Difference between revisions of "Analysis Seminar"

From UW-Math Wiki
Jump to: navigation, search
(Analysis Seminar Schedule)
(Abstracts)
 
(114 intermediate revisions by 7 users not shown)
Line 1: Line 1:
'''Fall 2019 and Spring 2020 Analysis Seminar Series
 
'''
 
  
The seminar will  meet Tuesdays, 4:00 p.m. in VV B139, unless otherwise indicated.
+
The 2020-2021 Analysis Seminar will be organized by David Beltran and Andreas Seeger.
 +
It will be online at least for the Fall semester, with details to be announced in September.
 +
The regular time for the Seminar will be Tuesdays at 4:00 p.m. (in some cases we will schedule the seminar earlier, or on different days, to accomodate speakers).
  
If you wish to invite a speaker please contact Brian at street(at)math
+
Zoom links will be sent to those who have signed up for the Analysis Seminar List. For instructions how to sign up for seminar lists, see https://www.math.wisc.edu/node/230
  
===[[Previous Analysis seminars]]===
+
If you'd like to suggest  speakers for the spring semester please contact David and Andreas (dbeltran at math, seeger at math).
  
= Analysis Seminar Schedule =
+
 
 +
 
 +
=[[Previous_Analysis_seminars]]=
 +
 
 +
https://www.math.wisc.edu/wiki/index.php/Previous_Analysis_seminars
 +
 
 +
= Current Analysis Seminar Schedule =
 
{| cellpadding="8"
 
{| cellpadding="8"
 
!align="left" | date   
 
!align="left" | date   
Line 16: Line 22:
 
!align="left" | host(s)
 
!align="left" | host(s)
 
|-
 
|-
|Sept 10
+
|September 22
| José Madrid
+
|Alexei Poltoratski
| UCLA
+
|UW Madison
|[[#José Madrid On the regularity of maximal operators on Sobolev Spaces ]]
+
|[[#Alexei Poltoratski Dirac inner functions ]]
| Andreas, David
+
|  
 
|-
 
|-
|Sept 13 (Friday, B139)
+
|September 29
| Yakun Xi
+
|Joris Roos
| University of Rochester
+
|University of Massachusetts - Lowell
|[[#Yakun Xi |   Distance sets on Riemannian surfaces and microlocal decoupling inequalities ]]
+
|[[#Polona Durcik and Joris Rooslinktoabstract | A triangular Hilbert transform with curvature, I ]]
| Shaoming
+
|  
 
|-
 
|-
|Sept 17
+
|Wednesday September 30, 4 p.m.
| Joris Roos
+
|Polona Durcik
| UW Madison
+
|Chapman University
|[[#Joris Roos  |   L^p improving estimates for maximal spherical averages ]]
+
|[[#Polona Durcik and Joris Roos  | A triangular Hilbert transform with curvature, II ]]
| Brian
+
|  
 
|-
 
|-
|Sept 20 (2:25 PM Friday, Room B139 VV)
+
|October 6
| Xiaojun Huang
+
|Andrew Zimmer
| Rutgers University–New Brunswick
+
|UW Madison
|[[#linktoabstract A generalized Kerner theorem and hyperbolic metrics on Stein spaces with compact spherical boundaries ]]
+
|[[#Andrew Zimmer Complex analytic problems on domains with good intrinsic geometry ]]
| Xianghong
+
|  
 
|-
 
|-
|Oct 1
+
|October 13
| Xiaocheng Li
+
|Hong Wang
| UW Madison
+
|Princeton/IAS
|[[#Xiaocheng Li | An Estimate for Spherical Functions on $\mathrm{SL}(3,\mathbb{R})$ ]]
+
|[[#Hong Wang |   Improved decoupling for the parabola ]]
| Simon
+
|  
 
|-
 
|-
|Oct 8
+
|October 20
| Jeff Galkowski
+
|Kevin Luli
| Northeastern University
+
|UC Davis
|[[#Jeff Galkowski Concentration and Growth of Laplace Eigenfunctions ]]
+
|[[#Kevin Luli Smooth Nonnegative Interpolation ]]
| Betsy
+
|  
 
|-
 
|-
|Oct 15
+
|October 21, 4.00 p.m.
| David Beltran
+
|Niclas Technau
| UW Madison
+
|UW Madison
|[[#David Beltran Regularity of the centered fractional maximal function ]]
+
|[[#Niclas Technau Number theoretic applications of oscillatory integrals ]]
| Brian
+
|  
 
|-
 
|-
|Oct 22
+
|October 27
| Laurent Stolovitch
+
|Terence Harris
| University of Côte d'Azur
+
| Cornell University
|[[#Laurent Stolovitch | Linearization of neighborhoods of embeddings of complex compact manifolds ]]
+
|[[#Terence Harris |   Low dimensional pinned distance sets via spherical averages ]]
| Xianghong
+
|  
 
|-
 
|-
|<b>Wednesday Oct 23 in B129</b>
+
|Monday, November 2, 4 p.m.
|Dominique Kemp
+
|Yuval Wigderson
|Indiana University
+
|Stanford  University
|[[#Dominique Kemp | Decoupling for Real Analytic Surfaces Exhibiting Zero Curvature]]
+
|[[#Yuval Wigderson  |   New perspectives on the uncertainty principle ]]
|Betsy
+
|  
 
|-
 
|-
|Oct 29
+
|November 10
| Bingyang Hu
+
|Óscar Domínguez
| UW Madison
+
| Universidad Complutense de Madrid
|[[#Bingyang Hu |   Sparse bounds of singular Radon transforms]]
+
|[[#linktoabstract |   Title ]]
| Street
+
|  
 
|-
 
|-
|Nov 5
+
|November 17
| Kevin O'Neill
+
|Tamas Titkos
| UC Davis
+
|BBS U of Applied Sciences and Renyi Institute
|[[#Kevin O'Neill A Quantitative Stability Theorem for Convolution on the Heisenberg Group ]]
+
|[[#linktoabstract Title ]]
| Betsy
+
|  
 
|-
 
|-
|Nov 12
+
|November 24
| Francesco di Plinio
+
|Shukun Wu
| Washington University in St. Louis
+
|University of Illinois (Urbana-Champaign)
|[[#Francesco di Plinio Maximal directional integrals along algebraic and lacunary sets]]
+
||[[#linktoabstract Title ]]  
| Shaoming
+
|  
 
|-
 
|-
|Nov 13 (Wednesday)
+
|December 1
| Xiaochun Li
+
| Jonathan Hickman
| UIUC
+
| The University of Edinburgh
|[[#Xiaochun Li Roth's type theorems on progressions]]
+
|[[#linktoabstract Title ]]
| Brian, Shaoming
+
|  
 
|-
 
|-
|Nov 19
+
|December 8
| Joao Ramos
+
|Alejandra Gaitán
| University of Bonn
+
| Purdue University
|[[#Joao Ramos Fourier uncertainty principles, interpolation and uniqueness sets ]]
+
|[[#linktoabstract Title ]]
| Joris, Shaoming
 
|-
 
|Nov 26
 
| No Seminar
 
|
 
|
 
 
|  
 
|  
 
|-
 
|-
|Dec 3
+
|February 2
| Person
+
|Jongchon Kim
| Institution
+
| UBC
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Sponsor
 
|-
 
|Dec 10
 
| No Seminar
 
 
|  
 
|  
|
 
|
 
 
|-
 
|-
|Jan 21
+
|February 9
| No Seminar
+
|Bingyang Hu
 +
|Purdue University
 +
|[[#linktoabstract  |  Title ]]
 
|  
 
|  
|
 
|
 
 
|-
 
|-
|Jan 28
+
|February 16
| Person
+
|Krystal Taylor
| Institution
+
|The Ohio State University
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Sponsor
+
|
 
|-
 
|-
|Friday, Jan 31, 3 pm, B119
+
|February 23
| Lillian Pierce
+
|Dominique Maldague
| Duke University
+
|MIT
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Andreas
+
|
|-
 
|Feb 4
 
| Person
 
| Institution
 
|[[#Lillian Pierce  |  On Bourgain’s counterexample for the Schrödinger maximal function ]]
 
| Sponsor
 
 
|-
 
|-
|Feb 11
+
|March 2
| Zane Li
+
|Diogo Oliveira e Silva
| Indiana University
+
|University of Birmingham
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Betsy
+
|
 
|-
 
|-
|Feb 18
+
|March 9
| Sergey Denisov
+
|
| UW Madison
+
|
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Street
+
|
 
|-
 
|-
|Feb 25
+
|March 16
| Speaker
+
|Ziming Shi
| Institution
+
|Rutgers University
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Host
+
|
 
|-
 
|-
|Mar 3
+
|March 23
| William Green
+
|
| Rose-Hulman Institute of Technology
+
|
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Betsy
+
|
 
|-
 
|-
|Mar 10
+
|March 30
| Yifei Pan
+
|
| Indiana University-Purdue University Fort Wayne
+
|
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Xianghong
+
|
 
|-
 
|-
|Mar 17
+
|April 6
| Spring Break!
 
 
|
 
|
 
|
 
|
|
 
|-
 
|Mar 24
 
| Oscar Dominguez
 
| Universidad Complutense de Madrid
 
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Andreas
+
|
 
|-
 
|-
|Mar 31
+
|April 13
| Brian Street
+
|
| University of Wisconsin-Madison
+
|
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Local
+
|
 
|-
 
|-
|Apr 7
+
|April 20
| Hong Wang
+
|
| Institution
+
|
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Street
+
|
 
|-
 
|-
|<b>Monday, Apr 13</b>
+
|April 27
|Yumeng Ou
+
|
|CUNY, Baruch College
+
|
|[[#linktoabstract  |  TBA ]]
 
|Zhang
 
|-
 
|Apr 14
 
| Tamás Titkos
 
| BBS University of Applied Sciences & Rényi Institute
 
|[[#linktoabstract  |  Distance preserving maps on spaces of probability measures ]]
 
| Street
 
|-
 
|Apr 21
 
| Diogo Oliveira e Silva
 
| University of Birmingham
 
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Betsy
+
|
 
|-
 
|-
|Apr 28
+
|May 4
| No Seminar
+
|
|-
+
|
|May 5
 
|Jonathan Hickman
 
|University of Edinburgh
 
 
|[[#linktoabstract  |  Title ]]
 
|[[#linktoabstract  |  Title ]]
| Andreas
 
|-
 
 
|}
 
|}
  
 
=Abstracts=
 
=Abstracts=
===José Madrid===
+
===Alexei Poltoratski===
  
Title: On the regularity of maximal operators on Sobolev Spaces
+
Title: Dirac inner functions
  
Abstract: In this talk, we will discuss the regularity properties (boundedness and
+
Abstract: My talk will focus on some new (and old) complex analytic objects arising from Dirac systems of differential equations.
continuity) of the classical and fractional maximal
+
We will discuss connections between problems in complex function theory, spectral and scattering problems for differential
operators when these act on the Sobolev space W^{1,p}(\R^n). We will
+
operators and the non-linear Fourier transform.
focus on the endpoint case p=1. We will talk about
 
some recent results and current open problems.
 
  
===Yakun Xi===
+
===Polona Durcik and Joris Roos===
  
Title: Distance sets on Riemannian surfaces and microlocal decoupling inequalities
+
Title: A triangular Hilbert transform with curvature, I & II.
  
Abstract: In this talk, we discuss the generalization of the Falconer distance problem to the Riemannian setting. In particular, we extend the recent result of Guth-Iosevich-Ou-Wang for the distance set in the plane to general Riemannian surfaces. The key new ingredient is a family of refined decoupling inequalities associated with phase functions that satisfy Carleson-Sj\”olin condition. This is joint work with Iosevich and Liu.
+
Abstract: The triangular Hilbert is a two-dimensional bilinear singular
 +
originating in time-frequency analysis. No Lp bounds are currently
 +
known for this operator.
 +
In these two talks we discuss a recent joint work with Michael Christ
 +
on a variant of the triangular Hilbert transform involving curvature.
 +
This object is closely related to the bilinear Hilbert transform with
 +
curvature and a maximally modulated singular integral of Stein-Wainger
 +
type. As an application we also discuss a quantitative nonlinear Roth
 +
type theorem on patterns in the Euclidean plane.
 +
The second talk will focus on the proof of a key ingredient, a certain
 +
regularity estimate for a local operator.
  
===Joris Roos===
+
===Andrew Zimmer===
  
Title: L^p improving estimates for maximal spherical averages
+
Title: Complex analytic problems on domains with good intrinsic geometry
  
Abstract: For a given compact set of radii $E$ we will discuss $L^p$ improving properties of maximal spherical averages with a supremum over $E$.
+
Abstract: In this talk, I will describe a new class of domains in complex Euclidean space which is defined in terms of the existence of a Kaehler metric with good geometric properties. This class is invariant under biholomorphism and includes many well-studied classes of domains such as strongly pseudoconvex domains, finite type domains in dimension two, convex domains, homogeneous domains, and embeddings of Teichmuller spaces. Further, certain analytic problems are tractable for domains in this family even when the boundary is non-smooth. In particular, it is possible to characterize the domains in this family where the dbar-Neumann operator on (0, q)-forms is compact (which generalizes an old result of Fu-Straube for convex domains).
Our results are sharp up to endpoints for a large class of $E$. A new feature is that the optimal exponents depend on both, the upper Minkowski dimension and the Assouad dimension of the set $E$.
 
Joint work with Tess Anderson, Kevin Hughes and Andreas Seeger.
 
  
 +
===Hong Wang===
  
 +
Title: Improved decoupling for the parabola
  
===Joao Ramos===
+
Abstract: In 2014, Bourgain and Demeter proved the  $l^2$ decoupling estimates for the paraboloid with constant $R^{\epsilon}$. 
 +
We prove an $(l^2, L^6)$ decoupling inequality for the parabola with constant $(\log R)^c$.  This is joint work with Larry Guth and Dominique Maldague.
  
Title: Fourier uncertainty principles, interpolation and uniqueness sets
+
===Kevin Luli===
  
Abstract: A classical result in the theory of entire functions of exponential type, Shannon’s interpolation formula predicates that, given a function whose Fourier transform vanishes outside the interval $[-1/2,1/2]$, it is possible to recover it from its values at the integers. More specifically, it holds, in a suitable sense of convergence, that
+
Title: Smooth Nonnegative Interpolation
  
$$ f(x) = \sum_{n \in \mathbb{Z}} f(n) \frac{\sin(\pi(x-n))}{\pi(x -n)}. $$
+
Abstract: Suppose E is an arbitrary subset of R^n. Let f: E  \rightarrow [0, \infty). How can we decide if f extends to a nonnegative function C^m function F defined on all of R^n? Suppose E is finite. Can we compute a nonnegative C^m function F on R^n that agrees with f on E with the least possible C^m norm? How many computer operations does this take? In this talk, I will explain recent results on these problems. Non-negativity is one of the most important shape preserving properties for interpolants. In real life applications, the range of the interpolant is imposed by nature. For example, probability density, the amount of snow, rain, humidity, chemical concentration are all nonnegative quantities and are of interest in natural sciences. Even in one dimension, the existing techniques can only handle nonnegative interpolation under special assumptions on the data set. Our results work without any assumptions on the data sets.  
  
This formula is unfortunately unavailable for arbitrary Schwartz functions on the real line, but a recent result of Radchenko and Viazovska provides us with an explicit construction of an interpolation basis for even Schwartz functions. It states, in a nutshell, that we can recover explicitly the function given its values at the squares of roots of integers.
+
===Niclas Technau===
  
We will discuss a bit these two results, and explore, in connection to classical Fourier uncertainty results, the question of determining which pairs of sets $(A,B)$ satisfy that, if a Schwartz function $f$ vanishes on A and its Fourier transform vanishes on B, then $f \equiv 0.$
+
Title: Number theoretic applications of oscillatory integrals
  
In particular, we will give sufficient conditions on $(\alpha,\beta)$ pairs of positive numbers so that, if $f$ vanishes at $\pm n^{\alpha}$ and its Fourier transform vanishes at $\pm n^{\beta}$, then $f$ is identically zero.
+
Abstract: We discuss how the analysis of oscillatory integrals can be used to solve number theoretic problems. More specifically, the focus will be on understanding fine-scale statistics of sequences on the unit circle. Further, we shall briefly explain a connection to quantum chaos.
  
===Xiaojun Huang===
+
===Terence Harris===
  
Title: A generalized Kerner theorem and hyperbolic metrics on Stein spaces with compact spherical boundaries
+
Title: Low dimensional pinned distance sets via spherical averages
  
Abstract: This is a joint work with Ming Xiao. We discuss how to construct a hyperbolic metric over a Stein space with spherical boundary. The technique we use is to employ holomorphic continuation along curves for multiple valued functions.
+
Abstract: An inequality is derived for the average t-energy of weighted pinned distance measures, where 0 < t < 1, in terms of the L^2 spherical averages of Fourier transforms of measures. This generalises the result of Liu (originally for Lebesgue measure) to pinned distance sets of dimension smaller than 1, and strengthens Mattila's result from 1987, originally for the full distance set.
  
===Xiaocheng Li===
+
===Yuval Wigderson===
  
Title: An Estimate for Spherical Functions on $\mathrm{SL}(3,\mathbb{R})$
+
Title: New perspectives on the uncertainty principle
  
Abstract: We prove an estimate for spherical functions $\phi_\lambda(a)$ on $\mathrm{SL}(3,\mathbb{R})$, establishing uniform decay in the spectral parameter $\lambda$ when the group parameter $a$ is restricted to a compact subset of the abelian subgroup $\mathrm{A}$. In the case of $\mathrm{SL}(3,\mathbb{R})$, it improves a result by J.J. Duistermaat, J.A.C. Kolk and V.S. Varadarajan by removing the limitation that $a$ should remain regular. As in their work, we estimate the oscillatory integral that appears in the integral formula for spherical functions by the method of stationary phase. However, the major difference is that we investigate the stability of the singularities arising from the linearized phase function by classifying their local normal forms when the parameters $\lambda$ and $a$ vary.
+
Abstract: The phrase ``uncertainty principle'' refers to a wide array of results in several disparate fields of mathematics, all of which capture the notion that a function and its Fourier transform cannot both be ``very localized''. The measure of localization varies from one uncertainty principle to the next, and well-studied notions include the variance (and higher moments), the entropy, the support-size, and the rate of decay at infinity. Similarly, the proofs of the various uncertainty principles rely on a range of tools, from the elementary to the very deep. In this talk, I'll describe how many of the uncertainty principles all follow from a single, simple result, whose proof uses only a basic property of the Fourier transform: that it and its inverse are bounded as operators $L^1 \to L^\infty$. Using this result, one can also prove new variants of the uncertainty principle, which apply to new measures of localization and to operators other than the Fourier transform. This is joint work with Avi Wigderson.
  
 +
===Name===
  
===Xiaochun Li===
+
Title
  
Title:  Roth’s type theorems on progressions
+
Abstract
  
Abstract:  The arithmetic progression problems were posed by Erd\”os-Turan, answered affirmatively by Semer\’edi. However, there are still many questions remained on precise quantitative description on how large a subset shall be in oredr to guarantee a progression in it. Involving with Fourier analysis, considerable work had been accomplished recently. We will give a survey on those progress, and report our recent progress on quantitative version of Roth’s type theorem on (polynomial) progressions of short length.
+
===Name===
  
===Jeff Galkowski===
+
Title
  
<b>Concentration and Growth of Laplace Eigenfunctions</b>
+
Abstract
  
In this talk we will discuss a new approach to understanding eigenfunction concentration. We characterize the features that cause an eigenfunction to saturate the standard supremum bounds in terms of the distribution of L^2 mass along geodesic tubes emanating from a point. We also show that the phenomena behind extreme supremum norm growth is identical to that underlying extreme growth of eigenfunctions when averaged along submanifolds. Finally, we use these ideas to understand a variety of measures of concentration; in each case obtaining quantitative improvements over the known bounds.
+
=Extras=
 
+
[[Blank Analysis Seminar Template]]
===David Beltran===
 
 
 
Title: Regularity of the centered fractional maximal function
 
 
 
Abstract: I will report some recent progress regarding the boundedness of the map $f \mapsto |\nabla M_\beta f|$ from the endpoint space $W^{1,1}(\mathbb{R}^d)$ to $L^{d/(d-\beta)}(\mathbb{R}^d)$, where $M_\beta$ denotes the fractional version of the centered Hardy--Littlewood maximal function. A key step in our analysis is a relation between the centered and non-centered fractional maximal functions at the derivative level, which allows to exploit the known techniques in the non-centered case.
 
  
This is joint work with José Madrid.
 
  
===Dominique Kemp===
+
Graduate Student Seminar:
  
<b>Decoupling for Real Analytic Surfaces Exhibiting Zero Curvature</b>
+
https://www.math.wisc.edu/~sguo223/2020Fall_graduate_seminar.html
 
 
The celebrated l^2 decoupling theorem of Jean Bourgain and Ciprian Demeter presented a new perspective on a range of problems related to hypersurfaces with nonzero Gaussian curvature, such as exponential sum estimates, additive energy estimates, local smoothing, and counting solutions to Diophantine inequalities. The same authors also extended their theory to the n-dimensional cone.  Following their steps, we prove optimal l^2 decoupling results for the remaining class of zero-curvature two-dimensional surfaces without umbilical points (the so-called tangent surfaces). We are also able to prove a decoupling theorem for the real analytic surfaces of revolution. These results should be viewed as partial progress toward the goal of proving a decoupling theorem for arbitrary real analytic hypersurfaces.
 
 
 
 
 
===Kevin O'Neill===
 
 
 
<b>A Quantitative Stability Theorem for Convolution on the Heisenberg Group </b>
 
 
 
Although convolution on Euclidean space and the Heisenberg group satisfy the same $L^p$ bounds with the same optimal constants, the former has maximizers while the latter does not. However, as work of Christ has shown, it is still possible to characterize near-maximizers. Specifically, any near-maximizing triple of the trilinear form for convolution on the Heisenberg group must be close to a particular type of triple of ordered Gaussians after adjusting by symmetry. In this talk, we will use the expansion method to prove a quantitative version of this characterization.
 
 
 
 
 
 
 
===Francesco di Plinio===
 
 
 
<b>Maximal directional integrals along algebraic and lacunary sets </b>
 
 
 
I will discuss two recent results obtained in collaboration with (partly) Natalia Accomazzo and Ioannis Parissis (U Basque Country). The first is a sharp $L^2$ estimate for the maximal averaging operator associated to sets of directions from algebraic sets in R^n of arbitrary codimension. The proof uses a new scheme of polynomial partitioning on manifolds which extends ideas by Larry Guth. The second result is a sharp estimate in all dimensions for the maximal directional singular integrals along lacunary directions. This settles a question of Parcet and Rogers. The proof uses a combination of two-dimensional and $n$-dimensional coverings combining seemingly contrasting ideas  of Parcet-Rogers and of  Nagel-Stein-Wainger.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
===Laurent Stolovitch===
 
 
 
<b>Linearization of neighborhoods of embeddings of complex compact manifolds </b>
 
 
 
In this work, we address the following question due to Grauert: if a neighborhood M of a holomorphically embedded complex compact manifold C is formally equivalent to another one, are two neighborhoods biholomorphically equivalent? We shall present the case where the other neighborhood is the neighborhood of the zero section of the normal bundle of C in M. The solution to this problem involves "small divisors problems". This is joint work with X. Gong.
 
 
 
 
 
===Bingyang Hu===
 
 
 
<b>Sparse bounds of singular Radon transforms</b>
 
 
 
In this talk, we will first briefly talk about the general theory of sparse domination, and then talk about the sparse bounds of singular Radon transforms, which strengths the $L^p$ boundedness of such operators due to Christ, Nagel, Stein and Wainger in 1999.
 
 
 
=Extras=
 
[[Blank Analysis Seminar Template]]
 

Latest revision as of 17:46, 23 October 2020

The 2020-2021 Analysis Seminar will be organized by David Beltran and Andreas Seeger. It will be online at least for the Fall semester, with details to be announced in September. The regular time for the Seminar will be Tuesdays at 4:00 p.m. (in some cases we will schedule the seminar earlier, or on different days, to accomodate speakers).

Zoom links will be sent to those who have signed up for the Analysis Seminar List. For instructions how to sign up for seminar lists, see https://www.math.wisc.edu/node/230

If you'd like to suggest speakers for the spring semester please contact David and Andreas (dbeltran at math, seeger at math).


Previous_Analysis_seminars

https://www.math.wisc.edu/wiki/index.php/Previous_Analysis_seminars

Current Analysis Seminar Schedule

date speaker institution title host(s)
September 22 Alexei Poltoratski UW Madison Dirac inner functions
September 29 Joris Roos University of Massachusetts - Lowell A triangular Hilbert transform with curvature, I
Wednesday September 30, 4 p.m. Polona Durcik Chapman University A triangular Hilbert transform with curvature, II
October 6 Andrew Zimmer UW Madison Complex analytic problems on domains with good intrinsic geometry
October 13 Hong Wang Princeton/IAS Improved decoupling for the parabola
October 20 Kevin Luli UC Davis Smooth Nonnegative Interpolation
October 21, 4.00 p.m. Niclas Technau UW Madison Number theoretic applications of oscillatory integrals
October 27 Terence Harris Cornell University Low dimensional pinned distance sets via spherical averages
Monday, November 2, 4 p.m. Yuval Wigderson Stanford University New perspectives on the uncertainty principle
November 10 Óscar Domínguez Universidad Complutense de Madrid Title
November 17 Tamas Titkos BBS U of Applied Sciences and Renyi Institute Title
November 24 Shukun Wu University of Illinois (Urbana-Champaign) Title
December 1 Jonathan Hickman The University of Edinburgh Title
December 8 Alejandra Gaitán Purdue University Title
February 2 Jongchon Kim UBC Title
February 9 Bingyang Hu Purdue University Title
February 16 Krystal Taylor The Ohio State University Title
February 23 Dominique Maldague MIT Title
March 2 Diogo Oliveira e Silva University of Birmingham Title
March 9 Title
March 16 Ziming Shi Rutgers University Title
March 23 Title
March 30 Title
April 6 Title
April 13 Title
April 20 Title
April 27 Title
May 4 Title

Abstracts

Alexei Poltoratski

Title: Dirac inner functions

Abstract: My talk will focus on some new (and old) complex analytic objects arising from Dirac systems of differential equations. We will discuss connections between problems in complex function theory, spectral and scattering problems for differential operators and the non-linear Fourier transform.

Polona Durcik and Joris Roos

Title: A triangular Hilbert transform with curvature, I & II.

Abstract: The triangular Hilbert is a two-dimensional bilinear singular originating in time-frequency analysis. No Lp bounds are currently known for this operator. In these two talks we discuss a recent joint work with Michael Christ on a variant of the triangular Hilbert transform involving curvature. This object is closely related to the bilinear Hilbert transform with curvature and a maximally modulated singular integral of Stein-Wainger type. As an application we also discuss a quantitative nonlinear Roth type theorem on patterns in the Euclidean plane. The second talk will focus on the proof of a key ingredient, a certain regularity estimate for a local operator.

Andrew Zimmer

Title: Complex analytic problems on domains with good intrinsic geometry

Abstract: In this talk, I will describe a new class of domains in complex Euclidean space which is defined in terms of the existence of a Kaehler metric with good geometric properties. This class is invariant under biholomorphism and includes many well-studied classes of domains such as strongly pseudoconvex domains, finite type domains in dimension two, convex domains, homogeneous domains, and embeddings of Teichmuller spaces. Further, certain analytic problems are tractable for domains in this family even when the boundary is non-smooth. In particular, it is possible to characterize the domains in this family where the dbar-Neumann operator on (0, q)-forms is compact (which generalizes an old result of Fu-Straube for convex domains).

Hong Wang

Title: Improved decoupling for the parabola

Abstract: In 2014, Bourgain and Demeter proved the $l^2$ decoupling estimates for the paraboloid with constant $R^{\epsilon}$. We prove an $(l^2, L^6)$ decoupling inequality for the parabola with constant $(\log R)^c$. This is joint work with Larry Guth and Dominique Maldague.

Kevin Luli

Title: Smooth Nonnegative Interpolation

Abstract: Suppose E is an arbitrary subset of R^n. Let f: E \rightarrow [0, \infty). How can we decide if f extends to a nonnegative function C^m function F defined on all of R^n? Suppose E is finite. Can we compute a nonnegative C^m function F on R^n that agrees with f on E with the least possible C^m norm? How many computer operations does this take? In this talk, I will explain recent results on these problems. Non-negativity is one of the most important shape preserving properties for interpolants. In real life applications, the range of the interpolant is imposed by nature. For example, probability density, the amount of snow, rain, humidity, chemical concentration are all nonnegative quantities and are of interest in natural sciences. Even in one dimension, the existing techniques can only handle nonnegative interpolation under special assumptions on the data set. Our results work without any assumptions on the data sets.

Niclas Technau

Title: Number theoretic applications of oscillatory integrals

Abstract: We discuss how the analysis of oscillatory integrals can be used to solve number theoretic problems. More specifically, the focus will be on understanding fine-scale statistics of sequences on the unit circle. Further, we shall briefly explain a connection to quantum chaos.

Terence Harris

Title: Low dimensional pinned distance sets via spherical averages

Abstract: An inequality is derived for the average t-energy of weighted pinned distance measures, where 0 < t < 1, in terms of the L^2 spherical averages of Fourier transforms of measures. This generalises the result of Liu (originally for Lebesgue measure) to pinned distance sets of dimension smaller than 1, and strengthens Mattila's result from 1987, originally for the full distance set.

Yuval Wigderson

Title: New perspectives on the uncertainty principle

Abstract: The phrase ``uncertainty principle refers to a wide array of results in several disparate fields of mathematics, all of which capture the notion that a function and its Fourier transform cannot both be ``very localized. The measure of localization varies from one uncertainty principle to the next, and well-studied notions include the variance (and higher moments), the entropy, the support-size, and the rate of decay at infinity. Similarly, the proofs of the various uncertainty principles rely on a range of tools, from the elementary to the very deep. In this talk, I'll describe how many of the uncertainty principles all follow from a single, simple result, whose proof uses only a basic property of the Fourier transform: that it and its inverse are bounded as operators $L^1 \to L^\infty$. Using this result, one can also prove new variants of the uncertainty principle, which apply to new measures of localization and to operators other than the Fourier transform. This is joint work with Avi Wigderson.

Name

Title

Abstract

Name

Title

Abstract

Extras

Blank Analysis Seminar Template


Graduate Student Seminar:

https://www.math.wisc.edu/~sguo223/2020Fall_graduate_seminar.html