Difference between revisions of "Applied/ACMS/absF11"

From UW-Math Wiki
Jump to: navigation, search
(New page: == Cynthia Vinzant, UC Berkeley == <center> {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" |- | bgcolor="#DDDDDD" align="center"| '...)
 
Line 1: Line 1:
== Cynthia Vinzant, UC Berkeley ==
+
== Omar Morandi, TU Graz ==
  
 
<center>
 
<center>
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 
|-
 
|-
| bgcolor="#DDDDDD" align="center"| '''The central curve in linear programming'''
+
| bgcolor="#DDDDDD" align="center"| '''TBA'''
 
|-
 
|-
 
| bgcolor="#DDDDDD"|   
 
| bgcolor="#DDDDDD"|   
The central curve of a linear program is an algebraic curve specified by the associated hyperplane arrangement and cost vector. This curve is the union of the various central paths for minimizing or maximizing the cost function over any region in this hyperplane arrangement. Here we will discuss the algebraic properties of this curve and its beautiful global geometry. In the process, we'll need to study the corresponding matroid of the hyperplane arrangement.  This will let us give a refined bound on the total curvature of the central curve, a quantity relevant for interior point methods. This is joint work with Jesus De Loera and Bernd Sturmfels appearing in [http://arxiv.org/abs/1012.3978 arXiv:1012.3978].
+
TBA
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>

Revision as of 13:23, 8 August 2011