apr. 25<br />
|John<br />
|<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17150Applied/Physical Applied Math2019-03-13T15:24:45Z<p>Jeanluc: /* Spring 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|[https://www.springer.com/us/book/9781441916044 Diffusion across potential barriers]<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|Ruojun<br />
|<br />
|-<br />
|Apr. 4<br />
|''Faculty Meeting''<br />
|<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|<br />
|-<br />
|Apr. 25<br />
|John<br />
|<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17149Applied/Physical Applied Math2019-03-13T13:40:08Z<p>Jeanluc: /* Spring 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|Diffusion across potential barriers<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|Ruojun<br />
|<br />
|-<br />
|Apr. 4<br />
|''Faculty Meeting''<br />
|<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|<br />
|-<br />
|Apr. 18<br />
|Wangping<br />
|<br />
|-<br />
|Apr. 25<br />
|John<br />
|<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluchttps://www.math.wisc.edu/wiki/index.php?title=Applied/Physical_Applied_Math&diff=17148Applied/Physical Applied Math2019-03-13T13:35:42Z<p>Jeanluc: /* Spring 2019 */</p>
<hr />
<div>= Physical Applied Math Group Meeting =<br />
<br />
*'''When:''' Thursdays at 4:00pm (unless there is a departmental meeting)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~spagnolie Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the Physical Applied Math mailing list:''' See the [https://admin.lists.wisc.edu/index.php?p=11&l=phys_appl_math mailing list website].<br />
<br />
<br><br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 24<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Vortices in a channel<br />
|-<br />
|Feb. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 14<br />
|Yu<br />
|Suppression of phase separation by mixing<br />
|-<br />
|Feb. 21<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Feb. 28<br />
|Bryan<br />
|Riffles shuffles and mixing<br />
|-<br />
|Mar. 7<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Mar. 14<br />
|Hongfei<br />
|Diffusion across potential barriers<br />
|-<br />
|Mar. 21<br />
|<br />
|''Spring Break''<br />
|-<br />
|Mar. 28<br />
|Ruojun<br />
|<br />
|-<br />
|Apr. 4<br />
|Wangping<br />
|<br />
|-<br />
|Apr. 11<br />
|Jiajia<br />
|<br />
|-<br />
|Apr. 18<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Apr. 25<br />
|John<br />
|<br />
|-<br />
|May 2<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|}<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
|-<br />
|Jan. 31<br />
|Jean-Luc<br />
|Organizational meeting; J-LT speaks on Aldous and Diaconis, [https://www.ams.org/journals/bull/1999-36-04/S0273-0979-99-00796-X/ Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem]<br />
|-<br />
|Sep. 13<br />
|Son<br />
|[https://arxiv.org/abs/1808.06129 Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension]<br />
|-<br />
|Sep. 20<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Sep. 27<br />
|[https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)<br />
|[https://arxiv.org/abs/1806.03699 Dissipation enhancement by mixing]<br />
|-<br />
|Oct. 4<br />
|Gage<br />
|[https://www.dropbox.com/s/tjc4v03cwgzeppm/Group_talk_ab___notes.pdf Escape rates of random walks on free groups]<br />
|-<br />
|Oct. 11<br />
|<i>cancelled</i><br />
|<br />
|-<br />
|Oct. 18<br />
|Yu Feng<br />
|Relaxation enhancement for Advective Cahn-Hilliard (practice for specialty)<br />
|-<br />
|Oct. 25<br />
|Yu's specialty <b>2-3pm, B139</b><br />
|Relaxation enhancement for Advective Cahn-Hilliard<br />
|-<br />
|Nov. 1<br />
|Wil<br />
|Powers, [https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.1607; Dynamics of filaments and membranes in a viscous fluid]; Guven et al. [http://iopscience.iop.org/article/10.1088/1751-8113/47/35/355201/pdf Environmental bias and elastic curves on surfaces]<br />
|-<br />
|Nov. 8<br />
|Tom<br />
|[https://arxiv.org/abs/1809.01190 Mixing by jellyfish]<br />
|-<br />
|Nov. 15<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|Nov. 22<br />
|<br />
|''Thanksgiving Break''<br />
|-<br />
|Nov. 29<br />
|Chris<br />
|Sun et al., [https://www.sciencedirect.com/science/article/pii/S0167278911001588 A mathematical model for the synchronization of cows]<br />
|-<br />
|Dec. 6<br />
|<br />
|''Faculty Meeting''<br />
|-<br />
|'''Dec. 12, B239'''<br />
|Jean-Luc<br />
|Cooking food by flipping<br />
|-<br />
|Dec. 13<br />
|<br />
|''Faculty Meeting''<br />
|}<br />
<br />
== Archived semesters ==<br />
*[[Applied/Physical_Applied_Math/Spring2018|Spring 2018]]<br />
*[[Applied/Physical_Applied_Math/Fall2017|Fall 2017]]<br />
*[[Applied/Physical_Applied_Math/Spring2017|Spring 2017]]<br />
*[[Applied/Physical_Applied_Math/Fall2016|Fall 2016]]<br />
*[[Applied/Physical_Applied_Math/Spring2016|Spring 2016]]<br />
*[[Applied/Physical_Applied_Math/Fall2015|Fall 2015]]<br />
*[[Applied/Physical_Applied_Math/Spring2015|Spring 2015]]<br />
*[[Applied/Physical_Applied_Math/Summer2014|Summer 2014]]<br />
*[[Applied/Physical_Applied_Math/Spring2014|Spring 2014]]<br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Jeanluc