https://www.math.wisc.edu/wiki/api.php?action=feedcontributions&user=Vadicgor&feedformat=atomUW-Math Wiki - User contributions [en]2019-11-18T17:27:56ZUser contributionsMediaWiki 1.30.1https://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18342Probability Seminar2019-11-06T22:10:23Z<p>Vadicgor: /* November 14, 2019, Benjamin Landon, MIT */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
''' Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
'''A general beta crossover ensemble'''<br />
<br />
I'll describe an operator limit for a family of general beta ensembles which exhibit a double-scaling. In particular, a free parameter in the system provides for a crossover between the more well-known "soft" and "hard" edge point processes. This new limit operator takes as input the Riccati diffusion associated with the Stochastic Airy Operator. I like to suggest that this hints at a hierarchy of random operators analogous to the Painlevé hierarchy observed at the level of correlation functions for double-scaling ensembles most widely studied at beta = 2. Full disclosure: the result remains partially conjectural due to an unresolved uniqueness question, but I’ll provide lots of evidence to convince you we have the right answer. Joint work with Jose Ramírez (Univ. Costa Rica).<br />
<br />
== October 31, 2019, Vadim Gorin, UW Madison==<br />
<br />
'''Shift invariance for the six-vertex model and directed polymers.'''<br />
<br />
I will explain a recently discovered mysterious property in a variety of stochastic systems ranging from the six-vertex model and to the directed polymers, last passage percolation, Kardar-Parisi-Zhang equation, and Airy sheet. Vaguely speaking, the property says that the multi-point joint distributions are unchanged when some (but not necessarily all!) points of observations are shifted. The property leads to explicit computations for the previously inaccessible joint distributions in all these settings.<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
'''Domino tilings of the Aztec diamond with doubly periodic weightings'''<br />
<br />
This talk will be centered around domino tilings of the Aztec diamond with doubly periodic weightings. In particular asymptotic results of the $ 2 \times k $-periodic Aztec diamond will be discussed, both in the macroscopic and microscopic scale. The macroscopic picture is described using a close connection to a Riemann surface. For instance, the number of smooth regions (also called gas regions) is the same as the genus of the mentioned Riemann surface. <br />
<br />
The starting point of the asymptotic analysis is a non-intersecting path formulation and a double integral formula for the correlation kernel. The proof of this double integral formula is based on joint work with M. Duits, which will be discuss briefly if time permits.<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
'''Universality of extremal eigenvalue statistics of random matrices'''<br />
<br />
The past decade has seen significant progress on the understanding of universality of various eigenvalue statistics of random matrix theory. However, the behavior of certain ``extremal'' or ``critical'' observables is not fully understood. Towards the former, we discuss progress on the universality of the largest gap between consecutive eigenvalues. With regards to the latter, we discuss the central limit theorem for the eigenvalue counting function, which can be viewed as a linear spectral statistic with critical regularity and has logarithmically growing variance.<br />
<br />
== November 21, 2019, Tung Nguyen, UW Madison ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
<br />
==December 5, 2019 ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18341Probability Seminar2019-11-06T22:10:12Z<p>Vadicgor: /* November 14, 2019, Benjamin Landon, MIT */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
''' Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
'''A general beta crossover ensemble'''<br />
<br />
I'll describe an operator limit for a family of general beta ensembles which exhibit a double-scaling. In particular, a free parameter in the system provides for a crossover between the more well-known "soft" and "hard" edge point processes. This new limit operator takes as input the Riccati diffusion associated with the Stochastic Airy Operator. I like to suggest that this hints at a hierarchy of random operators analogous to the Painlevé hierarchy observed at the level of correlation functions for double-scaling ensembles most widely studied at beta = 2. Full disclosure: the result remains partially conjectural due to an unresolved uniqueness question, but I’ll provide lots of evidence to convince you we have the right answer. Joint work with Jose Ramírez (Univ. Costa Rica).<br />
<br />
== October 31, 2019, Vadim Gorin, UW Madison==<br />
<br />
'''Shift invariance for the six-vertex model and directed polymers.'''<br />
<br />
I will explain a recently discovered mysterious property in a variety of stochastic systems ranging from the six-vertex model and to the directed polymers, last passage percolation, Kardar-Parisi-Zhang equation, and Airy sheet. Vaguely speaking, the property says that the multi-point joint distributions are unchanged when some (but not necessarily all!) points of observations are shifted. The property leads to explicit computations for the previously inaccessible joint distributions in all these settings.<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
'''Domino tilings of the Aztec diamond with doubly periodic weightings'''<br />
<br />
This talk will be centered around domino tilings of the Aztec diamond with doubly periodic weightings. In particular asymptotic results of the $ 2 \times k $-periodic Aztec diamond will be discussed, both in the macroscopic and microscopic scale. The macroscopic picture is described using a close connection to a Riemann surface. For instance, the number of smooth regions (also called gas regions) is the same as the genus of the mentioned Riemann surface. <br />
<br />
The starting point of the asymptotic analysis is a non-intersecting path formulation and a double integral formula for the correlation kernel. The proof of this double integral formula is based on joint work with M. Duits, which will be discuss briefly if time permits.<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
```Universality of extremal eigenvalue statistics of random matrices'''<br />
<br />
The past decade has seen significant progress on the understanding of universality of various eigenvalue statistics of random matrix theory. However, the behavior of certain ``extremal'' or ``critical'' observables is not fully understood. Towards the former, we discuss progress on the universality of the largest gap between consecutive eigenvalues. With regards to the latter, we discuss the central limit theorem for the eigenvalue counting function, which can be viewed as a linear spectral statistic with critical regularity and has logarithmically growing variance.<br />
<br />
== November 21, 2019, Tung Nguyen, UW Madison ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
<br />
==December 5, 2019 ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18231Probability Seminar2019-10-22T14:22:55Z<p>Vadicgor: /* */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
''' Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
'''A general beta crossover ensemble'''<br />
<br />
I'll describe an operator limit for a family of general beta ensembles which exhibit a double-scaling. In particular, a free parameter in the system provides for a crossover between the more well-known "soft" and "hard" edge point processes. This new limit operator takes as input the Riccati diffusion associated with the Stochastic Airy Operator. I like to suggest that this hints at a hierarchy of random operators analogous to the Painlevé hierarchy observed at the level of correlation functions for double-scaling ensembles most widely studied at beta = 2. Full disclosure: the result remains partially conjectural due to an unresolved uniqueness question, but I’ll provide lots of evidence to convince you we have the right answer. Joint work with Jose Ramírez (Univ. Costa Rica).<br />
<br />
== October 31, 2019, Vadim Gorin, UW Madison==<br />
<br />
'''Shift invariance for the six-vertex model and directed polymers.'''<br />
<br />
I will explain a recently discovered mysterious property in a variety of stochastic systems ranging from the six-vertex model and to the directed polymers, last passage percolation, Kardar-Parisi-Zhang equation, and Airy sheet. Vaguely speaking, the property says that the multi-point joint distributions are unchanged when some (but not necessarily all!) points of observations are shifted. The property leads to explicit computations for the previously inaccessible joint distributions in all these settings.<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
'''Domino tilings of the Aztec diamond with doubly periodic weightings'''<br />
<br />
This talk will be centered around domino tilings of the Aztec diamond with doubly periodic weightings. In particular asymptotic results of the $ 2 \times k $-periodic Aztec diamond will be discussed, both in the macroscopic and microscopic scale. The macroscopic picture is described using a close connection to a Riemann surface. For instance, the number of smooth regions (also called gas regions) is the same as the genus of the mentioned Riemann surface. <br />
<br />
The starting point of the asymptotic analysis is a non-intersecting path formulation and a double integral formula for the correlation kernel. The proof of this double integral formula is based on joint work with M. Duits, which will be discuss briefly if time permits.<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, Tung Nguyen, UW Madison ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
<br />
==December 5, 2019 ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18230Probability Seminar2019-10-22T14:21:55Z<p>Vadicgor: /* November 7, 2019, Tomas Berggren, KTH Stockholm */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
''' Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
'''A general beta crossover ensemble'''<br />
<br />
I'll describe an operator limit for a family of general beta ensembles which exhibit a double-scaling. In particular, a free parameter in the system provides for a crossover between the more well-known "soft" and "hard" edge point processes. This new limit operator takes as input the Riccati diffusion associated with the Stochastic Airy Operator. I like to suggest that this hints at a hierarchy of random operators analogous to the Painlevé hierarchy observed at the level of correlation functions for double-scaling ensembles most widely studied at beta = 2. Full disclosure: the result remains partially conjectural due to an unresolved uniqueness question, but I’ll provide lots of evidence to convince you we have the right answer. Joint work with Jose Ramírez (Univ. Costa Rica).<br />
<br />
== October 31, 2019, Vadim Gorin, UW Madison==<br />
<br />
'''Shift invariance for the six-vertex model and directed polymers.'''<br />
<br />
I will explain a recently discovered mysterious property in a variety of stochastic systems ranging from the six-vertex model and to the directed polymers, last passage percolation, Kardar-Parisi-Zhang equation, and Airy sheet. Vaguely speaking, the property says that the multi-point joint distributions are unchanged when some (but not necessarily all!) points of observations are shifted. The property leads to explicit computations for the previously inaccessible joint distributions in all these settings.<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
'''Domino tilings of the Aztec diamond with doubly periodic weightings'''<br />
<br />
This talk will be centered around domino tilings of the Aztec diamond with doubly periodic weightings. In particular asymptotic results of the $ 2 \times k $-periodic Aztec diamond will be discussed, both in the macroscopic and microscopic scale. The macroscopic picture is described using a close connection to a Riemann surface. For instance, the number of smooth regions (also called gas regions) is the same as the genus of the mentioned Riemann surface. <br />
<br />
The starting point of the asymptotic analysis is a non-intersecting path formulation and a double integral formula for the correlation kernel. The proof of this double integral formula is based on joint work with M. Duits, which will be discuss briefly if time permits.<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, Tung Nguyen, UW Madison ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18229Probability Seminar2019-10-22T14:21:47Z<p>Vadicgor: /* November 7, 2019, Tomas Berggren, KTH Stockholm */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
''' Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
'''A general beta crossover ensemble'''<br />
<br />
I'll describe an operator limit for a family of general beta ensembles which exhibit a double-scaling. In particular, a free parameter in the system provides for a crossover between the more well-known "soft" and "hard" edge point processes. This new limit operator takes as input the Riccati diffusion associated with the Stochastic Airy Operator. I like to suggest that this hints at a hierarchy of random operators analogous to the Painlevé hierarchy observed at the level of correlation functions for double-scaling ensembles most widely studied at beta = 2. Full disclosure: the result remains partially conjectural due to an unresolved uniqueness question, but I’ll provide lots of evidence to convince you we have the right answer. Joint work with Jose Ramírez (Univ. Costa Rica).<br />
<br />
== October 31, 2019, Vadim Gorin, UW Madison==<br />
<br />
'''Shift invariance for the six-vertex model and directed polymers.'''<br />
<br />
I will explain a recently discovered mysterious property in a variety of stochastic systems ranging from the six-vertex model and to the directed polymers, last passage percolation, Kardar-Parisi-Zhang equation, and Airy sheet. Vaguely speaking, the property says that the multi-point joint distributions are unchanged when some (but not necessarily all!) points of observations are shifted. The property leads to explicit computations for the previously inaccessible joint distributions in all these settings.<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
'''Domino tilings of the Aztec diamond with doubly periodic weightings'''<br />
<br />
<br />
This talk will be centered around domino tilings of the Aztec diamond with doubly periodic weightings. In particular asymptotic results of the $ 2 \times k $-periodic Aztec diamond will be discussed, both in the macroscopic and microscopic scale. The macroscopic picture is described using a close connection to a Riemann surface. For instance, the number of smooth regions (also called gas regions) is the same as the genus of the mentioned Riemann surface. <br />
<br />
The starting point of the asymptotic analysis is a non-intersecting path formulation and a double integral formula for the correlation kernel. The proof of this double integral formula is based on joint work with M. Duits, which will be discuss briefly if time permits.<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, Tung Nguyen, UW Madison ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18223Probability Seminar2019-10-21T18:12:51Z<p>Vadicgor: /* October 31, 2019, */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
''' Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
'''A general beta crossover ensemble'''<br />
<br />
I'll describe an operator limit for a family of general beta ensembles which exhibit a double-scaling. In particular, a free parameter in the system provides for a crossover between the more well-known "soft" and "hard" edge point processes. This new limit operator takes as input the Riccati diffusion associated with the Stochastic Airy Operator. I like to suggest that this hints at a hierarchy of random operators analogous to the Painlevé hierarchy observed at the level of correlation functions for double-scaling ensembles most widely studied at beta = 2. Full disclosure: the result remains partially conjectural due to an unresolved uniqueness question, but I’ll provide lots of evidence to convince you we have the right answer. Joint work with Jose Ramírez (Univ. Costa Rica).<br />
<br />
== October 31, 2019, Vadim Gorin, UW Madison==<br />
<br />
'''Shift invariance for the six-vertex model and directed polymers.'''<br />
<br />
I will explain a recently discovered mysterious property in a variety of stochastic systems ranging from the six-vertex model and to the directed polymers, last passage percolation, Kardar-Parisi-Zhang equation, and Airy sheet. Vaguely speaking, the property says that the multi-point joint distributions are unchanged when some (but not necessarily all!) points of observations are shifted. The property leads to explicit computations for the previously inaccessible joint distributions in all these settings.<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, Tung Nguyen, UW Madison ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18222Probability Seminar2019-10-21T16:52:23Z<p>Vadicgor: /* October 31, 2019, Elchanan Mossel, MIT */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
''' Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
'''A general beta crossover ensemble'''<br />
<br />
I'll describe an operator limit for a family of general beta ensembles which exhibit a double-scaling. In particular, a free parameter in the system provides for a crossover between the more well-known "soft" and "hard" edge point processes. This new limit operator takes as input the Riccati diffusion associated with the Stochastic Airy Operator. I like to suggest that this hints at a hierarchy of random operators analogous to the Painlevé hierarchy observed at the level of correlation functions for double-scaling ensembles most widely studied at beta = 2. Full disclosure: the result remains partially conjectural due to an unresolved uniqueness question, but I’ll provide lots of evidence to convince you we have the right answer. Joint work with Jose Ramírez (Univ. Costa Rica).<br />
<br />
== October 31, 2019, ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, Tung Nguyen, UW Madison ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18137Probability Seminar2019-10-09T19:42:43Z<p>Vadicgor: /* November 21, 2019, Tung Nguyen (UW Madison) */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
''' Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, Tung Nguyen, UW Madison ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18136Probability Seminar2019-10-09T19:42:24Z<p>Vadicgor: /* November 21, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
''' Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, Tung Nguyen (UW Madison) ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18130Probability Seminar2019-10-08T14:30:26Z<p>Vadicgor: /* October 17, 2019, Scott Hottovy, USNA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
''' Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18129Probability Seminar2019-10-08T14:30:16Z<p>Vadicgor: /* October 17, 2019, Scott Hottovy, USNA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
``` Simplified dynamics for noisy systems with delays.'''<br />
<br />
Many biological and physical systems include some type of random noise with a temporal delay. For example, many sperm cells travel in a random motion where their velocity changes according to a chemical signal. This chemotaxis is transmitted through a delay in the system. That is, the sperm notices chemical gradients after a certain time has elapsed. In this case, the delay causes the sperm to aggregate around the egg. In this talk I will consider a general stochastic differential delay equation (SDDE) with state-dependent colored noises and derive its limit as the time delays and the correlation times of the noises go to zero. The analysis leads to a much simpler Stochastic Differential Equation to study. The work is motivated by an experiment involving an electrical circuit with noisy, delayed feedback. The main methods used in the proof are a theorem about convergence of solutions of stochastic differential equations by Kurtz and Protter and a maximal inequality for sums of a stationary sequence of random variables by Peligrad and Utev.<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18044Probability Seminar2019-09-27T14:53:45Z<p>Vadicgor: /* October 3, 2019, NO SEMINAR */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=18043Probability Seminar2019-09-27T14:53:31Z<p>Vadicgor: /* October 3, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, NO SEMINAR ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability&diff=17979Probability2019-09-20T20:15:55Z<p>Vadicgor: /* Probability Seminar */</p>
<hr />
<div>__NOTOC__<br />
<br />
= '''Probability at UW-Madison''' =<br />
<br />
<br><br />
<br />
== Tenured and tenure-track faculty ==<br />
<br />
[http://www.math.wisc.edu/~anderson/ David Anderson] (Duke, 2005) applied probability, numerical methods, mathematical biology.<br />
<br />
Vadim Gorin (Moscow, 2011) integrable probability, random matrices, asymptotic representation theory<br />
<br />
[http://www.math.wisc.edu/~roch/ Sebastien Roch] (UC Berkeley, 2007) applied probability, mathematical biology, theoretical computer science.<br />
<br />
[http://www.math.wisc.edu/~seppalai/ Timo Seppäläinen] (Minnesota, 1991) motion in a random medium, random growth models, interacting particle systems, large deviation theory.<br />
<br />
[http://www.math.wisc.edu/~hshen3/ Hao Shen] (Princeton, 2013) stochastic partial differential equations, mathematical physics, integrable probability<br />
<br />
[http://www.math.wisc.edu/~valko/ Benedek Valko] (Budapest, 2004) interacting particle systems, random matrices.<br />
<br />
<br />
<br />
== Emeriti ==<br />
<br />
[http://psoup.math.wisc.edu/kitchen.html David Griffeath] (Cornell, 1976)<br />
<br />
[http://www.math.wisc.edu/~kuelbs Jim Kuelbs] (Minnesota, 1965)<br />
<br />
[http://www.math.wisc.edu/~kurtz Tom Kurtz] (Stanford, 1967)<br />
<br />
Peter Ney (Columbia, 1961)<br />
<br />
Josh Chover (Michigan, 1952)<br />
<br />
<br />
== Postdocs ==<br />
<br />
Scott Smith (Maryland, 2016)<br />
<br />
<br />
<br />
== Graduate students ==<br />
<br />
<br />
[http://www.math.wisc.edu/~kehlert/ Kurt Ehlert] <br />
<br />
[http://www.math.wisc.edu/~kang Dae Han Kang]<br />
<br />
[https://sites.google.com/a/wisc.edu/brandon-legried/ Brandon Legried]<br />
<br />
Yun Li<br />
<br />
[http://sites.google.com/a/wisc.edu/tung-nguyen/ Tung Nguyen]<br />
<br />
[http://www.math.wisc.edu/~cyuan25/ Chaojie Yuan]<br />
<br />
<br />
<br />
== [[Probability Seminar]] ==<br />
<br />
Thursdays at 2:30pm, VV901<br />
<br />
==[[Graduate student reading seminar]]==<br />
<br />
Email list: join-grad_prob_seminar@lists.wisc.edu<br />
<br />
Tuesdays, 2:30pm, 901 Van Vleck<br />
<br />
== [[Probability group timetable]]==<br />
<br />
== [[Undergraduate courses in probability]]==<br />
<br />
== Graduate Courses in Probability ==<br />
<br />
<br />
<br />
'''2019 Fall'''<br />
<br />
Math/Stat 733 Theory of Probability I<br />
<br />
<br />
<br />
<br />
'''2020 Spring'''<br />
<br />
Math/Stat 734 Theory of Probability II <br />
<br />
Math 833 Topics in Probability</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17976Probability Seminar2019-09-20T18:05:57Z<p>Vadicgor: /* October 3, 2019, Scott Smith, UW Madison */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, TBA ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17975Probability Seminar2019-09-20T18:05:46Z<p>Vadicgor: Undo revision 17974 by Vadicgor (talk)</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17974Probability Seminar2019-09-20T18:05:23Z<p>Vadicgor: /* October 3, 2019, Scott Smith, UW Madison */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== TBA ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17904Probability Seminar2019-09-16T22:11:39Z<p>Vadicgor: /* Fall 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:30 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:20 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17774Probability Seminar2019-09-06T17:09:22Z<p>Vadicgor: /* September 12, 2019, Victor Kleptsyn, CNRS and University of Rennes 1 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower limit for the Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17773Probability Seminar2019-09-06T16:39:29Z<p>Vadicgor: /* September 12, 2019, Victor Kleptsyn, CNRS and University of Rennes 1 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters where the lower Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17772Probability Seminar2019-09-06T16:36:03Z<p>Vadicgor: /* September 12, 2019, Victor Kleptsyn, CNRS */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS and University of Rennes 1 ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters, on which the lower Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17771Probability Seminar2019-09-06T16:33:37Z<p>Vadicgor: /* September 12, 2019, Victor Kleptsyn, CNRS */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters, on which the lower Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17770Probability Seminar2019-09-06T16:32:38Z<p>Vadicgor: /* September 12, 2019, Victor Kleptsyn, CNRS */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
The classical Furstenberg theorem describes the (almost sure) behaviour of a random product of independent matrices; their norms turn out to grow exponentially. In our joint work with A. Gorodetski, we study what happens if the random matrices depend on an additional parameter. <br />
It turns out that in this new situation, the conclusion changes. Namely, under some conditions, there almost surely exists a (random) "exceptional" set on parameters, on which the lower Lyapunov exponent vanishes.<br />
Our results are related to the Anderson localization in dimension one, providing a purely dynamical viewpoint on its proof. Also, I will also speak about some generalizations and related open questions.<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17767Probability Seminar2019-09-06T14:30:32Z<p>Vadicgor: /* September 12, 2019, Victor Kleptsyn, CNRS */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
'''Furstenberg theorem: now with a parameter!'''<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17766Probability Seminar2019-09-06T14:30:07Z<p>Vadicgor: /* September 12, 2019, Victor Kleptsyn, CNRS */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
```Furstenberg theorem: now with a parameter!'''<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17765Probability Seminar2019-09-06T14:19:48Z<p>Vadicgor: /* September 19, 2019, Xuan Wu, Columbia University */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, [http://math.columbia.edu/~xuanw Xuan Wu], Columbia University==<br />
<br />
'''A Gibbs resampling method for discrete log-gamma line ensemble.'''<br />
<br />
In this talk we will construct the discrete log-gamma line ensemble, which is assocaited with inverse gamma polymer model. This log-gamma line ensemble enjoys a random walk Gibbs resampling invariance that follows from the integrable nature of the inverse gamma polymer model via geometric RSK correspondance. By exploiting such resampling invariance, we show the tightness of this log-gamma line ensemble under weak noise scaling. Furthermore, a Gibbs property, as enjoyed by KPZ line ensemble, holds for all subsequential limits.<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17727Probability Seminar2019-09-01T19:29:04Z<p>Vadicgor: /* September 19, 2019 */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, [http://www.math.columbia.edu/people/directory/name/xuan-wu/ Xuan Wu], Columbia University==<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17726Probability Seminar2019-09-01T16:51:40Z<p>Vadicgor: /* December 5, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019==<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, Vadim Gorin, UW Madison ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17725Probability Seminar2019-09-01T16:51:21Z<p>Vadicgor: /* September 19, 2019, Vadim Gorin, UW Madison */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019==<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17716Probability Seminar2019-08-31T02:53:57Z<p>Vadicgor: /* November 14, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, Vadim Gorin, UW Madison ==<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, [https://math.mit.edu/directory/profile.php?pid=2076 Benjamin Landon], MIT ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17715Probability Seminar2019-08-31T02:52:55Z<p>Vadicgor: /* November 7, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, Vadim Gorin, UW Madison ==<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, [https://people.kth.se/~tobergg/ Tomas Berggren], KTH Stockholm ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17714Probability Seminar2019-08-31T02:51:55Z<p>Vadicgor: /* October 31, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, Vadim Gorin, UW Madison ==<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, [http://math.mit.edu/~elmos/ Elchanan Mossel], MIT ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17713Probability Seminar2019-08-31T02:51:21Z<p>Vadicgor: /* October 24, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, Vadim Gorin, UW Madison ==<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, [https://math.temple.edu/~brider/ Brian Rider], Temple University ==<br />
<br />
== October 31, 2019, TBA ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17712Probability Seminar2019-08-31T02:50:06Z<p>Vadicgor: /* October 17, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, Vadim Gorin, UW Madison ==<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, [https://www.usna.edu/Users/math/hottovy/index.php Scott Hottovy], USNA ==<br />
<br />
== October 24, 2019, TBA ==<br />
<br />
== October 31, 2019, TBA ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17711Probability Seminar2019-08-31T02:48:49Z<p>Vadicgor: /* October 10, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, Vadim Gorin, UW Madison ==<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, NO SEMINAR - [https://sites.math.northwestern.edu/mwp/ Midwest Probability Colloquium] ==<br />
<br />
== October 17, 2019, TBA ==<br />
<br />
== October 24, 2019, TBA ==<br />
<br />
== October 31, 2019, TBA ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17710Probability Seminar2019-08-31T02:47:57Z<p>Vadicgor: /* October 3, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, Vadim Gorin, UW Madison ==<br />
<br />
== October 3, 2019, Scott Smith, UW Madison ==<br />
<br />
== October 10, 2019, TBA ==<br />
<br />
== October 17, 2019, TBA ==<br />
<br />
== October 24, 2019, TBA ==<br />
<br />
== October 31, 2019, TBA ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17709Probability Seminar2019-08-31T02:47:38Z<p>Vadicgor: /* September 19, 2019, Vadim Gorin */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, Vadim Gorin, UW Madison ==<br />
<br />
== October 3, 2019, TBA ==<br />
<br />
== October 10, 2019, TBA ==<br />
<br />
== October 17, 2019, TBA ==<br />
<br />
== October 24, 2019, TBA ==<br />
<br />
== October 31, 2019, TBA ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17708Probability Seminar2019-08-31T02:47:29Z<p>Vadicgor: /* September 12, 2019, Victor Kleptsyn */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn], CNRS ==<br />
<br />
== September 19, 2019, Vadim Gorin ==<br />
<br />
== October 3, 2019, TBA ==<br />
<br />
== October 10, 2019, TBA ==<br />
<br />
== October 17, 2019, TBA ==<br />
<br />
== October 24, 2019, TBA ==<br />
<br />
== October 31, 2019, TBA ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17707Probability Seminar2019-08-31T02:47:07Z<p>Vadicgor: /* September 19, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn] ==<br />
<br />
== September 19, 2019, Vadim Gorin ==<br />
<br />
== October 3, 2019, TBA ==<br />
<br />
== October 10, 2019, TBA ==<br />
<br />
== October 17, 2019, TBA ==<br />
<br />
== October 24, 2019, TBA ==<br />
<br />
== October 31, 2019, TBA ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17706Probability Seminar2019-08-31T02:46:35Z<p>Vadicgor: /* September 12, 2019, Victor Kleptsyn */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, [https://perso.univ-rennes1.fr/victor.kleptsyn/ Victor Kleptsyn] ==<br />
<br />
== September 19, 2019, TBA ==<br />
<br />
<!-- == September 26, 2019, TBA == --><br />
<br />
== October 3, 2019, TBA ==<br />
<br />
== October 10, 2019, TBA ==<br />
<br />
== October 17, 2019, TBA ==<br />
<br />
== October 24, 2019, TBA ==<br />
<br />
== October 31, 2019, TBA ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17705Probability Seminar2019-08-31T02:44:46Z<p>Vadicgor: /* September 12, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, Victor Kleptsyn ==<br />
<br />
== September 19, 2019, TBA ==<br />
<br />
<!-- == September 26, 2019, TBA == --><br />
<br />
== October 3, 2019, TBA ==<br />
<br />
== October 10, 2019, TBA ==<br />
<br />
== October 17, 2019, TBA ==<br />
<br />
== October 24, 2019, TBA ==<br />
<br />
== October 31, 2019, TBA ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability_Seminar&diff=17704Probability Seminar2019-08-31T02:44:22Z<p>Vadicgor: /* September 5, 2019, TBA */</p>
<hr />
<div>__NOTOC__<br />
<br />
= Fall 2019 =<br />
<br />
<b>Thursdays in 901 Van Vleck Hall at 2:25 PM</b>, unless otherwise noted. <br />
<b>We usually end for questions at 3:15 PM.</b><br />
<br />
If you would like to sign up for the email list to receive seminar announcements then please send an email to <br />
[mailto:join-probsem@lists.wisc.edu join-probsem@lists.wisc.edu]<br />
<br />
<br />
== September 12, 2019, TBA ==<br />
<br />
== September 19, 2019, TBA ==<br />
<br />
<!-- == September 26, 2019, TBA == --><br />
<br />
== October 3, 2019, TBA ==<br />
<br />
== October 10, 2019, TBA ==<br />
<br />
== October 17, 2019, TBA ==<br />
<br />
== October 24, 2019, TBA ==<br />
<br />
== October 31, 2019, TBA ==<br />
<br />
== November 7, 2019, TBA ==<br />
<br />
== November 14, 2019, TBA ==<br />
<br />
== November 21, 2019, TBA ==<br />
<br />
== November 28, 2019, Thanksgiving (no seminar) ==<br />
<br />
== December 5, 2019, TBA ==<br />
<br />
<br />
<br />
<!--<br />
<br />
== <span style="color:red"> Wednesday, February 6 at 4:00pm in Van Vleck 911</span> , [https://lc-tsai.github.io/ Li-Cheng Tsai], [https://www.columbia.edu/ Columbia University] ==<br />
<br />
Title: '''When particle systems meet PDEs'''<br />
<br />
Abstract: Interacting particle systems are models that involve many randomly evolving agents (i.e., particles). These systems are widely used in describing real-world phenomena. In this talk we will walk through three facets of interacting particle systems, namely the law of large numbers, random fluctuations, and large deviations. Within each facet, I will explain how Partial Differential Equations (PDEs) play a role in understanding the systems..<br />
<br />
<br />
== <span style="color:red">'''Tuesday''' </span>, May 7, Van Vleck 901, 2:25pm, Duncan Dauvergne (Toronto) ==<br />
<br />
<br />
<div style="width:250px;height:50px;border:5px solid black"><br />
<b><span style="color:red">&emsp; Please note the unusual day. <br />
&emsp; </span></b><br />
</div><br />
Title: '''The directed landscape'''<br />
<br />
Abstract: I will describe the construction of the full scaling limit of (Brownian) last passage percolation: the directed landscape. The directed landscape can be thought of as a random scale-invariant `directed' metric on the plane, and last passage paths converge to directed geodesics in this metric. The directed landscape is expected to be a universal scaling limit for general last passage and random growth models (i.e. TASEP, the KPZ equation, the longest increasing subsequence in a random permutation). Joint work with Janosch Ormann and Balint Virag.<br />
--><br />
<br />
== ==<br />
<br />
[[Past Seminars]]</div>Vadicgorhttps://www.math.wisc.edu/wiki/index.php?title=Probability&diff=17670Probability2019-08-26T13:54:53Z<p>Vadicgor: </p>
<hr />
<div>__NOTOC__<br />
<br />
= '''Probability at UW-Madison''' =<br />
<br />
<br><br />
<br />
== Tenured and tenure-track faculty ==<br />
<br />
[http://www.math.wisc.edu/~anderson/ David Anderson] (Duke, 2005) applied probability, numerical methods, mathematical biology.<br />
<br />
Vadim Gorin (Moscow, 2011) integrable probability, random matrices, asymptotic representation theory<br />
<br />
[http://www.math.wisc.edu/~roch/ Sebastien Roch] (UC Berkeley, 2007) applied probability, mathematical biology, theoretical computer science.<br />
<br />
[http://www.math.wisc.edu/~seppalai/ Timo Seppäläinen] (Minnesota, 1991) motion in a random medium, random growth models, interacting particle systems, large deviation theory.<br />
<br />
[http://www.math.wisc.edu/~hshen3/ Hao Shen] (Princeton, 2013) stochastic partial differential equations, mathematical physics, integrable probability<br />
<br />
[http://www.math.wisc.edu/~valko/ Benedek Valko] (Budapest, 2004) interacting particle systems, random matrices.<br />
<br />
<br />
<br />
<br />
== Emeriti ==<br />
<br />
[http://psoup.math.wisc.edu/kitchen.html David Griffeath] (Cornell, 1976)<br />
<br />
[http://www.math.wisc.edu/~kuelbs Jim Kuelbs] (Minnesota, 1965)<br />
<br />
[http://www.math.wisc.edu/~kurtz Tom Kurtz] (Stanford, 1967)<br />
<br />
Peter Ney (Columbia, 1961)<br />
<br />
Josh Chover (Michigan, 1952)<br />
<br />
== Graduate students ==<br />
<br />
<br />
[http://www.math.wisc.edu/~kehlert/ Kurt Ehlert] <br />
<br />
[http://www.math.wisc.edu/~kang Dae Han Kang]<br />
<br />
[https://sites.google.com/a/wisc.edu/brandon-legried/ Brandon Legried]<br />
<br />
Yun Li<br />
<br />
[http://sites.google.com/a/wisc.edu/tung-nguyen/ Tung Nguyen]<br />
<br />
[http://www.math.wisc.edu/~cyuan25/ Chaojie Yuan]<br />
<br />
<br />
<br />
== [[Probability Seminar]] ==<br />
<br />
Thursdays at 2:25pm, VV901<br />
<br />
==[[Graduate student reading seminar]]==<br />
<br />
Email list: join-grad_prob_seminar@lists.wisc.edu<br />
<br />
Tuesdays, 2:30pm, 901 Van Vleck<br />
<br />
== [[Probability group timetable]]==<br />
<br />
== [[Undergraduate courses in probability]]==<br />
<br />
== Graduate Courses in Probability ==<br />
<br />
<br />
<br />
'''2019 Fall'''<br />
<br />
Math/Stat 733 Theory of Probability I<br />
<br />
<br />
<br />
<br />
'''2020 Spring'''<br />
<br />
Math/Stat 734 Theory of Probability II <br />
<br />
Math 833 Topics in Probability</div>Vadicgor