http://www.math.wisc.edu/wiki/api.php?action=feedcontributions&user=Qinli&feedformat=atomUW-Math Wiki - User contributions [en]2019-08-22T08:17:43ZUser contributionsMediaWiki 1.30.1http://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17616Applied/ACMS2019-08-06T15:21:09Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[https://isearch.asu.edu/profile/2169104 Joel Nishimura] (Arizona State)<br />
|''[[Applied/ACMS/absF19#Joel Nishimura (Arizona State)|TBA]]''<br />
| Cochran<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17596Applied/ACMS2019-07-31T14:19:29Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[https://www.gfdl.noaa.gov/mitch-bushuk/ Mitch Bushuk] (GFDL/Princeton)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| Chen<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| Li<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| Li<br />
|-<br />
| Oct 18<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| Li<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2020|Spring 2020]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Fall_2019-Spring_2020&diff=17586Fall 2019-Spring 20202019-07-26T18:58:10Z<p>Qinli: /* PDE GA Seminar Schedule Fall 2019-Spring 2020 */</p>
<hr />
<div>== PDE GA Seminar Schedule Fall 2019-Spring 2020 ==<br />
<br />
<br />
{| cellpadding="8"<br />
!style="width:20%" align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!style="width:20%" align="left" | host(s)<br />
|- <br />
|Sep 9<br />
| Scott Smith (UW Madison)<br />
|[[#Scott Smith | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 14-15<br />
| AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html<br />
|[[ # | ]]<br />
| <br />
|- <br />
|Sep 16<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Sep 23<br />
| Son Tu (UW Madison)<br />
|[[#Son Tu | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 30<br />
| Michael Loss (Georgia tech)<br />
|[[#Michael Loss | TBA ]]<br />
| Kim<br />
|- <br />
|Oct 7<br />
| Jin Woo Jang (Postech)<br />
|[[#Speaker | TBA ]]<br />
| Kim<br />
|- <br />
|Oct 14<br />
| Stefania Patrizi (UT Austin)<br />
|[[#Stefania Patrizi | TBA ]]<br />
| Tran<br />
|- <br />
|Oct 21<br />
| Claude Bardos (Université Paris Denis Diderot, France)<br />
|[[#Claude Bardos | From d'Alembert paradox to 1984 Kato criteria via 1941 1/3 Kolmogorov law and 1949 Onsager conjecture ]]<br />
| Li<br />
|- <br />
|Oct 28<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 4<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 11<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|- <br />
|- <br />
|- <br />
|Feb 17<br />
| Yannick Sire (JHU)<br />
|[[#Yannick Sire (JHU) | TBA ]]<br />
| Tran<br />
|- <br />
|Feb 24<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 2<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 9<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 16 <br />
| No seminar (spring break)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 23<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 30<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 6<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 13<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 20<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 27<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|}</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17581Applied/ACMS2019-07-24T16:06:42Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| Dec 6<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (Berkeley)<br />
|''[[Applied/ACMS/absF19#Lin Lin (UC Berkeley)|TBA]]''<br />
| host<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Fall_2019-Spring_2020&diff=17580Fall 2019-Spring 20202019-07-23T13:36:49Z<p>Qinli: /* PDE GA Seminar Schedule Fall 2019-Spring 2020 */</p>
<hr />
<div>== PDE GA Seminar Schedule Fall 2019-Spring 2020 ==<br />
<br />
<br />
{| cellpadding="8"<br />
!style="width:20%" align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!style="width:20%" align="left" | host(s)<br />
|- <br />
|Sep 9<br />
| Scott Smith (UW Madison)<br />
|[[#Scott Smith | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 14-15<br />
| AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html<br />
|[[ # | ]]<br />
| <br />
|- <br />
|Sep 16<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Sep 23<br />
| Son Tu (UW Madison)<br />
|[[#Son Tu | TBA ]]<br />
| Kim and Tran<br />
|- <br />
|Sep 30<br />
| Michael Loss (Georgia tech)<br />
|[[#Michael Loss | TBA ]]<br />
| Kim<br />
|- <br />
|Oct 7<br />
| Jin Woo Jang (Postech)<br />
|[[#Speaker | TBA ]]<br />
| Kim<br />
|- <br />
|Oct 14<br />
| Stefania Patrizi (UT Austin)<br />
|[[#Stefania Patrizi | TBA ]]<br />
| Tran<br />
|- <br />
|Oct 21<br />
| Claude Bardos (Paris)<br />
|[[#Claude Bardos | TBA ]]<br />
| Li<br />
|- <br />
|Oct 28<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 4<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|Nov 11<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|- <br />
|- <br />
|- <br />
|Feb 17<br />
| Yannick Sire (JHU)<br />
|[[#Yannick Sire (JHU) | TBA ]]<br />
| Tran<br />
|- <br />
|Feb 24<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 2<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 9<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 16 <br />
| No seminar (spring break)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 23<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|March 30<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 6<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 13<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 20<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|- <br />
|April 27<br />
| Speaker (Institute)<br />
|[[#Speaker | TBA ]]<br />
| Host<br />
|}</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17519Applied/ACMS2019-07-15T16:07:57Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[http://math.mit.edu/~lzepeda/ Leonardo Andrés Zepeda Núñez] (UW-Madison)<br />
|''[[Applied/ACMS/absF19#Leonardo Andrés Zepeda Núñez (UW-Madison)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[https://pan.labs.wisc.edu/staff/pan-wenxiao/ Wenxiao Pan] (UW)<br />
|''[[Applied/ACMS/absF19#Wenxiao Pan (UW)|TBA]]''<br />
| Spagnolie<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17510Applied/ACMS2019-07-06T18:40:36Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 14-15<br />
|[https://www.ams.org/meetings/sectional/2267_program.html AMS sectional meeting]<br />
| UW-Madison<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17509Applied/ACMS2019-07-06T18:37:43Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20 (colloquium, 4pm, B239)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17508Applied/ACMS2019-07-06T18:37:04Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20 (colloquium)<br />
|[https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke)<br />
|''[[Applied/ACMS/absF19#Jianfeng Lu (Duke)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17507Applied/ACMS2019-07-06T18:35:31Z<p>Qinli: /*Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li], [http://www.math.wisc.edu/~spagnolie/ Saverio Spagnolie] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept 6<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 13<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 20<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Sept 27<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 4<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
| Oct 11<br />
|[http://pi.math.cornell.edu/~ajt/ Alex Townsend] (Cornell)<br />
|''[[Applied/ACMS/absF19#Alex Townsend (Cornell)|TBA]]''<br />
| host<br />
|-<br />
| Oct 18<br />
|[webpage speaker] (institute)<br />
|''[[Applied/ACMS/absF19#speaker (institute)|TBA]]''<br />
| host<br />
|-<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/Spring2019&diff=17506Applied/ACMS/Spring20192019-07-06T18:31:59Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|Aggregation equations over bounded domains]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault] (UW-Madison, Math)<br />
|''[[Applied/ACMS/absS19#Jean-Luc Thiffeault (UW-Madison, Math)|The mathematics of burger flipping]]''<br />
| self-hosted<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|Stochastic persistence and extinction]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Mustafa Mohamad (NYU/Courant)|Strategies for extreme event quantification in intermittent dynamical systems]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|The Random Batch Method and its application to sampling]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|2-D Stokes Immersed Boundary Problem and its Regularizations: Well-posedness, Singular Limit, and Error Estimates]]''<br />
| Chen</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17489Colloquia2019-06-04T02:14:02Z<p>Qinli: /* Fall 2019 */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
<br />
<br />
==Fall 2019==<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Sept 6<br />
|<br />
|<br />
|-<br />
|Sept 13<br />
| Jan Soibelman (Kansas State)<br />
|[[# TBA| TBA ]]<br />
| Caldararu<br />
|<br />
|-<br />
|Sept 16 '''Monday Room 911'''<br />
| Alicia Dickenstein (Buenos Aires)<br />
|[[# TBA| TBA ]]<br />
| Craciun<br />
|<br />
|-<br />
|Sept 20<br />
| Jianfeng Lu (Duke)<br />
|[[#TBA | TBA]]<br />
| Qin<br />
|<br />
|-<br />
|Sept 27<br />
|<br />
|-<br />
|Oct 4<br />
|<br />
|-<br />
|Oct 11<br />
|<br />
|-<br />
|Oct 18<br />
|<br />
|-<br />
|Oct 25<br />
|<br />
|-<br />
|Nov 1<br />
|Possibly reserved for job talk?<br />
|<br />
|-<br />
|Nov 8<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 15<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 22<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Nov 29<br />
|Thanksgiving<br />
|<br />
|-<br />
|Dec 6<br />
|Reserved for job talk<br />
|<br />
|-<br />
|Dec 13<br />
|Reserved for job talk<br />
|<br />
|}<br />
<br />
==Spring 2020==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|<br />
|-<br />
|Jan 24<br />
|<br />
|-<br />
|Jan 31<br />
|<br />
|-<br />
|Feb 7<br />
|<br />
|-<br />
|Feb 14<br />
|<br />
|-<br />
|Feb 21<br />
|<br />
|-<br />
|Feb 28<br />
|<br />
|-<br />
|March 6<br />
|<br />
|-<br />
|March 13<br />
|<br />
|-<br />
|March 20<br />
|Spring break<br />
|<br />
|-<br />
|March 27<br />
|<br />
|-<br />
|April 3<br />
|<br />
|-<br />
|April 10<br />
|<br />
|-<br />
|April 17<br />
|<br />
|-<br />
|April 24<br />
|<br />
|-<br />
|May 1<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Person (Institution)===<br />
<br />
Title:<br />
<br />
Abstract:<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Spring2019|Spring 2019]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17341Colloquia2019-04-18T17:56:55Z<p>Qinli: /* Abstracts */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
==Spring 2019==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Jan 25 '''Room 911'''<br />
| [http://www.users.miamioh.edu/randrib/ Beata Randrianantoanina] (Miami University Ohio) WIMAW<br />
|[[#Beata Randrianantoanina (Miami University Ohio) | Some nonlinear problems in the geometry of Banach spaces and their applications ]]<br />
| Tullia Dymarz<br />
|<br />
|-<br />
|Jan 30 '''Wednesday'''<br />
| Talk rescheduled to Feb 15<br />
|<br />
|-<br />
|Jan 31 '''Thursday'''<br />
| Talk rescheduled to Feb 13<br />
|<br />
|-<br />
|Feb 1<br />
| Talk cancelled due to weather<br />
|<br />
| <br />
|<br />
|-<br />
|Feb 5 '''Tuesday, VV 911'''<br />
| [http://www.math.tamu.edu/~alexei.poltoratski/ Alexei Poltoratski] (Texas A&M University)<br />
|[[#Alexei Poltoratski (Texas A&M)| Completeness of exponentials: Beurling-Malliavin and type problems ]]<br />
| Denisov<br />
|<br />
|-<br />
|Feb 6 '''Wednesday, room 911'''<br />
| [https://lc-tsai.github.io/ Li-Cheng Tsai] (Columbia University)<br />
|[[#Li-Cheng Tsai (Columbia University)| When particle systems meet PDEs ]]<br />
| Anderson<br />
|<br />
|-<br />
|Feb 8<br />
| [https://sites.math.northwestern.edu/~anaber/ Aaron Naber] (Northwestern)<br />
|[[#Aaron Naber (Northwestern) | A structure theory for spaces with lower Ricci curvature bounds ]]<br />
| Street<br />
|<br />
|-<br />
|Feb 11 '''Monday'''<br />
| [https://www2.bc.edu/david-treumann/materials.html David Treumann] (Boston College)<br />
|[[#David Treumann (Boston College) | Twisting things in topology and symplectic topology by pth powers ]]<br />
| Caldararu<br />
|<br />
|-<br />
| Feb 13 '''Wednesday'''<br />
| [http://www.math.tamu.edu/~dbaskin/ Dean Baskin] (Texas A&M)<br />
|[[#Dean Baskin (Texas A&M) | Radiation fields for wave equations ]]<br />
| Street<br />
<br />
|-<br />
| Feb 15 <br />
| [https://services.math.duke.edu/~pierce/ Lillian Pierce] (Duke University)<br />
| [[#Lillian Pierce (Duke University) | Short character sums ]]<br />
| Boston and Street<br />
|<br />
|-<br />
|Feb 22<br />
| [https://people.math.osu.edu/cueto.5/ Angelica Cueto] (Ohio State)<br />
|[[#Angelica Cueto (The Ohio State University)| Lines on cubic surfaces in the tropics ]]<br />
| Erman and Corey<br />
|<br />
|-<br />
|March 4 '''Monday'''<br />
| [http://www-users.math.umn.edu/~sverak/ Vladimir Sverak] (Minnesota) <br />
|[[#Vladimir Sverak (Minnesota) | Wasow lecture "PDE aspects of the Navier-Stokes equations and simpler models" ]]<br />
| Kim<br />
|<br />
|-<br />
|March 8<br />
| [https://orion.math.iastate.edu/jmccullo/index.html Jason McCullough] (Iowa State)<br />
|[[#Jason McCullough (Iowa State)| On the degrees and complexity of algebraic varieties ]]<br />
| Erman<br />
|<br />
|-<br />
|March 15<br />
| <s>[http://www.its.caltech.edu/~maksym/ Maksym Radziwill] (Caltech)</s> <b>Talk cancelled</b><br />
|[[#Maksym Radziwill (Caltech) | <s>Recent progress in multiplicative number theory</s> ]]<br />
| Marshall<br />
|<br />
|-<br />
|March 29<br />
| Jennifer Park (OSU)<br />
|[[#Jennifer Park (OSU) | Rational points on varieties ]]<br />
| Marshall<br />
|<br />
|-<br />
|April 5<br />
| Ju-Lee Kim (MIT)<br />
|[[#Ju-Lee Kim (MIT) | Types and counting automorphic forms ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 12<br />
| Eviatar Procaccia (TAMU)<br />
|[[#Eviatar Procaccia | Can one hear the shape of a random walk? ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 19<br />
| [http://www.math.rice.edu/~jkn3/ Jo Nelson] (Rice University)<br />
|[[#Jo Nelson (Rice)| Contact Invariants and Reeb Dynamics ]]<br />
| Jean-Luc<br />
|<br />
|-<br />
|April 22 '''Monday'''<br />
| [https://justinh.su Justin Hsu] (Madison)<br />
|[[#Justin Hsu (Madison) | From Couplings to Probabilistic Relational Program Logics ]]<br />
| Lempp<br />
|<br />
|-<br />
|April 26<br />
| [https://www.brown.edu/academics/applied-mathematics/faculty/kavita-ramanan/home Kavita Ramanan] (Brown University)<br />
|[[# Kavita Ramanan (Brown) | Tales of Random Projections ]]<br />
| WIMAW<br />
|<br />
|-<br />
|May 3<br />
| Tomasz Przebinda (Oklahoma)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Beata Randrianantoanina (Miami University Ohio)===<br />
<br />
Title: Some nonlinear problems in the geometry of Banach spaces and their applications.<br />
<br />
Abstract: Nonlinear problems in the geometry of Banach spaces have been studied since the inception of the field. In this talk I will outline some of the history, some of modern applications, and some open directions of research. The talk will be accessible to graduate students of any field of mathematics.<br />
<br />
===Lillian Pierce (Duke University)===<br />
<br />
Title: Short character sums <br />
<br />
Abstract: A surprisingly diverse array of problems in analytic number theory have at their heart a problem of bounding (from above) an exponential sum, or its multiplicative cousin, a so-called character sum. For example, both understanding the Riemann zeta function or Dirichlet L-functions inside the critical strip, and also counting solutions to Diophantine equations via the circle method or power sieve methods, involve bounding such sums. In general, the sums of interest fall into one of two main regimes: complete sums or incomplete sums, with this latter regime including in particular “short sums.” Short sums are particularly useful, and particularly resistant to almost all known methods. In this talk, we will see what makes a sum “short,” sketch why it would be incredibly powerful to understand short sums, and discuss a curious proof from the 1950’s which is still the best way we know to bound short sums. We will end by describing new work which extends the ideas of this curious proof to bound short sums in much more general situations.<br />
<br />
===Angelica Cueto (The Ohio State University)===<br />
Title: Lines on cubic surfaces in the tropics<br />
<br />
Abstract: Since the beginning of tropical geometry, a persistent challenge has been to emulate tropical versions of classical results in algebraic geometry. The well-know statement <i>any smooth surface of degree three in P^3 contains exactly 27 lines</i> is known to be false tropically. Work of Vigeland from 2007 provides examples of tropical cubic surfaces with infinitely many lines and gives a classification of tropical lines on general smooth tropical surfaces in TP^3.<br />
<br />
In this talk I will explain how to correct this pathology by viewing the surface as a del Pezzo cubic and considering its embedding in P^44 via its anticanonical bundle. The combinatorics of the root system of type E_6 and a tropical notion of convexity will play a central role in the construction. This is joint work in progress with Anand Deopurkar.<br />
<br />
===David Treumann (Boston College)===<br />
<br />
Title: Twisting things in topology and symplectic topology by pth powers<br />
<br />
Abstract: There's an old and popular analogy between circles and finite fields. I'll describe some constructions you can make in Lagrangian Floer theory and in microlocal sheaf theory by taking this analogy extremely literally, the main ingredient is an "F-field." An F-field on a manifold M is a local system of algebraically closed fields of characteristic p. When M is symplectic, maybe an F-field should remind you of a B-field, it can be used to change the Fukaya category in about the same way. On M = S^1 times R^3, this version of the Fukaya category is related to Deligne-Lusztig theory, and I found something like a cluster structure on the Deligne-Lusztig pairing varieties by studying it. On M = S^1 times S^1, Yanki Lekili and I have found that this version of the Fukaya category is related to the equal-characteristic version of the Fargues-Fontaine curve; the relationship is homological mirror symmetry.<br />
<br />
===Dean Baskin (Texas A&M)===<br />
<br />
Title: Radiation fields for wave equations<br />
<br />
Abstract: Radiation fields are rescaled limits of solutions of wave equations near "null infinity" and capture the radiation pattern seen by a distant observer. They are intimately connected with the Fourier and Radon transforms and with scattering theory. In this talk, I will define and discuss radiation fields in a few contexts, with an emphasis on spacetimes that look flat near infinity. The main result is a connection between the asymptotic behavior of the radiation field and a family of quantum objects on an associated asymptotically hyperbolic space.<br />
<br />
===Jianfeng Lu (Duke University)===<br />
<br />
Title: Density fitting: Analysis, algorithm and applications<br />
<br />
Abstract: Density fitting considers the low-rank approximation of pair products of eigenfunctions of Hamiltonian operators. It is a very useful tool with many applications in electronic structure theory. In this talk, we will discuss estimates of upper bound of the numerical rank of the pair products of eigenfunctions. We will also introduce the interpolative separable density fitting (ISDF) algorithm, which reduces the computational scaling of the low-rank approximation and can be used for efficient algorithms for electronic structure calculations. Based on joint works with Chris Sogge, Stefan Steinerberger, Kyle Thicke, and Lexing Ying.<br />
<br />
===Alexei Poltoratski (Texas A&M)===<br />
<br />
Title: Completeness of exponentials: Beurling-Malliavin and type problems<br />
<br />
Abstract: This talk is devoted to two old problems of harmonic analysis mentioned in the title. Both<br />
problems ask when a family of complex exponentials is complete (spans) an L^2-space. The Beruling-Malliavin<br />
problem was solved in the early 1960s and I will present its classical solution along with modern generalizations<br />
and applications. I will then discuss history and recent progress in the type problem, which stood open for<br />
more than 70 years.<br />
<br />
===Li-Cheng Tsai (Columbia University)===<br />
<br />
Title: When particle systems meet PDEs<br />
<br />
Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems.<br />
<br />
===Aaron Naber (Northwestern)===<br />
<br />
Title: A structure theory for spaces with lower Ricci curvature bounds.<br />
<br />
Abstract: One should view manifolds (M^n,g) with lower Ricci curvature bounds as being those manifolds with a well behaved analysis, a point which can be rigorously stated. It thus becomes a natural question, how well behaved or badly behaved can such spaces be? This is a nonlinear analogue to asking how degenerate can a subharmonic or plurisubharmonic function look like. In this talk we give an essentially sharp answer to this question. The talk will require little background, and our time will be spent on understanding the basic statements and examples. The work discussed is joint with Cheeger, Jiang and with Li.<br />
<br />
<br />
===Vladimir Sverak (Minnesota)===<br />
<br />
Title: PDE aspects of the Navier-Stokes equations and simpler models<br />
<br />
Abstract: Does the Navier-Stokes equation give a reasonably complete description of fluid motion? There seems to be no empirical evidence which would suggest a negative answer (in regimes which are not extreme), but from the purely mathematical point of view, the answer may not be so clear. In the lecture, I will discuss some of the possible scenarios and open problems for both the full equations and simplified models.<br />
<br />
<br />
===Jason McCullough (Iowa State)===<br />
<br />
Title: On the degrees and complexity of algebraic varieties<br />
<br />
Abstract: Given a system of polynomial equations in several variables, there are several natural questions regarding its associated solution set (algebraic variety): What is its dimension? Is it smooth or are there singularities? How is it embedded in affine/projective space? Free resolutions encode answers to all of these questions and are computable with modern computer algebra programs. This begs the question: can one bound the computational complexity of a variety in terms of readily available data? I will discuss two recently solved conjectures of Stillman and Eisenbud-Goto, how they relate to each other, and what they say about the complexity of algebraic varieties.<br />
<br />
===Maksym Radziwill (Caltech)===<br />
<br />
Title: Recent progress in multiplicative number theory<br />
<br />
Abstract: Multiplicative number theory aims to understand the ways in which integers factorize, and the distribution of integers with special multiplicative properties (such as primes). It is a central area of analytic number theory with various connections to L-functions, harmonic analysis, combinatorics, probability etc. At the core of the subject lie difficult questions such as the Riemann Hypothesis, and they set a benchmark for its accomplishments.<br />
An outstanding challenge in this field is to understand the multiplicative properties of integers linked by additive conditions, for instance n and n+ 1. A central conjecture making this precise is the Chowla-Elliott conjecture on correlations of multiplicative functions evaluated at consecutive integers. Until recently this conjecture appeared completely out of reach and was thought to be at least as difficult as showing the existence of infinitely many twin primes. These are also the kind of questions that lie beyond the capability of the Riemann Hypothesis. However recently the landscape of multiplicative number theory has been changing and we are no longer so certain about the limitations of our (new) tools. I will discuss the recent progress on these questions.<br />
<br />
===Jennifer Park (OSU)===<br />
<br />
Title: Rational points on varieties<br />
<br />
Abstract: The question of finding rational solutions to systems of polynomial equations has been investigated at least since the days of Pythagoras, but it is still not completely resolved (and in fact, it has been proven that there will never be an algorithm that answers this question!) Nonetheless, we will discuss various techniques that could answer this question in certain cases, and we will outline some conjectures related to this problem as well.<br />
<br />
===Ju-Lee Kim (MIT)===<br />
<br />
Title: Types and counting automorphic forms<br />
<br />
Abstract: We review the theory of types in representations of p-adic groups and discuss some applications for quantifying automorphic forms.<br />
<br />
===Eviatar Procaccia===<br />
<br />
Title: Can one hear the shape of a random walk?<br />
<br />
Abstract: We consider a Gibbs distribution over random walk paths on the square lattice, proportional to a random weight of the path’s boundary . We show that in the zero temperature limit, the paths condensate around an asymptotic shape. This limit shape is characterized as the minimizer of the functional, mapping open connected subsets of the plane to the sum of their principle eigenvalue and perimeter (with respect to the first passage percolation norm). A prime novel feature of this limit shape is that it is not in the class of Wulff shapes.<br />
Joint work with Marek Biskup (UCLA)<br />
<br />
===Jo Nelson (Rice)===<br />
<br />
Title: Contact Invariants and Reeb Dynamics<br />
<br />
Abstract: Contact geometry is the study of certain geometric structures on odd dimensional smooth manifolds. A contactstructure is a hyperplane field specified by a one form which satisfies a maximum nondegeneracy condition called complete non-integrability. The associated one form is called a contact form and uniquely determines a vector field called the Reeb vector field on the manifold. I will explain how to make use of J-holomorphic curves to obtain a Floer theoretic contact invariant, contact homology, whose chain complex is generated by closed Reeb orbits. In particular, I will explain the pitfalls in defining contact homology and discuss my work, in part joint with Hutchings, which provides rigorous constructions and applications to dynamics via geometric methods. This talk will feature numerous graphics to acclimate people to the realm of contact geometry. <br />
<br />
===Justin Hsu (Madison)===<br />
<br />
Title: From Couplings to Probabilistic Relational Program Logics<br />
<br />
Abstract: Many program properties are relational, comparing the behavior of a program (or even two different programs) on two different inputs. While researchers have developed various techniques for verifying such properties for standard, deterministic programs, relational properties for probabilistic programs have been more challenging. In this talk, I will survey recent developments targeting a range of probabilistic relational properties, with motivations from privacy, cryptography, and machine learning. The key idea is to meld relational program logics with an idea from probability theory, called probabilistic couplings. The logics allow a highly compositional and surprisingly general style of program analysis, supporting clean proofs for a broad array of probabilistic relational properties.<br />
<br />
=== Kavita Ramanan (Brown) ===<br />
Title: Tales of Random Projections<br />
<br />
Abstract: The interplay between geometry and probability in high-dimensional spaces is a subject of active research. Classical theorems in probability theory such as the central limit theorem and Cramer’s theorem can be viewed as providing information about certain scalar projections of high-dimensional product measures. In this talk we will describe the behavior of random projections of more general (possibly non-product) high-dimensional measures, which are of interest in diverse fields, ranging from asymptotic convex geometry to high-dimensional statistics. Although the study of (typical) projections of high-dimensional measures dates back to Borel, only recently has a theory begun to emerge, which in particular identifies the role of certain geometric assumptions that lead to better behaved projections. A particular question of interest is to identify what properties of the high-dimensional measure are captured by its lower-dimensional projections. While fluctuations of these projections have been studied over the past decade, we describe more recent work on the tail behavior of multidimensional projections, and associated conditional limit theorems.<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=17340Colloquia2019-04-18T17:55:59Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
==Spring 2019==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Jan 25 '''Room 911'''<br />
| [http://www.users.miamioh.edu/randrib/ Beata Randrianantoanina] (Miami University Ohio) WIMAW<br />
|[[#Beata Randrianantoanina (Miami University Ohio) | Some nonlinear problems in the geometry of Banach spaces and their applications ]]<br />
| Tullia Dymarz<br />
|<br />
|-<br />
|Jan 30 '''Wednesday'''<br />
| Talk rescheduled to Feb 15<br />
|<br />
|-<br />
|Jan 31 '''Thursday'''<br />
| Talk rescheduled to Feb 13<br />
|<br />
|-<br />
|Feb 1<br />
| Talk cancelled due to weather<br />
|<br />
| <br />
|<br />
|-<br />
|Feb 5 '''Tuesday, VV 911'''<br />
| [http://www.math.tamu.edu/~alexei.poltoratski/ Alexei Poltoratski] (Texas A&M University)<br />
|[[#Alexei Poltoratski (Texas A&M)| Completeness of exponentials: Beurling-Malliavin and type problems ]]<br />
| Denisov<br />
|<br />
|-<br />
|Feb 6 '''Wednesday, room 911'''<br />
| [https://lc-tsai.github.io/ Li-Cheng Tsai] (Columbia University)<br />
|[[#Li-Cheng Tsai (Columbia University)| When particle systems meet PDEs ]]<br />
| Anderson<br />
|<br />
|-<br />
|Feb 8<br />
| [https://sites.math.northwestern.edu/~anaber/ Aaron Naber] (Northwestern)<br />
|[[#Aaron Naber (Northwestern) | A structure theory for spaces with lower Ricci curvature bounds ]]<br />
| Street<br />
|<br />
|-<br />
|Feb 11 '''Monday'''<br />
| [https://www2.bc.edu/david-treumann/materials.html David Treumann] (Boston College)<br />
|[[#David Treumann (Boston College) | Twisting things in topology and symplectic topology by pth powers ]]<br />
| Caldararu<br />
|<br />
|-<br />
| Feb 13 '''Wednesday'''<br />
| [http://www.math.tamu.edu/~dbaskin/ Dean Baskin] (Texas A&M)<br />
|[[#Dean Baskin (Texas A&M) | Radiation fields for wave equations ]]<br />
| Street<br />
<br />
|-<br />
| Feb 15 <br />
| [https://services.math.duke.edu/~pierce/ Lillian Pierce] (Duke University)<br />
| [[#Lillian Pierce (Duke University) | Short character sums ]]<br />
| Boston and Street<br />
|<br />
|-<br />
|Feb 22<br />
| [https://people.math.osu.edu/cueto.5/ Angelica Cueto] (Ohio State)<br />
|[[#Angelica Cueto (The Ohio State University)| Lines on cubic surfaces in the tropics ]]<br />
| Erman and Corey<br />
|<br />
|-<br />
|March 4 '''Monday'''<br />
| [http://www-users.math.umn.edu/~sverak/ Vladimir Sverak] (Minnesota) <br />
|[[#Vladimir Sverak (Minnesota) | Wasow lecture "PDE aspects of the Navier-Stokes equations and simpler models" ]]<br />
| Kim<br />
|<br />
|-<br />
|March 8<br />
| [https://orion.math.iastate.edu/jmccullo/index.html Jason McCullough] (Iowa State)<br />
|[[#Jason McCullough (Iowa State)| On the degrees and complexity of algebraic varieties ]]<br />
| Erman<br />
|<br />
|-<br />
|March 15<br />
| <s>[http://www.its.caltech.edu/~maksym/ Maksym Radziwill] (Caltech)</s> <b>Talk cancelled</b><br />
|[[#Maksym Radziwill (Caltech) | <s>Recent progress in multiplicative number theory</s> ]]<br />
| Marshall<br />
|<br />
|-<br />
|March 29<br />
| Jennifer Park (OSU)<br />
|[[#Jennifer Park (OSU) | Rational points on varieties ]]<br />
| Marshall<br />
|<br />
|-<br />
|April 5<br />
| Ju-Lee Kim (MIT)<br />
|[[#Ju-Lee Kim (MIT) | Types and counting automorphic forms ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 12<br />
| Eviatar Procaccia (TAMU)<br />
|[[#Eviatar Procaccia | Can one hear the shape of a random walk? ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 19<br />
| [http://www.math.rice.edu/~jkn3/ Jo Nelson] (Rice University)<br />
|[[#Jo Nelson (Rice)| Contact Invariants and Reeb Dynamics ]]<br />
| Jean-Luc<br />
|<br />
|-<br />
|April 22 '''Monday'''<br />
| [https://justinh.su Justin Hsu] (Madison)<br />
|[[#Justin Hsu (Madison) | From Couplings to Probabilistic Relational Program Logics ]]<br />
| Lempp<br />
|<br />
|-<br />
|April 26<br />
| [https://www.brown.edu/academics/applied-mathematics/faculty/kavita-ramanan/home Kavita Ramanan] (Brown University)<br />
|[[# Kavita Ramanan (Brown) | Tales of Random Projections ]]<br />
| WIMAW<br />
|<br />
|-<br />
|May 3<br />
| Tomasz Przebinda (Oklahoma)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Beata Randrianantoanina (Miami University Ohio)===<br />
<br />
Title: Some nonlinear problems in the geometry of Banach spaces and their applications.<br />
<br />
Abstract: Nonlinear problems in the geometry of Banach spaces have been studied since the inception of the field. In this talk I will outline some of the history, some of modern applications, and some open directions of research. The talk will be accessible to graduate students of any field of mathematics.<br />
<br />
===Lillian Pierce (Duke University)===<br />
<br />
Title: Short character sums <br />
<br />
Abstract: A surprisingly diverse array of problems in analytic number theory have at their heart a problem of bounding (from above) an exponential sum, or its multiplicative cousin, a so-called character sum. For example, both understanding the Riemann zeta function or Dirichlet L-functions inside the critical strip, and also counting solutions to Diophantine equations via the circle method or power sieve methods, involve bounding such sums. In general, the sums of interest fall into one of two main regimes: complete sums or incomplete sums, with this latter regime including in particular “short sums.” Short sums are particularly useful, and particularly resistant to almost all known methods. In this talk, we will see what makes a sum “short,” sketch why it would be incredibly powerful to understand short sums, and discuss a curious proof from the 1950’s which is still the best way we know to bound short sums. We will end by describing new work which extends the ideas of this curious proof to bound short sums in much more general situations.<br />
<br />
===Angelica Cueto (The Ohio State University)===<br />
Title: Lines on cubic surfaces in the tropics<br />
<br />
Abstract: Since the beginning of tropical geometry, a persistent challenge has been to emulate tropical versions of classical results in algebraic geometry. The well-know statement <i>any smooth surface of degree three in P^3 contains exactly 27 lines</i> is known to be false tropically. Work of Vigeland from 2007 provides examples of tropical cubic surfaces with infinitely many lines and gives a classification of tropical lines on general smooth tropical surfaces in TP^3.<br />
<br />
In this talk I will explain how to correct this pathology by viewing the surface as a del Pezzo cubic and considering its embedding in P^44 via its anticanonical bundle. The combinatorics of the root system of type E_6 and a tropical notion of convexity will play a central role in the construction. This is joint work in progress with Anand Deopurkar.<br />
<br />
===David Treumann (Boston College)===<br />
<br />
Title: Twisting things in topology and symplectic topology by pth powers<br />
<br />
Abstract: There's an old and popular analogy between circles and finite fields. I'll describe some constructions you can make in Lagrangian Floer theory and in microlocal sheaf theory by taking this analogy extremely literally, the main ingredient is an "F-field." An F-field on a manifold M is a local system of algebraically closed fields of characteristic p. When M is symplectic, maybe an F-field should remind you of a B-field, it can be used to change the Fukaya category in about the same way. On M = S^1 times R^3, this version of the Fukaya category is related to Deligne-Lusztig theory, and I found something like a cluster structure on the Deligne-Lusztig pairing varieties by studying it. On M = S^1 times S^1, Yanki Lekili and I have found that this version of the Fukaya category is related to the equal-characteristic version of the Fargues-Fontaine curve; the relationship is homological mirror symmetry.<br />
<br />
===Dean Baskin (Texas A&M)===<br />
<br />
Title: Radiation fields for wave equations<br />
<br />
Abstract: Radiation fields are rescaled limits of solutions of wave equations near "null infinity" and capture the radiation pattern seen by a distant observer. They are intimately connected with the Fourier and Radon transforms and with scattering theory. In this talk, I will define and discuss radiation fields in a few contexts, with an emphasis on spacetimes that look flat near infinity. The main result is a connection between the asymptotic behavior of the radiation field and a family of quantum objects on an associated asymptotically hyperbolic space.<br />
<br />
===Jianfeng Lu (Duke University)===<br />
<br />
Title: Density fitting: Analysis, algorithm and applications<br />
<br />
Abstract: Density fitting considers the low-rank approximation of pair products of eigenfunctions of Hamiltonian operators. It is a very useful tool with many applications in electronic structure theory. In this talk, we will discuss estimates of upper bound of the numerical rank of the pair products of eigenfunctions. We will also introduce the interpolative separable density fitting (ISDF) algorithm, which reduces the computational scaling of the low-rank approximation and can be used for efficient algorithms for electronic structure calculations. Based on joint works with Chris Sogge, Stefan Steinerberger, Kyle Thicke, and Lexing Ying.<br />
<br />
===Alexei Poltoratski (Texas A&M)===<br />
<br />
Title: Completeness of exponentials: Beurling-Malliavin and type problems<br />
<br />
Abstract: This talk is devoted to two old problems of harmonic analysis mentioned in the title. Both<br />
problems ask when a family of complex exponentials is complete (spans) an L^2-space. The Beruling-Malliavin<br />
problem was solved in the early 1960s and I will present its classical solution along with modern generalizations<br />
and applications. I will then discuss history and recent progress in the type problem, which stood open for<br />
more than 70 years.<br />
<br />
===Li-Cheng Tsai (Columbia University)===<br />
<br />
Title: When particle systems meet PDEs<br />
<br />
Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems.<br />
<br />
===Aaron Naber (Northwestern)===<br />
<br />
Title: A structure theory for spaces with lower Ricci curvature bounds.<br />
<br />
Abstract: One should view manifolds (M^n,g) with lower Ricci curvature bounds as being those manifolds with a well behaved analysis, a point which can be rigorously stated. It thus becomes a natural question, how well behaved or badly behaved can such spaces be? This is a nonlinear analogue to asking how degenerate can a subharmonic or plurisubharmonic function look like. In this talk we give an essentially sharp answer to this question. The talk will require little background, and our time will be spent on understanding the basic statements and examples. The work discussed is joint with Cheeger, Jiang and with Li.<br />
<br />
<br />
===Vladimir Sverak (Minnesota)===<br />
<br />
Title: PDE aspects of the Navier-Stokes equations and simpler models<br />
<br />
Abstract: Does the Navier-Stokes equation give a reasonably complete description of fluid motion? There seems to be no empirical evidence which would suggest a negative answer (in regimes which are not extreme), but from the purely mathematical point of view, the answer may not be so clear. In the lecture, I will discuss some of the possible scenarios and open problems for both the full equations and simplified models.<br />
<br />
<br />
===Jason McCullough (Iowa State)===<br />
<br />
Title: On the degrees and complexity of algebraic varieties<br />
<br />
Abstract: Given a system of polynomial equations in several variables, there are several natural questions regarding its associated solution set (algebraic variety): What is its dimension? Is it smooth or are there singularities? How is it embedded in affine/projective space? Free resolutions encode answers to all of these questions and are computable with modern computer algebra programs. This begs the question: can one bound the computational complexity of a variety in terms of readily available data? I will discuss two recently solved conjectures of Stillman and Eisenbud-Goto, how they relate to each other, and what they say about the complexity of algebraic varieties.<br />
<br />
===Maksym Radziwill (Caltech)===<br />
<br />
Title: Recent progress in multiplicative number theory<br />
<br />
Abstract: Multiplicative number theory aims to understand the ways in which integers factorize, and the distribution of integers with special multiplicative properties (such as primes). It is a central area of analytic number theory with various connections to L-functions, harmonic analysis, combinatorics, probability etc. At the core of the subject lie difficult questions such as the Riemann Hypothesis, and they set a benchmark for its accomplishments.<br />
An outstanding challenge in this field is to understand the multiplicative properties of integers linked by additive conditions, for instance n and n+ 1. A central conjecture making this precise is the Chowla-Elliott conjecture on correlations of multiplicative functions evaluated at consecutive integers. Until recently this conjecture appeared completely out of reach and was thought to be at least as difficult as showing the existence of infinitely many twin primes. These are also the kind of questions that lie beyond the capability of the Riemann Hypothesis. However recently the landscape of multiplicative number theory has been changing and we are no longer so certain about the limitations of our (new) tools. I will discuss the recent progress on these questions.<br />
<br />
===Jennifer Park (OSU)===<br />
<br />
Title: Rational points on varieties<br />
<br />
Abstract: The question of finding rational solutions to systems of polynomial equations has been investigated at least since the days of Pythagoras, but it is still not completely resolved (and in fact, it has been proven that there will never be an algorithm that answers this question!) Nonetheless, we will discuss various techniques that could answer this question in certain cases, and we will outline some conjectures related to this problem as well.<br />
<br />
===Ju-Lee Kim (MIT)===<br />
<br />
Title: Types and counting automorphic forms<br />
<br />
Abstract: We review the theory of types in representations of p-adic groups and discuss some applications for quantifying automorphic forms.<br />
<br />
===Eviatar Procaccia===<br />
<br />
Title: Can one hear the shape of a random walk?<br />
<br />
Abstract: We consider a Gibbs distribution over random walk paths on the square lattice, proportional to a random weight of the path’s boundary . We show that in the zero temperature limit, the paths condensate around an asymptotic shape. This limit shape is characterized as the minimizer of the functional, mapping open connected subsets of the plane to the sum of their principle eigenvalue and perimeter (with respect to the first passage percolation norm). A prime novel feature of this limit shape is that it is not in the class of Wulff shapes.<br />
Joint work with Marek Biskup (UCLA)<br />
<br />
===Jo Nelson (Rice)===<br />
<br />
Title: Contact Invariants and Reeb Dynamics<br />
<br />
Abstract: Contact geometry is the study of certain geometric structures on odd dimensional smooth manifolds. A contactstructure is a hyperplane field specified by a one form which satisfies a maximum nondegeneracy condition called complete non-integrability. The associated one form is called a contact form and uniquely determines a vector field called the Reeb vector field on the manifold. I will explain how to make use of J-holomorphic curves to obtain a Floer theoretic contact invariant, contact homology, whose chain complex is generated by closed Reeb orbits. In particular, I will explain the pitfalls in defining contact homology and discuss my work, in part joint with Hutchings, which provides rigorous constructions and applications to dynamics via geometric methods. This talk will feature numerous graphics to acclimate people to the realm of contact geometry. <br />
<br />
===Justin Hsu (Madison)===<br />
<br />
Title: From Couplings to Probabilistic Relational Program Logics<br />
<br />
Abstract: Many program properties are relational, comparing the behavior of a program (or even two different programs) on two different inputs. While researchers have developed various techniques for verifying such properties for standard, deterministic programs, relational properties for probabilistic programs have been more challenging. In this talk, I will survey recent developments targeting a range of probabilistic relational properties, with motivations from privacy, cryptography, and machine learning. The key idea is to meld relational program logics with an idea from probability theory, called probabilistic couplings. The logics allow a highly compositional and surprisingly general style of program analysis, supporting clean proofs for a broad array of probabilistic relational properties.<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17092Applied/ACMS2019-03-03T02:33:48Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|Aggregation equations over bounded domains]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault] (UW-Madison, Math)<br />
|''[[Applied/ACMS/absS19#Jean-Luc Thiffeault (UW-Madison, Math)|The mathematics of burger flipping]]''<br />
| self-hosted<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=17091Applied/ACMS/absS192019-03-03T02:33:04Z<p>Qinli: /* Weiran Sun (Simon Fraser University) */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Chung-Nan Tzou (UW-Madison, Math)===<br />
''Fluid Models with Sharp Interfaces - Clouds and Plumes''<br />
<br />
In this talk, I will discuss two models describing the interaction of fluids across sharp interfaces. The first model is a discontinuous Poisson equation where the interfacial discontinuity arises from phase changes such as the interior and exterior of a cloud. A simple second-order numerical scheme aiming at solving this type of equations is proposed and tested. The second model is a simplified system of ODEs describing the mixing of jets and plumes with the ambient fluid. With the ambient density profile being sharply stratified, we established a criterion for a plume to be trapped underwater or rise to the top surface and also showed that this profile is the optimal mixer. This theory has been applied to the Gulf of Mexico oil spill incident and also compared with the data we collected through hands-on experiments in the fluids lab.<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.<br />
<br />
=== Kui Ren (Columbia Applied math and UT-Austin Mathematics) ===<br />
''Uncertainty Characterization in Model-Based Inverse and Imaging Problems''<br />
<br />
In model-based inverse and imaging problems, it is often the case that only a portion of the relevant physical quantities in the model can be reconstructed/imaged. The rest of the model parameters are assumed to be known. In practice, these parameters are often only known partially (up to a certain accuracy). It is therefore important to characterize the dependence of the inversion/imaging results on the accuracy of these parameters. This is an uncertainty quantification problem that is challenging due to the fact that both the map from the uncertainty parameters (the ones we assumed partially known) to the measured data and the map from the measured data to the quantities to be imaged are difficult to analyze. In this talk, we review some recent computaitonal and mathematical results on such uncertainty characterization problems in nonlinear inverse problems for PDEs.<br />
<br />
=== Nicolas Garcia Trillos (UW-Madison, statistics) ===<br />
''Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs''<br />
<br />
Given a data set $\mathcal{X}=\{x_1, \dots, x_n\}$ and a weighted graph structure $\Gamma= (\mathcal{X},W)$ on $\mathcal{X}$, graph based methods for learning use analytical notions like graph Laplacians, graph cuts, and Sobolev semi-norms to formulate optimization problems whose solutions serve as sensible approaches to machine learning tasks. When the data set consists of samples from a distribution supported on a manifold (or at least approximately so), and the weights depend inversely on the distance between the points, a natural question to study concerns the behavior of those optimization problems as the number of samples goes to infinity. In this talk I will focus on optimization problems closely connected to clustering and supervised regression that involve the graph Laplacian. For clustering, the spectrum of the graph Laplacian is the fundamental object used in the popular spectral clustering algorithm. For regression, the solution to a semilinear elliptic PDE on the graph provides the minimizer of an energy balancing regularization and data fidelity, a sensible object to use in non-parametric regression. <br />
Using tools from optimal transport, calculus of variations, and analysis of PDEs, I will discuss a series of results establishing the asymptotic consistency (with rates of convergence) of many of these analytical objects, as well as provide some perspectives on future research directions.<br />
<br />
=== Weiran Sun (Simon Fraser University) ===<br />
''Aggregation equations over bounded domains''<br />
<br />
Numerical computations have shown that due to the boundary effect, solutions of aggregation equations can evolve into non-energy minimizing states. Meanwhile, adding a small noise seems to bypass such non- energy minimizers. This motivates our study of aggregation equations over bounded domains. In this talk we will use basic probabilistic methods to show well-posedness and mean-field limits of aggregation equations with singular potentials (such as the Newtonian potential). We will also show the zero-diffusion limit of aggregations equations over bounded domains and obtain a convergence rate that is consistent with what has been observed in numerical simulations. This is joint work with Razvan Fetecau, Hui Huang, and Daniel Messenger.<br />
<br />
=== Jean-Luc Thiffeault (UW-Madison, Math) ===<br />
<br />
''The mathematics of burger flipping''<br />
<br />
Ever since the dawn of time people have (literally) asked the question<br />
&mdash; what is the most effective way to grill food? Timing is<br />
everything, since only one surface is exposed to heat at a given time.<br />
Should we flip only once, or many times? I will show a simple model<br />
of cooking by flipping, and some interesting mathematics will emerge.<br />
The rate of cooking depends on the spectrum of a linear operator, and<br />
on the fixed point of a map. If the system is symmetric, the rate of<br />
cooking becomes independent of the sequence of flips, as long as the<br />
last point to be cooked is the midpoint. This toy problem has some<br />
characteristics reminiscent of more realistic scenarios, such as<br />
thermal convection and heat exchangers.</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=17090Applied/ACMS/absS192019-03-03T02:32:51Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Chung-Nan Tzou (UW-Madison, Math)===<br />
''Fluid Models with Sharp Interfaces - Clouds and Plumes''<br />
<br />
In this talk, I will discuss two models describing the interaction of fluids across sharp interfaces. The first model is a discontinuous Poisson equation where the interfacial discontinuity arises from phase changes such as the interior and exterior of a cloud. A simple second-order numerical scheme aiming at solving this type of equations is proposed and tested. The second model is a simplified system of ODEs describing the mixing of jets and plumes with the ambient fluid. With the ambient density profile being sharply stratified, we established a criterion for a plume to be trapped underwater or rise to the top surface and also showed that this profile is the optimal mixer. This theory has been applied to the Gulf of Mexico oil spill incident and also compared with the data we collected through hands-on experiments in the fluids lab.<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.<br />
<br />
=== Kui Ren (Columbia Applied math and UT-Austin Mathematics) ===<br />
''Uncertainty Characterization in Model-Based Inverse and Imaging Problems''<br />
<br />
In model-based inverse and imaging problems, it is often the case that only a portion of the relevant physical quantities in the model can be reconstructed/imaged. The rest of the model parameters are assumed to be known. In practice, these parameters are often only known partially (up to a certain accuracy). It is therefore important to characterize the dependence of the inversion/imaging results on the accuracy of these parameters. This is an uncertainty quantification problem that is challenging due to the fact that both the map from the uncertainty parameters (the ones we assumed partially known) to the measured data and the map from the measured data to the quantities to be imaged are difficult to analyze. In this talk, we review some recent computaitonal and mathematical results on such uncertainty characterization problems in nonlinear inverse problems for PDEs.<br />
<br />
=== Nicolas Garcia Trillos (UW-Madison, statistics) ===<br />
''Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs''<br />
<br />
Given a data set $\mathcal{X}=\{x_1, \dots, x_n\}$ and a weighted graph structure $\Gamma= (\mathcal{X},W)$ on $\mathcal{X}$, graph based methods for learning use analytical notions like graph Laplacians, graph cuts, and Sobolev semi-norms to formulate optimization problems whose solutions serve as sensible approaches to machine learning tasks. When the data set consists of samples from a distribution supported on a manifold (or at least approximately so), and the weights depend inversely on the distance between the points, a natural question to study concerns the behavior of those optimization problems as the number of samples goes to infinity. In this talk I will focus on optimization problems closely connected to clustering and supervised regression that involve the graph Laplacian. For clustering, the spectrum of the graph Laplacian is the fundamental object used in the popular spectral clustering algorithm. For regression, the solution to a semilinear elliptic PDE on the graph provides the minimizer of an energy balancing regularization and data fidelity, a sensible object to use in non-parametric regression. <br />
Using tools from optimal transport, calculus of variations, and analysis of PDEs, I will discuss a series of results establishing the asymptotic consistency (with rates of convergence) of many of these analytical objects, as well as provide some perspectives on future research directions.<br />
<br />
=== Weiran Sun (Simon Fraser University) ===<br />
''Aggregation equations over bounded domains'<br />
<br />
Numerical computations have shown that due to the boundary effect, solutions of aggregation equations can evolve into non-energy minimizing states. Meanwhile, adding a small noise seems to bypass such non- energy minimizers. This motivates our study of aggregation equations over bounded domains. In this talk we will use basic probabilistic methods to show well-posedness and mean-field limits of aggregation equations with singular potentials (such as the Newtonian potential). We will also show the zero-diffusion limit of aggregations equations over bounded domains and obtain a convergence rate that is consistent with what has been observed in numerical simulations. This is joint work with Razvan Fetecau, Hui Huang, and Daniel Messenger.<br />
<br />
=== Jean-Luc Thiffeault (UW-Madison, Math) ===<br />
<br />
''The mathematics of burger flipping''<br />
<br />
Ever since the dawn of time people have (literally) asked the question<br />
&mdash; what is the most effective way to grill food? Timing is<br />
everything, since only one surface is exposed to heat at a given time.<br />
Should we flip only once, or many times? I will show a simple model<br />
of cooking by flipping, and some interesting mathematics will emerge.<br />
The rate of cooking depends on the spectrum of a linear operator, and<br />
on the fixed point of a map. If the system is symmetric, the rate of<br />
cooking becomes independent of the sequence of flips, as long as the<br />
last point to be cooked is the midpoint. This toy problem has some<br />
characteristics reminiscent of more realistic scenarios, such as<br />
thermal convection and heat exchangers.</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17089Applied/ACMS2019-03-03T02:31:26Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|AGGREGATION EQUATIONS OVER BOUNDED DOMAINS]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault] (UW-Madison, Math)<br />
|''[[Applied/ACMS/absS19#Jean-Luc Thiffeault (UW-Madison, Math)|The mathematics of burger flipping]]''<br />
| self-hosted<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=17082Applied/ACMS/absS192019-03-02T00:12:32Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Chung-Nan Tzou (UW-Madison, Math)===<br />
''Fluid Models with Sharp Interfaces - Clouds and Plumes''<br />
<br />
In this talk, I will discuss two models describing the interaction of fluids across sharp interfaces. The first model is a discontinuous Poisson equation where the interfacial discontinuity arises from phase changes such as the interior and exterior of a cloud. A simple second-order numerical scheme aiming at solving this type of equations is proposed and tested. The second model is a simplified system of ODEs describing the mixing of jets and plumes with the ambient fluid. With the ambient density profile being sharply stratified, we established a criterion for a plume to be trapped underwater or rise to the top surface and also showed that this profile is the optimal mixer. This theory has been applied to the Gulf of Mexico oil spill incident and also compared with the data we collected through hands-on experiments in the fluids lab.<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.<br />
<br />
=== Kui Ren (Columbia Applied math and UT-Austin Mathematics) ===<br />
''Uncertainty Characterization in Model-Based Inverse and Imaging Problems''<br />
<br />
In model-based inverse and imaging problems, it is often the case that only a portion of the relevant physical quantities in the model can be reconstructed/imaged. The rest of the model parameters are assumed to be known. In practice, these parameters are often only known partially (up to a certain accuracy). It is therefore important to characterize the dependence of the inversion/imaging results on the accuracy of these parameters. This is an uncertainty quantification problem that is challenging due to the fact that both the map from the uncertainty parameters (the ones we assumed partially known) to the measured data and the map from the measured data to the quantities to be imaged are difficult to analyze. In this talk, we review some recent computaitonal and mathematical results on such uncertainty characterization problems in nonlinear inverse problems for PDEs.<br />
<br />
=== Nicolas Garcia Trillos (UW-Madison, statistics) ===<br />
''Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs''<br />
<br />
Given a data set $\mathcal{X}=\{x_1, \dots, x_n\}$ and a weighted graph structure $\Gamma= (\mathcal{X},W)$ on $\mathcal{X}$, graph based methods for learning use analytical notions like graph Laplacians, graph cuts, and Sobolev semi-norms to formulate optimization problems whose solutions serve as sensible approaches to machine learning tasks. When the data set consists of samples from a distribution supported on a manifold (or at least approximately so), and the weights depend inversely on the distance between the points, a natural question to study concerns the behavior of those optimization problems as the number of samples goes to infinity. In this talk I will focus on optimization problems closely connected to clustering and supervised regression that involve the graph Laplacian. For clustering, the spectrum of the graph Laplacian is the fundamental object used in the popular spectral clustering algorithm. For regression, the solution to a semilinear elliptic PDE on the graph provides the minimizer of an energy balancing regularization and data fidelity, a sensible object to use in non-parametric regression. <br />
Using tools from optimal transport, calculus of variations, and analysis of PDEs, I will discuss a series of results establishing the asymptotic consistency (with rates of convergence) of many of these analytical objects, as well as provide some perspectives on future research directions.</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17081Applied/ACMS2019-03-02T00:11:26Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|Large sample asymptotics of spectra of Laplacians and semilinear elliptic PDEs on random geometric graphs]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17078Applied/ACMS2019-03-01T23:21:23Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=17067Applied/ACMS2019-02-28T16:41:35Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|canceled]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.duke.edu/people/hau-tieng-wu Hau-tieng Wu] (Duke)<br />
|''[[Applied/ACMS/absS19#Hau-tieng Wu (Duke)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16924Applied/ACMS/absS192019-02-14T02:44:35Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Chung-Nan Tzou (UW-Madison, Math)===<br />
''Fluid Models with Sharp Interfaces - Clouds and Plumes''<br />
<br />
In this talk, I will discuss two models describing the interaction of fluids across sharp interfaces. The first model is a discontinuous Poisson equation where the interfacial discontinuity arises from phase changes such as the interior and exterior of a cloud. A simple second-order numerical scheme aiming at solving this type of equations is proposed and tested. The second model is a simplified system of ODEs describing the mixing of jets and plumes with the ambient fluid. With the ambient density profile being sharply stratified, we established a criterion for a plume to be trapped underwater or rise to the top surface and also showed that this profile is the optimal mixer. This theory has been applied to the Gulf of Mexico oil spill incident and also compared with the data we collected through hands-on experiments in the fluids lab.<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.<br />
<br />
=== Kui Ren (Columbia Applied math and UT-Austin Mathematics) ===<br />
''Uncertainty Characterization in Model-Based Inverse and Imaging Problems''<br />
<br />
In model-based inverse and imaging problems, it is often the case that only a portion of the relevant physical quantities in the model can be reconstructed/imaged. The rest of the model parameters are assumed to be known. In practice, these parameters are often only known partially (up to a certain accuracy). It is therefore important to characterize the dependence of the inversion/imaging results on the accuracy of these parameters. This is an uncertainty quantification problem that is challenging due to the fact that both the map from the uncertainty parameters (the ones we assumed partially known) to the measured data and the map from the measured data to the quantities to be imaged are difficult to analyze. In this talk, we review some recent computaitonal and mathematical results on such uncertainty characterization problems in nonlinear inverse problems for PDEs.</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16923Applied/ACMS2019-02-14T02:43:26Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|Uncertainty Characterization in Model-Based Inverse and Imaging Problems]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.duke.edu/people/hau-tieng-wu Hau-tieng Wu] (Duke)<br />
|''[[Applied/ACMS/absS19#Hau-tieng Wu (Duke)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16839Applied/ACMS2019-02-06T04:55:35Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.duke.edu/people/hau-tieng-wu Hau-tieng Wu] (Duke)<br />
|''[[Applied/ACMS/absS19#Hau-tieng Wu (Duke)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16817Applied/ACMS/absS192019-02-04T18:56:04Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Chung-Nan Tzou (UW-Madison, Math)===<br />
''Fluid Models with Sharp Interfaces - Clouds and Plumes''<br />
<br />
In this talk, I will discuss two models describing the interaction of fluids across sharp interfaces. The first model is a discontinuous Poisson equation where the interfacial discontinuity arises from phase changes such as the interior and exterior of a cloud. A simple second-order numerical scheme aiming at solving this type of equations is proposed and tested. The second model is a simplified system of ODEs describing the mixing of jets and plumes with the ambient fluid. With the ambient density profile being sharply stratified, we established a criterion for a plume to be trapped underwater or rise to the top surface and also showed that this profile is the optimal mixer. This theory has been applied to the Gulf of Mexico oil spill incident and also compared with the data we collected through hands-on experiments in the fluids lab.<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning'''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16816Applied/ACMS2019-02-04T18:54:41Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|Fluid Models with Sharp Interfaces - Clouds and Plumes]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16781Applied/ACMS/absS192019-01-30T04:05:57Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Amy Cochran (UW-Madison, Math and Medical Informatics) ===<br />
''A model of online latent state learning'''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16780Applied/ACMS/absS192019-01-30T04:05:13Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Amy Cochran (UW-Madison, math and medical school) ===<br />
''A model of online latent state learning'''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16779Applied/ACMS/absS192019-01-30T04:04:56Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792<br />
<br />
=== Amy Cochran (UW-Madison, math and medical school) ==<br />
''A model of online latent state learning'''<br />
<br />
Researchers are increasingly interested in how humans perform a structured form of learning known as latent-state inferences. Latent state inferences refer to someone's ability to weigh competing hypotheses about one’s environment. Critically, this type of learning can help explain behavior and neural activity important to cognitive neuroscience and psychiatry. In this talk, I will first present a model of latent state learning that uses online, or recursive, updates. I will also discuss open questions related to this topic in hopes of generating discussion. Ultimately, I would like to engage students interested in the emerging area of computational psychiatry, as I will be joining the math department as an assistant professor in the Fall.</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16778Applied/ACMS2019-01-30T04:04:01Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|A model of online latent state learning]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16769Applied/ACMS/absS192019-01-29T18:45:18Z<p>Qinli: /* ACMS Abstracts: Spring 2019 */</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.<br />
<br />
=== Abhishek Deshpande (UW-Madison, math) ===<br />
''Switches in chemical and biological networks''<br />
<br />
Switches are ubiquitous in both chemical and biological circuits. We explore the behaviour of autocatalytic switches in the context of the persistence conjecture. We show that networks without autocatalytic switches are persistent. The notion of a “critical siphon” forms the connecting link between autocatalysis and persistence. The talk will expand upon this connection.<br />
<br />
<br />
Swtiches are also relevant from a biological perspective. We show that catalytic switches help in reducing retroactivity - the back effect on the upstream system when connected to the downstream system. In addition, for certain catalytic networks like the push-pull motif, high rates of energy consumption are not required to attenuate retroactivity. One can accomplish this by reducing the coupling to the push-pull motif. However, this reduction in coupling is not robust to cross-talk caused by leak reactions.<br />
<br />
<br />
References:<br />
1) https://arxiv.org/abs/1309.3957<br />
2) https://arxiv.org/abs/1708.01792</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16768Applied/ACMS2019-01-29T18:44:02Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Switches in chemical and biological networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=16737Colloquia2019-01-25T19:42:06Z<p>Qinli: /* Abstracts */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
==Spring 2019==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Jan 25 '''Room 911'''<br />
| [http://www.users.miamioh.edu/randrib/ Beata Randrianantoanina] (Miami University Ohio) WIMAW<br />
|[[#Beata Randrianantoanina (Miami University Ohio) | Some nonlinear problems in the geometry of Banach spaces and their applications ]]<br />
| Tullia Dymarz<br />
|<br />
|-<br />
|Jan 30 '''Wednesday'''<br />
| [https://services.math.duke.edu/~pierce/ Lillian Pierce] (Duke University)<br />
|[[#Lillian Pierce (Duke University) | Short character sums ]]<br />
| Boston and Street<br />
|<br />
|-<br />
|Jan 31 '''Thursday'''<br />
| [http://www.math.tamu.edu/~dbaskin/ Dean Baskin] (Texas A&M)<br />
|[[#Dean Baskin (Texas A&M) | Radiation fields for wave equations ]]<br />
| Street<br />
|<br />
|-<br />
|Feb 1<br />
| [https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke University)<br />
|[[#Jianfeng Lu (Duke)| Density fitting: Analysis, algorithm and applications ]]<br />
| Qin<br />
|<br />
|-<br />
|Feb 5 '''Tuesday'''<br />
| [http://www.math.tamu.edu/~alexei.poltoratski/ Alexei Poltoratski] (Texas A&M University)<br />
|[[# TBA| TBA ]]<br />
| Denisov<br />
|<br />
|-<br />
|Feb 8<br />
| [https://sites.math.northwestern.edu/~anaber/ Aaron Naber] (Northwestern)<br />
|[[#Aaron Naber (Northwestern) | A structure theory for spaces with lower Ricci curvature bounds ]]<br />
| Street<br />
|<br />
|-<br />
|Feb 15<br />
| <br />
|[[# TBA| TBA ]]<br />
| <br />
|<br />
|-<br />
|Feb 22<br />
| [https://people.math.osu.edu/cueto.5/ Angelica Cueto] (Ohio State)<br />
|[[# TBA| TBA ]]<br />
| Erman and Corey<br />
|<br />
|-<br />
|March 4<br />
| [http://www-users.math.umn.edu/~sverak/ Vladimir Sverak] (Minnesota) Wasow lecture<br />
|[[# TBA| TBA ]]<br />
| Kim<br />
|<br />
|-<br />
|March 8<br />
| [https://orion.math.iastate.edu/jmccullo/index.html Jason McCullough] (Iowa State)<br />
|[[# TBA| TBA ]]<br />
| Erman<br />
|<br />
|-<br />
|March 15<br />
| Maksym Radziwill (Caltech)<br />
|[[# TBA| TBA ]]<br />
| Marshall<br />
|<br />
|-<br />
|March 29<br />
| Jennifer Park (OSU)<br />
|[[# TBA| TBA ]]<br />
| Marshall<br />
|<br />
|-<br />
|April 5<br />
| Ju-Lee Kim (MIT)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 12<br />
| Evitar Procaccia (TAMU)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 19<br />
| [http://www.math.rice.edu/~jkn3/ Jo Nelson] (Rice University)<br />
|[[# TBA| TBA ]]<br />
| Jean-Luc<br />
|<br />
|-<br />
|April 26<br />
| [https://www.brown.edu/academics/applied-mathematics/faculty/kavita-ramanan/home Kavita Ramanan] (Brown University)<br />
|[[# TBA| TBA ]]<br />
| WIMAW<br />
|<br />
|-<br />
|May 3<br />
| Tomasz Przebinda (Oklahoma)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Beata Randrianantoanina (Miami University Ohio)===<br />
<br />
Title: Some nonlinear problems in the geometry of Banach spaces and their applications.<br />
<br />
Abstract: Nonlinear problems in the geometry of Banach spaces have been studied since the inception of the field. In this talk I will outline some of the history, some of modern applications, and some open directions of research. The talk will be accessible to graduate students of any field of mathematics.<br />
<br />
===Lillian Pierce (Duke University)===<br />
<br />
Title: Short character sums <br />
<br />
Abstract: A surprisingly diverse array of problems in analytic number theory have at their heart a problem of bounding (from above) an exponential sum, or its multiplicative cousin, a so-called character sum. For example, both understanding the Riemann zeta function or Dirichlet L-functions inside the critical strip, and also counting solutions to Diophantine equations via the circle method or power sieve methods, involve bounding such sums. In general, the sums of interest fall into one of two main regimes: complete sums or incomplete sums, with this latter regime including in particular “short sums.” Short sums are particularly useful, and particularly resistant to almost all known methods. In this talk, we will see what makes a sum “short,” sketch why it would be incredibly powerful to understand short sums, and discuss a curious proof from the 1950’s which is still the best way we know to bound short sums. We will end by describing new work which extends the ideas of this curious proof to bound short sums in much more general situations.<br />
<br />
===Dean Baskin (Texas A&M)===<br />
<br />
Title: Radiation fields for wave equations<br />
<br />
Abstract: Radiation fields are rescaled limits of solutions of wave equations near "null infinity" and capture the radiation pattern seen by a distant observer. They are intimately connected with the Fourier and Radon transforms and with scattering theory. In this talk, I will define and discuss radiation fields in a few contexts, with an emphasis on spacetimes that look flat near infinity. The main result is a connection between the asymptotic behavior of the radiation field and a family of quantum objects on an associated asymptotically hyperbolic space.<br />
<br />
===Jianfeng Lu (Duke University)===<br />
<br />
Title: Density fitting: Analysis, algorithm and applications<br />
<br />
Abstract: Density fitting considers the low-rank approximation of pair products of eigenfunctions of Hamiltonian operators. It is a very useful tool with many applications in electronic structure theory. In this talk, we will discuss estimates of upper bound of the numerical rank of the pair products of eigenfunctions. We will also introduce the interpolative separable density fitting (ISDF) algorithm, which reduces the computational scaling of the low-rank approximation and can be used for efficient algorithms for electronic structure calculations. Based on joint works with Chris Sogge, Stefan Steinerberger, Kyle Thicke, and Lexing Ying.<br />
<br />
===Aaron Naber (Northwestern)===<br />
<br />
Title: A structure theory for spaces with lower Ricci curvature bounds.<br />
<br />
Abstract: One should view manifolds (M^n,g) with lower Ricci curvature bounds as being those manifolds with a well behaved analysis, a point which can be rigorously stated. It thus becomes a natural question, how well behaved or badly behaved can such spaces be? This is a nonlinear analogue to asking how degenerate can a subharmonic or plurisubharmonic function look like. In this talk we give an essentially sharp answer to this question. The talk will require little background, and our time will be spent on understanding the basic statements and examples. The work discussed is joint with Cheeger, Jiang and with Li.<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Colloquia&diff=16736Colloquia2019-01-25T19:40:50Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>= Mathematics Colloquium =<br />
<br />
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.<br />
<br />
==Spring 2019==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date <br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
|Jan 25 '''Room 911'''<br />
| [http://www.users.miamioh.edu/randrib/ Beata Randrianantoanina] (Miami University Ohio) WIMAW<br />
|[[#Beata Randrianantoanina (Miami University Ohio) | Some nonlinear problems in the geometry of Banach spaces and their applications ]]<br />
| Tullia Dymarz<br />
|<br />
|-<br />
|Jan 30 '''Wednesday'''<br />
| [https://services.math.duke.edu/~pierce/ Lillian Pierce] (Duke University)<br />
|[[#Lillian Pierce (Duke University) | Short character sums ]]<br />
| Boston and Street<br />
|<br />
|-<br />
|Jan 31 '''Thursday'''<br />
| [http://www.math.tamu.edu/~dbaskin/ Dean Baskin] (Texas A&M)<br />
|[[#Dean Baskin (Texas A&M) | Radiation fields for wave equations ]]<br />
| Street<br />
|<br />
|-<br />
|Feb 1<br />
| [https://services.math.duke.edu/~jianfeng/ Jianfeng Lu] (Duke University)<br />
|[[#Jianfeng Lu (Duke)| Density fitting: Analysis, algorithm and applications ]]<br />
| Qin<br />
|<br />
|-<br />
|Feb 5 '''Tuesday'''<br />
| [http://www.math.tamu.edu/~alexei.poltoratski/ Alexei Poltoratski] (Texas A&M University)<br />
|[[# TBA| TBA ]]<br />
| Denisov<br />
|<br />
|-<br />
|Feb 8<br />
| [https://sites.math.northwestern.edu/~anaber/ Aaron Naber] (Northwestern)<br />
|[[#Aaron Naber (Northwestern) | A structure theory for spaces with lower Ricci curvature bounds ]]<br />
| Street<br />
|<br />
|-<br />
|Feb 15<br />
| <br />
|[[# TBA| TBA ]]<br />
| <br />
|<br />
|-<br />
|Feb 22<br />
| [https://people.math.osu.edu/cueto.5/ Angelica Cueto] (Ohio State)<br />
|[[# TBA| TBA ]]<br />
| Erman and Corey<br />
|<br />
|-<br />
|March 4<br />
| [http://www-users.math.umn.edu/~sverak/ Vladimir Sverak] (Minnesota) Wasow lecture<br />
|[[# TBA| TBA ]]<br />
| Kim<br />
|<br />
|-<br />
|March 8<br />
| [https://orion.math.iastate.edu/jmccullo/index.html Jason McCullough] (Iowa State)<br />
|[[# TBA| TBA ]]<br />
| Erman<br />
|<br />
|-<br />
|March 15<br />
| Maksym Radziwill (Caltech)<br />
|[[# TBA| TBA ]]<br />
| Marshall<br />
|<br />
|-<br />
|March 29<br />
| Jennifer Park (OSU)<br />
|[[# TBA| TBA ]]<br />
| Marshall<br />
|<br />
|-<br />
|April 5<br />
| Ju-Lee Kim (MIT)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 12<br />
| Evitar Procaccia (TAMU)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|-<br />
|April 19<br />
| [http://www.math.rice.edu/~jkn3/ Jo Nelson] (Rice University)<br />
|[[# TBA| TBA ]]<br />
| Jean-Luc<br />
|<br />
|-<br />
|April 26<br />
| [https://www.brown.edu/academics/applied-mathematics/faculty/kavita-ramanan/home Kavita Ramanan] (Brown University)<br />
|[[# TBA| TBA ]]<br />
| WIMAW<br />
|<br />
|-<br />
|May 3<br />
| Tomasz Przebinda (Oklahoma)<br />
|[[# TBA| TBA ]]<br />
| Gurevich<br />
|<br />
|}<br />
<br />
== Abstracts ==<br />
<br />
===Beata Randrianantoanina (Miami University Ohio)===<br />
<br />
Title: Some nonlinear problems in the geometry of Banach spaces and their applications.<br />
<br />
Abstract: Nonlinear problems in the geometry of Banach spaces have been studied since the inception of the field. In this talk I will outline some of the history, some of modern applications, and some open directions of research. The talk will be accessible to graduate students of any field of mathematics.<br />
<br />
===Lillian Pierce (Duke University)===<br />
<br />
Title: Short character sums <br />
<br />
Abstract: A surprisingly diverse array of problems in analytic number theory have at their heart a problem of bounding (from above) an exponential sum, or its multiplicative cousin, a so-called character sum. For example, both understanding the Riemann zeta function or Dirichlet L-functions inside the critical strip, and also counting solutions to Diophantine equations via the circle method or power sieve methods, involve bounding such sums. In general, the sums of interest fall into one of two main regimes: complete sums or incomplete sums, with this latter regime including in particular “short sums.” Short sums are particularly useful, and particularly resistant to almost all known methods. In this talk, we will see what makes a sum “short,” sketch why it would be incredibly powerful to understand short sums, and discuss a curious proof from the 1950’s which is still the best way we know to bound short sums. We will end by describing new work which extends the ideas of this curious proof to bound short sums in much more general situations.<br />
<br />
===Dean Baskin (Texas A&M)===<br />
<br />
Title: Radiation fields for wave equations<br />
<br />
Abstract: Radiation fields are rescaled limits of solutions of wave equations near "null infinity" and capture the radiation pattern seen by a distant observer. They are intimately connected with the Fourier and Radon transforms and with scattering theory. In this talk, I will define and discuss radiation fields in a few contexts, with an emphasis on spacetimes that look flat near infinity. The main result is a connection between the asymptotic behavior of the radiation field and a family of quantum objects on an associated asymptotically hyperbolic space.<br />
<br />
===Aaron Naber (Northwestern)===<br />
<br />
Title: A structure theory for spaces with lower Ricci curvature bounds.<br />
<br />
Abstract: One should view manifolds (M^n,g) with lower Ricci curvature bounds as being those manifolds with a well behaved analysis, a point which can be rigorously stated. It thus becomes a natural question, how well behaved or badly behaved can such spaces be? This is a nonlinear analogue to asking how degenerate can a subharmonic or plurisubharmonic function look like. In this talk we give an essentially sharp answer to this question. The talk will require little background, and our time will be spent on understanding the basic statements and examples. The work discussed is joint with Cheeger, Jiang and with Li.<br />
<br />
<br />
== Past Colloquia ==<br />
<br />
[[Colloquia/Blank|Blank]]<br />
<br />
[[Colloquia/Fall2018|Fall 2018]]<br />
<br />
[[Colloquia/Spring2018|Spring 2018]]<br />
<br />
[[Colloquia/Fall2017|Fall 2017]]<br />
<br />
[[Colloquia/Spring2017|Spring 2017]]<br />
<br />
[[Archived Fall 2016 Colloquia|Fall 2016]]<br />
<br />
[[Colloquia/Spring2016|Spring 2016]]<br />
<br />
[[Colloquia/Fall2015|Fall 2015]]<br />
<br />
[[Colloquia/Spring2014|Spring 2015]]<br />
<br />
[[Colloquia/Fall2014|Fall 2014]]<br />
<br />
[[Colloquia/Spring2014|Spring 2014]]<br />
<br />
[[Colloquia/Fall2013|Fall 2013]]<br />
<br />
[[Colloquia 2012-2013|Spring 2013]]<br />
<br />
[[Colloquia 2012-2013#Fall 2012|Fall 2012]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16732Applied/ACMS2019-01-25T17:08:04Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|Autocatalysis in reaction networks]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16718Applied/ACMS2019-01-25T14:44:24Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absS19&diff=16676Applied/ACMS/absS192019-01-22T15:43:11Z<p>Qinli: Created page with "= ACMS Abstracts: Spring 2019 = === Jerry Zhu (University of Wisconsin-Madison, CS) === ''Machine Teaching: Optimal Control of Machine Learning'' As machine learning is incr..."</p>
<hr />
<div>= ACMS Abstracts: Spring 2019 =<br />
<br />
=== Jerry Zhu (University of Wisconsin-Madison, CS) ===<br />
''Machine Teaching: Optimal Control of Machine Learning''<br />
<br />
As machine learning is increasingly adopted in science and engineering, it becomes important to take a higher level view where the machine learner is only one of the agents in a multi-agent system. Other agents may have an incentive to control the learner. As examples, in adversarial machine learning an attacker can poison the training data to manipulate the model the learner learns; in education a teacher can optimize the curriculum to enhance student (modeled as a computational learning algorithm) performance. Machine teaching is optimal control theory applied to machine learning: the plant is the learner, the state is the learned model, and the control is the training data. In this talk I survey the mathematical foundation of machine teaching and the new research frontiers opened up by this confluence of machine learning and control theory.</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16673Applied/ACMS2019-01-22T14:52:49Z<p>Qinli: /* Fall 2018 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|-<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/Spring2019&diff=16672Applied/ACMS/Spring20192019-01-22T14:51:12Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|Machine Teaching: Optimal Control of Machine Learning]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[https://www.math.wisc.edu/~deshpande/ Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[https://sites.tufts.edu/hening/ Alexandru Hening] (Tufts University)<br />
|''[[Applied/ACMS/absS19#Alexandru Hening (Tufts University)|title TBA]]''<br />
| Craciun<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|-</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/Spring2019&diff=16565Applied/ACMS/Spring20192018-12-14T14:44:40Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|title]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[http://www.sfu.ca/~weirans/ Weiran Sun] (Simon Fraser)<br />
|''[[Applied/ACMS/absS19#Weiran Sun (Simon Fraser)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|-</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/Spring2019&diff=16564Applied/ACMS/Spring20192018-12-13T23:13:33Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|title]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|-</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/Spring2019&diff=16563Applied/ACMS/Spring20192018-12-13T23:13:15Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|title]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[website Abhishek Deshpande] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Abhishek Deshpande (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|-</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/Spring2019&diff=16560Applied/ACMS/Spring20192018-12-12T15:49:56Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|title]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[https://sites.google.com/site/amylouisecochran/ Amy Cochran] (UW-Madison, Math and Medical Informatics)<br />
|''[[Applied/ACMS/absS19#Amy Cochran (UW-Madison, Math and Medical Informatics)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[https://scholar.google.com/citations?user=85z4Cl4AAAAJ&hl=en Mustafa Mohamad] (NYU/Courant)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| Chen<br />
|-<br />
| Apr 12<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[http://ins.sjtu.edu.cn/people/leili/ Lei Li] (Shanghai Jiao Tong University)<br />
|''[[Applied/ACMS/absS19#Lei Li (Shanghai Jiao Tong University)|TBA]]''<br />
| Spagnolie<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|-</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF18&diff=16538Applied/ACMS/absF182018-12-06T20:23:04Z<p>Qinli: /* ACMS Abstracts: Fall 2018 */</p>
<hr />
<div>= ACMS Abstracts: Fall 2018 =<br />
<br />
=== Ting Zhou (Northeastern University) ===<br />
''Nonparaxial near-nondiffracting accelerating optical beams''<br />
<br />
We show that new families of accelerating and almost nondiffracting beams (solutions) for Maxwell’s equations can be constructed. These are complex geometrical optics (CGO) solutions to Maxwell’s equations with nonlinear limiting Carleman weights. They have the form of wave packets that propagate along circular trajectories while almost preserving a transverse intensity profile. We also show similar waves constructed using the approach combining CGO solutions and the Kelvin transform.<br />
<br />
<br />
=== Daniel Sanz-Alonso (University of Chicago) ===<br />
''Discrete and Continuous Learning in Information and Geophysical Sciences''<br />
<br />
The formulation of Bayesian inverse problems in function space has led to new theoretical and computational developments, providing improved understanding on regularization techniques and suggesting new scalable algorithms. The approach has found numerous applications throughout the geophysical and medical sciences, where interest often lies in recovering an unknown field defined on a physical domain. Learning problems in the information sciences, in contrast, typically seek to recover functions defined on discrete point clouds. My talk will have two parts. In the first one, I will prove that in certain large data limit, discrete learning problems converge to a continuous one, thus allowing to transfer scalable Markov chain Monte Carlo methodology developed in the geophysical sciences to novel applications in the information sciences. In the second part I will introduce a fully Bayesian, data-driven methodology to discretize complex forward models with the specific goal of solving inverse problems. This methodology has the potential of producing cheap surrogates that still allow for satisfactory input reconstruction.<br />
<br />
=== Nan Chen (University of Wisconsin-Madison) ===<br />
''A simple stochastic model for El Nino with westerly wind bursts and the prediction of super El Nino events''<br />
<br />
Atmospheric wind bursts in the tropics play a key role in the dynamics of the El Nino Southern Oscillation (ENSO). A simple modeling framework is proposed that summarizes this relationship and captures major features of the observational record while remaining physically consistent and amenable to detailed analysis. Within this simple framework, wind burst activity evolves according to a stochastic two-state Markov switching–diffusion process that depends on the strength of the western Pacific warm pool, and is coupled to simple ocean–atmosphere processes that are otherwise deterministic, stable, and linear. A simple model with this parameterization and no additional nonlinearities reproduces a realistic ENSO cycle with intermittent El Nino and La Nina events of varying intensity and strength as well as realistic buildup and shutdown of wind burst activity in the western Pacific. The wind burst activity has a direct causal effect on the ENSO variability: in particular, it intermittently triggers regular El Nino or La Nina events, super El Nino events, or no events at all, which enables the model to capture observed ENSO statistics such as the probability density function and power spectrum of eastern Pacific sea surface temperatures. The present framework is then applied to understand the mechanism of different super El Ninos. In particular, the framework is used to simulate and analyze the two famous super El Nino events in 1997-1998 and 2014-2016, with the conclusion that the delayed super El Nino events in 2014-2016 are not necessarily unusual in the tropical Pacific despite not appearing in the recent observational record and could reoccur in the future.<br />
<br />
=== Sulian Thual (Fudan University) ===<br />
''A Stochastic Skeleton Model for the Madden-Julian Oscillation and El Nino-Southern Oscillation''<br />
<br />
A broad range of random atmospheric disturbances in the tropics may be considered as possible<br />
triggers to the El Niño Southern Oscillation (ENSO), such as for example westerly wind bursts, easterly wind bursts, as well as the convective envelope of the Madden-Julian Oscillation (MJO). Here a simple dynamical stochastic model for the tropical ocean-atmosphere is proposed that captures those processes as well as their multiscale interactions. Realistic features include for the first time altogether the MJO wavenumber-frequency power spectra, eastward propagation, structure and confinement to the warm pool region and similarly for atmospheric Kelvin and Rossby equatorial waves, in addition to the ENSO intermittency, power spectrum and non-Gaussian statistics of sea surface temperatures, among others.<br />
<br />
Importantly, intraseasonal atmospheric disturbances such as the MJO are here solved dynamically which renders more explicit their upscale contribution to the interannual flow as well as their modulation in return. First, the background red noise spectrum of atmospheric disturbances rather than their individual characteristics is shown to be most important for the triggering of the ENSO. Second, the onset, strength and demise of El Niño events is linked to the increase and eastward expansion of atmospheric disturbances eastward of the warm pool region. The present framework serves as a prototype for general circulation models that solve similar dynamical interactions on several spatial and temporal scales.<br />
<br />
=== Matthew Thorpe (Cambridge University) ===<br />
''Continuum Limits of Semi-Supervised Learning on Graphs''<br />
<br />
Given a data set $\{x_i\}_{i=1}^n$ with labels $\{y_i\}_{i=1}^N$ on the first $N$ data points the goal of semi-supervised is to infer labels on the remaining $\{x_i\}_{i=N+1}^n$ data points. In this talk we use a random geometric graph model with connection radius $r(n)$. The framework is to consider objective functions which reward the regularity of the estimator function and impose or reward the agreement with the training data, more specifically we will consider discrete p-Laplacian and fractional Laplacian regularization.<br />
<br />
The talk concerns the asymptotic behaviour in the limit where the number of unlabelled points increases while the number of training points remains fixed. The results are to uncover a delicate interplay between the regularizing nature of the functionals considered and the nonlocality inherent to the graph constructions. I will give almost optimal ranges on the scaling of $r(n)$ for asymptotic consistency to hold. Furthermore, I will setup the Bayesian interpretation of this problem.<br />
<br />
This is joint work with Matt Dunlop (Caltech), Dejan Slepcev (CMU) and Andrew Stuart (Caltech).<br />
<br />
=== Fei Lu (Johns Hopkins University) ===<br />
''Data-informed stochastic model reduction for complex dynamical systems''<br />
<br />
The need to develop reduced nonlinear statistical-dynamical models from time series of partial observations of complex systems arises in many applications such as geophysics, biology and engineering. The challenges come mainly from memory effects due to the nonlinear interactions between resolved and unresolved scales, and from the difficulty in inference from discrete data.<br />
<br />
To address these challenges, we introduce a discrete-time stochastic parametrization framework, in which we infer nonlinear autoregression moving average (NARMA) type models to take the memory effects into account. We show by examples that the NARMA type stochastic reduced models that can capture the key statistical and dynamical properties, and therefore can improve the performance of ensemble prediction in data assimilation. The examples include the Lorenz 96 system (which is a simplified model of the global atmosphere) and the Kuramoto-Sivashinsky equation of spatiotemporally chaotic dynamics. Applications of this inference approach to model reduction for stochastic Burgers equations will be discussed. <br />
<br />
<br />
=== Matthew Dixon (Illinois Institute of Technology) ===<br />
<br />
''"Quantum Equilibrium-Disequilibrium”: Asset Price Dynamics, Symmetry Breaking and Defaults as Dissipative Instantons''<br />
<br />
We propose a simple non-equilibrium model of a financial market as an open system with a possible exchange of money with an outside world and market frictions (trade impacts) incorporated into asset price dynamics via a feedback mechanism. Using a linear market impact model, this produces a non-linear two-parametric extension of the classical Geometric Brownian Motion (GBM) model, that we call the ”Quantum Equilibrium-Disequilibrium” model. Our model gives rise to non-linear mean-reverting dynamics, broken scale invariance, and corporate defaults. In the simplest one-stock (1D) formulation, our parsimonious model has only one degree of freedom, yet calibrates to both equity returns and credit default swap spreads. Defaults and market crashes are associated with dissipative tunneling events, and correspond to instanton (saddle-point) solutions of the model. When market frictions and inflows/outflows of money are neglected altogether, ”classical” GBM scale-invariant dynamics with an exponential asset growth and without defaults are formally recovered from our model. However, we argue that this is only a formal mathematical limit, and in reality the GBM limit is non- analytic due to non-linear effects that produce both defaults and divergence of perturbation theory in a small market friction parameter.<br />
<br />
<br />
=== Karl Rohe (UW-Madison, statistics) ===<br />
<br />
''Making Spectral Graph Theory work in practice. Making the practice work in theory''<br />
<br />
After introducing Cheeger's Inequality and spectral clustering, this talk has two parts. The first part will (1) show how spectral clustering gives "bad results" in many applied settings and (2) illustrate a "hack" that makes it work very well. Most of the talk will be spent on the second part, which will provide a simple theory to provide a deeper understanding of where the bad results come from and why the hack works so well. <br />
<br />
There are four pieces to this simple theory. First, sparse and stochastic graphs create a lot of small trees that are connected to the core of the graph by only one edge. Second, graph conductance is sensitive to these noisy "dangling sets." Third, by Cheeger's inequality and an inequality from Ky Fan, spectral clustering inherits this sensitivity. These three pieces explain why spectral clustering gives bad results in practice. The fourth piece uses Cheeger's inequality to show how the hack creates a new form of graph conductance that we call CoreCut. Simple inspection of CoreCut reveals why it is less sensitive to small cuts in the graph. In addition to this statistical benefit, these results also demonstrate why the hack also improves the computational speed of spectral clustering.<br />
<br />
<br />
=== Yimin Zhong (Univ. of California - Irvine) ===<br />
<br />
''Instability of an inverse problem for the stationary radiative transport near the diffusion limit''<br />
<br />
In this work, we study the instability of an inverse problem of radiative transport equation with angularly averaged measurement near the diffusion limit, i.e. the normalized mean free path (the Knudsen number) $0 < \eps \ll 1$. It is well-known that there is a transition of stability from H\"{o}lder type to logarithmic type with $\eps\to 0$, the theory of this transition of stability is still an open problem. In this study, we show the transition of stability by establishing the balance of two different regimes depending on the relative sizes of $\eps$ and the perturbation in measurements. When $\eps$ is sufficiently small, we obtain exponential instability, which stands for the diffusive regime, and otherwise we obtain H\"{o}lder instability instead, which stands for the transport regime.<br />
<br />
<br />
=== Alfredo N Wetzel (UW-Madison) ===<br />
<br />
''Discontinuous Fronts as Exact Solutions to Precipitating Quasi-Geostrophy''<br />
<br />
Atmospheric fronts may be idealized as boundaries between two air masses with different temperature, density, moisture, etc. In this presentation, we discuss exact discontinuous solutions of a simplified model for moist mid-latitude synoptic atmospheric flows, the precipitating quasi-geostrophic (PQG) equations. These simple discontinuous solutions correspond to propagating moist fronts that require both rainfall and a phase change of water at the front interface to exist. The fronts propagate at speeds related to the rainfall velocity, temperature/wind jump magnitudes, and front geometry. Moreover, the relative simplicity of the model and front geometry gives rise to readily accessible conditions for the front’s existence. As an initial assessment of the realism of these fronts, we use rough estimates of relevant physical parameters to show that cold, warm, and stationary fronts are sensibly captured by the model. Simple exact solutions have previously been presented in the context of the well-known Margules’ front slope formula for dry fronts but have not been generalized to include propagation and moisture.<br />
<br />
<br />
=== Lukas Einkemmer (University of Tübingen and University of Innsbruck) ===<br />
<br />
''A low-rank projector-splitting integrator for kinetic plasma simulation: from structure preservation to fluid limits''<br />
<br />
Many problems encountered in plasma physics require a kinetic description. The associated partial differential equations are posed in an up to six-dimensional phase space. Thus, a direct discretization of this phase space, often called the Eulerian approach, is extremely expensive from a computational point of view.<br />
<br />
In this talk we propose a dynamical low-rank approximation for the Vlasov--Poisson and Vlasov--Maxwell equations. This approximation is derived by constraining the dynamics to a manifold of low-rank functions via a tangent space projection and by splitting this projection into the subprojections from which it is built. This reduces a time step for the six- (or four-) dimensional Vlasov equation to solving two systems of three- (or two-) dimensional advection equations. By a hierarchical dynamical low-rank approximation, a time step for the Vlasov equation can be further reduced to a set of six (or four) systems of one-dimensional advection equations.<br />
<br />
The resulting systems of advection equations can then be solved by semi-Lagrangian or spectral methods. We highlight the favorable behavior of the proposed numerical method by performing numerical simulation for a number of problems. These simulation show that that the proposed algorithm is able to drastically reduce the required computational effort. Unfortunately, much of the physical structure inherent in the continuous problem is destroyed in the process. We will discuss an approach to restore some of the physical structure to the low-rank approximation, which is important even for relatively short times. In addition, we will discuss the underlying fluid limit.</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS&diff=16537Applied/ACMS2018-12-06T20:21:40Z<p>Qinli: /* Fall 2018 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Applied and Computational Mathematics Seminar =<br />
<br />
*'''When:''' Fridays at 2:25pm (except as otherwise indicated)<br />
*'''Where:''' 901 Van Vleck Hall<br />
*'''Organizers:''' [http://www.math.wisc.edu/~qinli/ Qin Li] and [http://www.math.wisc.edu/~jeanluc Jean-Luc Thiffeault]<br />
*'''To join the ACMS mailing list:''' See [https://admin.lists.wisc.edu/index.php?p=11&l=acms mailing list] website.<br />
<br />
<br><br />
<br />
<br />
== Fall 2018 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Sept. 14<br />
|[http://www.northeastern.edu/tzhou/ Ting Zhou] (Northeastern)<br />
|''[[Applied/ACMS/absF18#Ting Zhou (Northeastern Univ.)|Nonparaxial near-nondiffracting accelerating optical beams]]''<br />
|Li<br />
|-<br />
| Sept. 21<br />
|[https://sites.google.com/a/brown.edu/sanz-alonso/ Daniel Sanz-Alonso] (Chicago)<br />
|''[[Applied/ACMS/absF18#Daniel Sanz-Alonso (Chicago Univ.)|Discrete and Continuous Learning in Information and Geophysical Sciences]]''<br />
|Chen<br />
|-<br />
| Sept. 28<br />
|[https://www.math.wisc.edu/~chennan/ Nan Chen] (UW-Madison)<br />
|''[[Applied/ACMS/absF18#Chen (UW-Madison)|A simple stochastic model for El Nino with westerly wind bursts and the prediction of super El Nino events]]''<br />
|Li<br />
|-<br />
| Oct. 5<br />
|[https://sites.google.com/site/sulianthual/ Sulian Thual] (Fudan University)<br />
|''[[Applied/ACMS/absF18#Thual (Fudan)|A Stochastic Skeleton Model for the Madden-Julian Oscillation and El Nino-Southern Oscillation]]''<br />
|Chen, Stechmann<br />
|-<br />
| Oct. 12<br />
|[http://www.damtp.cam.ac.uk/people/mt748/ Matthew Thorpe] (Cambridge University)<br />
|''[[Applied/ACMS/absF18#Thorpe (Cambridge)|Continuum Limits of Semi-Supervised Learning on Graphs]]''<br />
|Chen<br />
|-<br />
| Oct. 19<br />
|[http://www.math.jhu.edu/~feilu/ Fei Lu] (Johns Hopkins)<br />
|''[[Applied/ACMS/absF18#Lu (JHU)|Data-informed stochastic model reduction for complex dynamical systems]]''<br />
|Chen<br />
|-<br />
| Oct. 26<br />
|[https://stuart.iit.edu/faculty/matthew-dixon Matthew Dixon] (Illinois Institute of Technoology)<br />
|''[[Applied/ACMS/absF18#Matthew Dixon (Illinois Institute of Technology)|"Quantum Equilibrium-Disequilibrium”: Asset Price Dynamics, Symmetry Breaking and Defaults as Dissipative Instantons<br />
]]''<br />
|Jean-Luc<br />
|-<br />
| Nov. 2<br />
|[http://www.stat.wisc.edu/~karlrohe/homepage/Welcome.html Karl Rohe] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absF18#Karl Rohe (UW-Madison)|Making Spectral Graph Theory work in practice. Making the practice work in theory]]''<br />
|host<br />
|-<br />
| Nov. 9<br />
|[https://www.math.uci.edu/people/yimin-zhong Yimin Zhong] (UCI)<br />
|''[[Applied/ACMS/absF18#Yimin Zhong (UCI)|Instability of an inverse problem for the stationary radiative transport near the diffusion limit]]''<br />
|Li<br />
|-<br />
| Nov. 16<br />
|[http://www.math.wisc.edu/~alfredowetzel/ Alfredo N Wetzel] (UW-Madison)<br />
|''[[Applied/ACMS/absF18#Alfredo Wetzel (UW-Madison)|Discontinuous Fronts as Exact Solutions to Precipitating Quasi-Geostrophy]]''<br />
|Local<br />
|-<br />
| Dec. 14<br />
|[http://www.einkemmer.net/ Lukas Einkemmer] (University of Tübingen and University of Innsbruck)<br />
|''[[Applied/ACMS/absF18#Lukas Einkemmer (University of Innsbruck)| A low-rank projector-splitting integrator for kinetic plasma simulation: from structure preservation to fluid limits<br />
]]''<br />
|Li<br />
|-<br />
| <br />
|}<br />
<br />
== Future semesters ==<br />
<br />
*[[Applied/ACMS/Spring2019|Spring 2019]]<br />
<br />
== Archived semesters ==<br />
*[[Applied/ACMS/Fall2018|Fall 2018]]<br />
*[[Applied/ACMS/Spring2018|Spring 2018]]<br />
*[[Applied/ACMS/Fall2017|Fall 2017]]<br />
*[[Applied/ACMS/Spring2017|Spring 2017]]<br />
*[[Applied/ACMS/Fall2016|Fall 2016]]<br />
*[[Applied/ACMS/Spring2016|Spring 2016]]<br />
*[[Applied/ACMS/Fall2015|Fall 2015]]<br />
*[[Applied/ACMS/Spring2015|Spring 2015]]<br />
*[[Applied/ACMS/Fall2014|Fall 2014]]<br />
*[[Applied/ACMS/Spring2014|Spring 2014]]<br />
*[[Applied/ACMS/Fall2013|Fall 2013]]<br />
*[[Applied/ACMS/Spring2013|Spring 2013]]<br />
*[[Applied/ACMS/Fall2012|Fall 2012]]<br />
*[[Applied/ACMS/Spring2012|Spring 2012]]<br />
*[[Applied/ACMS/Fall2011|Fall 2011]]<br />
*[[Applied/ACMS/Spring2011|Spring 2011]]<br />
*[[Applied/ACMS/Fall2010|Fall 2010]]<br />
<!--<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring10.html Spring 2010]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall09.html Fall 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring09.html Spring 2009]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall08.html Fall 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring08.html Spring 2008]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall07.html Fall 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Spring07.html Spring 2007]<br />
*[http://www.math.wisc.edu/~jeanluc/ACMS/archive/Fall06.html Fall 2006]<br />
--><br />
<br />
<br><br />
<br />
----<br />
Return to the [[Applied|Applied Mathematics Group Page]]</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/Spring2019&diff=16456Applied/ACMS/Spring20192018-11-26T17:22:38Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[http://pages.cs.wisc.edu/~jerryzhu/ Jerry Zhu] (UW-Madison, CS)<br />
|''[[Applied/ACMS/absS19#Jerry Zhu (UW-Madison, CS)|title]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|-</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/Spring2019&diff=16424Applied/ACMS/Spring20192018-11-19T17:31:47Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[https://www.math.wisc.edu/~cntzou/ Chung-Nan Tzou] (UW-Madison)<br />
|''[[Applied/ACMS/absS19#Chung-Nan Tzou (UW-Madison)|title]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| May 3<br />
|[https://www.math.ucla.edu/~jiajun/ Jiajun Tong] (UCLA)<br />
|''[[Applied/ACMS/absS19#Jiajun Tong (UCLA)|title]]''<br />
| Chen<br />
|-</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/Spring2019&diff=16409Applied/ACMS/Spring20192018-11-14T22:50:53Z<p>Qinli: /* Spring 2019 */</p>
<hr />
<div>== Spring 2019 ==<br />
<br />
{| cellpadding="8"<br />
!align="left" | date<br />
!align="left" | speaker<br />
!align="left" | title<br />
!align="left" | host(s)<br />
|-<br />
| Jan 25<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Feb 1<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Feb 8<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Feb 15<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Feb 22<br />
|[https://www.ma.utexas.edu/users/ren/index.html Kui Ren] (UT-Austin and Columbia)<br />
|''[[Applied/ACMS/absS19#Kui Ren (UT-Austin and Columbia)|title]]''<br />
| host<br />
|-<br />
| Mar 1<br />
|[https://www.medphysics.wisc.edu/directory/guanghong.php Guanghong Chen] (UW-Madison, Medical Physics)<br />
|''[[Applied/ACMS/absS19#Guanghong Chen (UW-Madison, Medical Physics)|title]]''<br />
| Li<br />
|-<br />
| Mar 8<br />
|[http://www.nicolasgarciat.com/ Nicolas Garcia Trillos] (UW-Madison, Statistics)<br />
|''[[Applied/ACMS/absS19#Nicolas Garcia Trillos (UW-Madison, Statistics)|title]]''<br />
| host<br />
|-<br />
| Mar 15<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 22<br />
|[spring recess] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Mar 29<br />
|[https://math.berkeley.edu/~linlin/ Lin Lin] (UC-Berkeley)<br />
|''[[Applied/ACMS/absS19#Lin Lin (UC-Berkeley)|title]]''<br />
| host<br />
|-<br />
| Apr 5<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 12<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 19<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| Apr 26<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-<br />
| May 3<br />
|[website TBA] (Institute)<br />
|''[[Applied/ACMS/absS19#Name (Institute)|title]]''<br />
| host<br />
|-</div>Qinlihttp://www.math.wisc.edu/wiki/index.php?title=Applied/ACMS/absF18&diff=16385Applied/ACMS/absF182018-11-13T21:28:54Z<p>Qinli: /* ACMS Abstracts: Fall 2018 */</p>
<hr />
<div>= ACMS Abstracts: Fall 2018 =<br />
<br />
=== Ting Zhou (Northeastern University) ===<br />
''Nonparaxial near-nondiffracting accelerating optical beams''<br />
<br />
We show that new families of accelerating and almost nondiffracting beams (solutions) for Maxwell’s equations can be constructed. These are complex geometrical optics (CGO) solutions to Maxwell’s equations with nonlinear limiting Carleman weights. They have the form of wave packets that propagate along circular trajectories while almost preserving a transverse intensity profile. We also show similar waves constructed using the approach combining CGO solutions and the Kelvin transform.<br />
<br />
<br />
=== Daniel Sanz-Alonso (University of Chicago) ===<br />
''Discrete and Continuous Learning in Information and Geophysical Sciences''<br />
<br />
The formulation of Bayesian inverse problems in function space has led to new theoretical and computational developments, providing improved understanding on regularization techniques and suggesting new scalable algorithms. The approach has found numerous applications throughout the geophysical and medical sciences, where interest often lies in recovering an unknown field defined on a physical domain. Learning problems in the information sciences, in contrast, typically seek to recover functions defined on discrete point clouds. My talk will have two parts. In the first one, I will prove that in certain large data limit, discrete learning problems converge to a continuous one, thus allowing to transfer scalable Markov chain Monte Carlo methodology developed in the geophysical sciences to novel applications in the information sciences. In the second part I will introduce a fully Bayesian, data-driven methodology to discretize complex forward models with the specific goal of solving inverse problems. This methodology has the potential of producing cheap surrogates that still allow for satisfactory input reconstruction.<br />
<br />
=== Nan Chen (University of Wisconsin-Madison) ===<br />
''A simple stochastic model for El Nino with westerly wind bursts and the prediction of super El Nino events''<br />
<br />
Atmospheric wind bursts in the tropics play a key role in the dynamics of the El Nino Southern Oscillation (ENSO). A simple modeling framework is proposed that summarizes this relationship and captures major features of the observational record while remaining physically consistent and amenable to detailed analysis. Within this simple framework, wind burst activity evolves according to a stochastic two-state Markov switching–diffusion process that depends on the strength of the western Pacific warm pool, and is coupled to simple ocean–atmosphere processes that are otherwise deterministic, stable, and linear. A simple model with this parameterization and no additional nonlinearities reproduces a realistic ENSO cycle with intermittent El Nino and La Nina events of varying intensity and strength as well as realistic buildup and shutdown of wind burst activity in the western Pacific. The wind burst activity has a direct causal effect on the ENSO variability: in particular, it intermittently triggers regular El Nino or La Nina events, super El Nino events, or no events at all, which enables the model to capture observed ENSO statistics such as the probability density function and power spectrum of eastern Pacific sea surface temperatures. The present framework is then applied to understand the mechanism of different super El Ninos. In particular, the framework is used to simulate and analyze the two famous super El Nino events in 1997-1998 and 2014-2016, with the conclusion that the delayed super El Nino events in 2014-2016 are not necessarily unusual in the tropical Pacific despite not appearing in the recent observational record and could reoccur in the future.<br />
<br />
=== Sulian Thual (Fudan University) ===<br />
''A Stochastic Skeleton Model for the Madden-Julian Oscillation and El Nino-Southern Oscillation''<br />
<br />
A broad range of random atmospheric disturbances in the tropics may be considered as possible<br />
triggers to the El Niño Southern Oscillation (ENSO), such as for example westerly wind bursts, easterly wind bursts, as well as the convective envelope of the Madden-Julian Oscillation (MJO). Here a simple dynamical stochastic model for the tropical ocean-atmosphere is proposed that captures those processes as well as their multiscale interactions. Realistic features include for the first time altogether the MJO wavenumber-frequency power spectra, eastward propagation, structure and confinement to the warm pool region and similarly for atmospheric Kelvin and Rossby equatorial waves, in addition to the ENSO intermittency, power spectrum and non-Gaussian statistics of sea surface temperatures, among others.<br />
<br />
Importantly, intraseasonal atmospheric disturbances such as the MJO are here solved dynamically which renders more explicit their upscale contribution to the interannual flow as well as their modulation in return. First, the background red noise spectrum of atmospheric disturbances rather than their individual characteristics is shown to be most important for the triggering of the ENSO. Second, the onset, strength and demise of El Niño events is linked to the increase and eastward expansion of atmospheric disturbances eastward of the warm pool region. The present framework serves as a prototype for general circulation models that solve similar dynamical interactions on several spatial and temporal scales.<br />
<br />
=== Matthew Thorpe (Cambridge University) ===<br />
''Continuum Limits of Semi-Supervised Learning on Graphs''<br />
<br />
Given a data set $\{x_i\}_{i=1}^n$ with labels $\{y_i\}_{i=1}^N$ on the first $N$ data points the goal of semi-supervised is to infer labels on the remaining $\{x_i\}_{i=N+1}^n$ data points. In this talk we use a random geometric graph model with connection radius $r(n)$. The framework is to consider objective functions which reward the regularity of the estimator function and impose or reward the agreement with the training data, more specifically we will consider discrete p-Laplacian and fractional Laplacian regularization.<br />
<br />
The talk concerns the asymptotic behaviour in the limit where the number of unlabelled points increases while the number of training points remains fixed. The results are to uncover a delicate interplay between the regularizing nature of the functionals considered and the nonlocality inherent to the graph constructions. I will give almost optimal ranges on the scaling of $r(n)$ for asymptotic consistency to hold. Furthermore, I will setup the Bayesian interpretation of this problem.<br />
<br />
This is joint work with Matt Dunlop (Caltech), Dejan Slepcev (CMU) and Andrew Stuart (Caltech).<br />
<br />
=== Fei Lu (Johns Hopkins University) ===<br />
''Data-informed stochastic model reduction for complex dynamical systems''<br />
<br />
The need to develop reduced nonlinear statistical-dynamical models from time series of partial observations of complex systems arises in many applications such as geophysics, biology and engineering. The challenges come mainly from memory effects due to the nonlinear interactions between resolved and unresolved scales, and from the difficulty in inference from discrete data.<br />
<br />
To address these challenges, we introduce a discrete-time stochastic parametrization framework, in which we infer nonlinear autoregression moving average (NARMA) type models to take the memory effects into account. We show by examples that the NARMA type stochastic reduced models that can capture the key statistical and dynamical properties, and therefore can improve the performance of ensemble prediction in data assimilation. The examples include the Lorenz 96 system (which is a simplified model of the global atmosphere) and the Kuramoto-Sivashinsky equation of spatiotemporally chaotic dynamics. Applications of this inference approach to model reduction for stochastic Burgers equations will be discussed. <br />
<br />
<br />
=== Matthew Dixon (Illinois Institute of Technology) ===<br />
<br />
''"Quantum Equilibrium-Disequilibrium”: Asset Price Dynamics, Symmetry Breaking and Defaults as Dissipative Instantons''<br />
<br />
We propose a simple non-equilibrium model of a financial market as an open system with a possible exchange of money with an outside world and market frictions (trade impacts) incorporated into asset price dynamics via a feedback mechanism. Using a linear market impact model, this produces a non-linear two-parametric extension of the classical Geometric Brownian Motion (GBM) model, that we call the ”Quantum Equilibrium-Disequilibrium” model. Our model gives rise to non-linear mean-reverting dynamics, broken scale invariance, and corporate defaults. In the simplest one-stock (1D) formulation, our parsimonious model has only one degree of freedom, yet calibrates to both equity returns and credit default swap spreads. Defaults and market crashes are associated with dissipative tunneling events, and correspond to instanton (saddle-point) solutions of the model. When market frictions and inflows/outflows of money are neglected altogether, ”classical” GBM scale-invariant dynamics with an exponential asset growth and without defaults are formally recovered from our model. However, we argue that this is only a formal mathematical limit, and in reality the GBM limit is non- analytic due to non-linear effects that produce both defaults and divergence of perturbation theory in a small market friction parameter.<br />
<br />
<br />
=== Karl Rohe (UW-Madison, statistics) ===<br />
<br />
''Making Spectral Graph Theory work in practice. Making the practice work in theory''<br />
<br />
After introducing Cheeger's Inequality and spectral clustering, this talk has two parts. The first part will (1) show how spectral clustering gives "bad results" in many applied settings and (2) illustrate a "hack" that makes it work very well. Most of the talk will be spent on the second part, which will provide a simple theory to provide a deeper understanding of where the bad results come from and why the hack works so well. <br />
<br />
There are four pieces to this simple theory. First, sparse and stochastic graphs create a lot of small trees that are connected to the core of the graph by only one edge. Second, graph conductance is sensitive to these noisy "dangling sets." Third, by Cheeger's inequality and an inequality from Ky Fan, spectral clustering inherits this sensitivity. These three pieces explain why spectral clustering gives bad results in practice. The fourth piece uses Cheeger's inequality to show how the hack creates a new form of graph conductance that we call CoreCut. Simple inspection of CoreCut reveals why it is less sensitive to small cuts in the graph. In addition to this statistical benefit, these results also demonstrate why the hack also improves the computational speed of spectral clustering.<br />
<br />
<br />
=== Yimin Zhong (Univ. of California - Irvine) ===<br />
<br />
''Instability of an inverse problem for the stationary radiative transport near the diffusion limit''<br />
<br />
In this work, we study the instability of an inverse problem of radiative transport equation with angularly averaged measurement near the diffusion limit, i.e. the normalized mean free path (the Knudsen number) $0 < \eps \ll 1$. It is well-known that there is a transition of stability from H\"{o}lder type to logarithmic type with $\eps\to 0$, the theory of this transition of stability is still an open problem. In this study, we show the transition of stability by establishing the balance of two different regimes depending on the relative sizes of $\eps$ and the perturbation in measurements. When $\eps$ is sufficiently small, we obtain exponential instability, which stands for the diffusive regime, and otherwise we obtain H\"{o}lder instability instead, which stands for the transport regime.<br />
<br />
<br />
=== Alfredo N Wetzel (UW-Madison) ===<br />
<br />
''Discontinuous Fronts as Exact Solutions to Precipitating Quasi-Geostrophy''<br />
<br />
Atmospheric fronts may be idealized as boundaries between two air masses with different temperature, density, moisture, etc. In this presentation, we discuss exact discontinuous solutions of a simplified model for moist mid-latitude synoptic atmospheric flows, the precipitating quasi-geostrophic (PQG) equations. These simple discontinuous solutions correspond to propagating moist fronts that require both rainfall and a phase change of water at the front interface to exist. The fronts propagate at speeds related to the rainfall velocity, temperature/wind jump magnitudes, and front geometry. Moreover, the relative simplicity of the model and front geometry gives rise to readily accessible conditions for the front’s existence. As an initial assessment of the realism of these fronts, we use rough estimates of relevant physical parameters to show that cold, warm, and stationary fronts are sensibly captured by the model. Simple exact solutions have previously been presented in the context of the well-known Margules’ front slope formula for dry fronts but have not been generalized to include propagation and moisture.</div>Qinli