Colloquia/Fall18: Difference between revisions

From UW-Math Wiki
Jump to navigation Jump to search
No edit summary
(127 intermediate revisions by 16 users not shown)
Line 1: Line 1:
__NOTOC__
= Mathematics Colloquium =
= Mathematics Colloquium =


All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.
All colloquia are on Fridays at 4:00 pm in Van Vleck B239, '''unless otherwise indicated'''.


<!-- ==[[Tentative Colloquia|Tentative schedule for next semester]] == -->
== Spring 2018 ==
 
==Fall 2017==


{| cellpadding="8"
{| cellpadding="8"
!align="left" | Date    
!align="left" | date    
!align="left" | Speaker
!align="left" | speaker
!align="left" | Title
!align="left" | title
!align="left" | Host(s)
!align="left" | host(s)
|-
|-
|September 8
|January 29 (Monday)
| [https://sites.google.com/a/wisc.edu/theresa-c-anderson/home/ Tess Anderson] (Madison)
| [http://www.math.columbia.edu/~chaoli/ Li Chao] (Columbia)
|[[#September 8: Tess Anderson (Madison) |  A Spherical Maximal Function along the Primes ]]
|[[#January 29 Li Chao (Columbia)|  Elliptic curves and Goldfeld's conjecture ]]
| Yang
| Jordan Ellenberg
|
|
|-
|-
|September 15
|February 2 (Room: 911)
|
| [https://scholar.harvard.edu/tfai/home Thomas Fai] (Harvard)
|[[#|   ]]
|[[#February 2 Thomas Fai (Harvard)| The Lubricated Immersed Boundary Method ]]
|
| Spagnolie, Smith
|
|
|
|-
|-
|September 22, '''9th floor'''
|February 5 (Monday, Room: 911)
| Jaeyoung Byeon (KAIST)
| [http://www.ma.huji.ac.il/~alexlub/ Alex Lubotzky] (Hebrew University)  
|[[#September 22: Jaeyoung Byeon (KAIST) | Patterns formation for elliptic systems with large interaction forces  ]]
|[[#February 5 Alex Lubotzky (Hebrew University)| High dimensional expanders: From Ramanujan graphs to Ramanujan complexes ]]
| Rabinowitz & Kim
| Ellenberg, Gurevitch
|
|
|-
|-
|September 29
|February 6 (Tuesday 2 pm, Room 911)
|
| [http://www.ma.huji.ac.il/~alexlub/ Alex Lubotzky] (Hebrew University)
|[[# TBATBA  ]]
|[[#February 6 Alex Lubotzky (Hebrew University)Groups' approximation, stability and high dimensional expanders ]]
|
| Ellenberg, Gurevitch
|
|
|-
|-
|October 6,  '''9th floor'''
|February 9
| [http://www3.nd.edu/~jhauenst/ Jonathan Hauenstein] (Notre Dame)
| [http://www.math.cmu.edu/~wes/ Wes Pegden] (CMU)
|[[#October 6: Jonathan Hauenstein (Notre Dame) |  Real solutions of polynomial equations ]]
|[[#February 9 Wes Pegden (CMU)|  The fractal nature of the Abelian Sandpile ]]
| Boston
| Roch
|
|-
|October 13
| [http://www.tomokokitagawa.com/ Tomoko L. Kitagawa] (Berkeley)
|[[# October 13: Tomoko L. Kitagawa (Berkeley) |  A Global History of Mathematics from 1650 to 2017  ]]
| Max
|
|
|-
|-
|October 20
|March 2
| [http://cims.nyu.edu/~pgermain/ Pierre Germain] (Courant, NYU)  
| [http://www.math.utah.edu/~bertram/ Aaron Bertram] (University of Utah)
|[[# TBA| TBA  ]]
|[[#March 2 Aaron Bertram (Utah)| Stability in Algebraic Geometry ]]
| Minh-Binh Tran
| Caldararu
|
|
|-
|-
|October 27
| March 16  (Room: 911)
|Stefanie Petermichl (Toulouse)
|[https://math.dartmouth.edu/~annegelb/ Anne Gelb] (Dartmouth)
|[[# TBA| TBA  ]]
|[[#March 16 Anne Gelb (Dartmouth)| Reducing the effects of bad data measurements using variance based weighted joint sparsity ]]
| Stovall, Seeger
| WIMAW
|
|
|-
|-
|We, November 1
|April 5 (Thursday, Room: 911)
|Shaoming Guo (Indiana)
| [http://math.ucr.edu/home/baez/ John Baez] (UC Riverside)
|[[# TBATBA ]]
|[[#April 5 John Baez (UC Riverside)Monoidal categories of networks ]]
|
| Craciun
|
|
|-
|-
|November 3
| April 6
|Robert Laugwitz  (Rutgers)
| [https://www.math.purdue.edu/~egoins Edray Goins] (Purdue)
|[[# TBATBA  ]]
|[[# Edray GoinsToroidal Bely&#301; Pairs, Toroidal Graphs, and their Monodromy Groups ]]
|Dima Arinkin
| Melanie
|
|
|-
|November 10
| Reserved for possible job talks
|[[# TBA|  TBA  ]]
|
|
|-
|November 17
| Reserved for possible job talks
|[[# TBA|  TBA ]]
|
|
|-
|November 24
|'''Thanksgiving break'''
|[[# TBA|  TBA  ]]
|
|
|
|-
|December 1
| Reserved for possible job talks
|[[# TBA|  TBA  ]]
|
|
|-
|December 8
| Reserved for possible job talks
|[[# TBA|  TBA  ]]
|
|
|-
|}
== Fall Abstracts ==
=== September 8: Tess Anderson (Madison) ===
Title: A Spherical Maximal Function along the Primes
Abstract: Many problems at the interface of analysis and number theory involve showing that the primes, though deterministic, exhibit random behavior.  The Green-Tao theorem stating that the primes contain infinitely long arithmetic progressions is one such example.  In this talk, we show that prime vectors equidistribute on the sphere in the same manner as a random set of integer vectors would be expected to.  We further quantify this with explicit bounds for naturally occurring maximal functions, which connects classical tools from harmonic analysis with analytic number theory.  This is joint work with Cook, Hughes, and Kumchev.
=== September 22: Jaeyoung Byeon (KAIST) ===
Title: Patterns formation for elliptic systems with large interaction forces
Abstract: Nonlinear elliptic systems arising from nonlinear Schroedinger systems have simple looking reaction terms. The corresponding energy for the reaction terms can be expressed as quadratic forms in terms of density functions.  The i, j-th entry of the matrix for the quadratic form represents the interaction force between the components i and j of the system. If the sign of an entry is positive, the force between the two components is attractive; on the other hand, if it is negative, it is repulsive. When the interaction forces between different components are large, the network structure of attraction and repulsion between components might produce several interesting patterns for solutions. As a starting point to study the general pattern formation structure for systems with a large number of components, I will first discuss the simple case of 2-component systems, and then the much more complex case of 3-component systems.
===October 6: Jonathan Hauenstein (Notre Dame) ===
Title: Real solutions of polynomial equations
Abstract: Systems of nonlinear polynomial equations arise frequently in applications with the set of real solutions typically corresponding to physically meaningful solutions.  Efficient algorithms for computing real solutions are designed by exploiting structure arising from the application.  This talk will highlight some of these algorithms for various applications such as solving steady-state problems of hyperbolic conservation laws, solving semidefinite programs, and computing all steady-state solutions of the Kuramoto model.
===October 13: Tomoko Kitagawa (Berkeley) ===
Title: A Global History of Mathematics from 1650 to 2017
Abstract: This is a talk on the global history of mathematics. We will first focus on France by revisiting some of the conversations between Blaise Pascal (1623–1662) and Pierre de Fermat (1607–1665). These two “mathematicians” discussed ways of calculating the possibility of winning a gamble and exchanged their opinions on geometry. However, what about the rest of the world? We will embark on a long oceanic voyage to get to East Asia and uncover the unexpected consequences of blending foreign mathematical knowledge into domestic intelligence, which was occurring concurrently in Beijing and Kyoto. How did mathematicians and scientists contribute to the expansion of knowledge? What lessons do we learn from their experiences?
===October 13: Pierre Germain (Courant, NYU) ===
Title: Stability of the Couette flow in the Euler and Navier-Stokes equations
Abstract: I will discuss the question of the (asymptotic) stability of the Couette flow in Euler and Navier-Stokes. The Couette flow is the simplest nontrivial stationary flow, and the first one for which this question can be fully answered. The answer involves the mathematical understanding of important physical phenomena such as inviscid damping and enhanced dissipation. I will present recent results in dimension 2 (Bedrossian-Masmoudi) and dimension 3 (Bedrossian-Germain-Masmoudi).
== Spring 2018 ==
{| cellpadding="8"
!align="left" | date 
!align="left" | speaker
!align="left" | title
!align="left" | host(s)
|-
|-
| March 16
| April 13 (911 Van Vleck)
|[https://math.dartmouth.edu/~annegelb/ Anne Gelb] (Dartmouth)
| [https://www.math.brown.edu/~jpipher/ Jill Pipher] (Brown)
|[[# TBATBA ]]
|[[#April 13, Jill Pipher, Brown UniversityMathematical ideas in cryptography ]]
| WIMAW
| WIMAW
|
|
|-
|-
| April 6
| April 16 (Monday)
| Reserved
| [http://www-users.math.umn.edu/~cberkesc/ Christine Berkesch Zamaere ] (University of Minnesota)
|[[# TBATBA ]]
|[[#April 16, Christine Berkesch Zamaere (University of Minnesota)Free complexes on smooth toric varieties ]]
| Melanie
| Erman, Sam
|
|
|-
|-
|date
| April 25 (Wednesday, Room: 911)
| person (institution)
| [http://www.f.waseda.jp/hitoshi.ishii/ Hitoshi Ishii] (Tsuda University) Wasow lecture
|[[# TBATBA ]]
|[[#April 25, Hitoshi Ishii (Tsuda University)Asymptotic problems for Hamilton-Jacobi equations and weak KAM theory ]]
| hosting faculty
| Tran
|
|
|-
|-
|date
| May 1 (Tuesday, 4:30pm, Room: B102 VV)
| person (institution)
| [https://math.uchicago.edu/~aneves/ Andre Neves] (University Chicago and Imperial College London) Distinguished lecture
|[[# TBA|  TBA  ]]
|[[# TBA|  TBA  ]]
| hosting faculty
| Lu Wang
|
|
|-
|-
|date
| May 2 (Wednesday, 3pm, Room: B325 VV)
| person (institution)
| [https://math.uchicago.edu/~aneves/ Andre Neves] (University of Chicago and Imperial College London) Distinguished lecture
|[[# TBA|  TBA  ]]
|[[# TBA|  TBA  ]]
| hosting faculty
| Lu Wang
|
|
|-
|-
|date
| May 4
| person (institution)
| [http://math.mit.edu/~cohn/ Henry Cohn] (Microsoft Research and MIT)
|[[# TBA|  TBA  ]]
|[[# TBA|  TBA  ]]
| hosting faculty
| Ellenberg
|
|
|-
|-
Line 232: Line 152:
== Spring Abstracts ==
== Spring Abstracts ==


=== <DATE>: <PERSON> (INSTITUTION) ===
Title: <TITLE>


Abstract: <ABSTRACT>
===January 29 Li Chao (Columbia)===
 
Title: Elliptic curves and Goldfeld's conjecture
 
Abstract:
An elliptic curve is a plane curve defined by a cubic equation. Determining whether such an equation has infinitely many rational solutions has been a central problem in number theory for centuries, which lead to the celebrated conjecture of Birch and Swinnerton-Dyer. Within a family of elliptic curves (such as the Mordell curve family y^2=x^3-d), a conjecture of Goldfeld further predicts that there should be infinitely many rational solutions exactly half of the time. We will start with a history of this problem, discuss our recent work (with D. Kriz) towards Goldfeld's conjecture and illustrate the key ideas and ingredients behind these new progresses.
 
=== February 2 Thomas Fai (Harvard) ===
 
Title: The Lubricated Immersed Boundary Method
 
Abstract:
Many real-world examples of fluid-structure interaction, including the transit of red blood cells through the narrow slits in the spleen, involve the near-contact of elastic structures separated by thin layers of fluid. The separation of length scales between these fine lubrication layers and the larger elastic objects poses significant computational challenges. Motivated by the challenge of resolving such multiscale problems, we introduce an immersed boundary method that uses elements of lubrication theory to resolve thin fluid layers between immersed boundaries. We apply this method to two-dimensional flows of increasing complexity, including eccentric rotating cylinders and elastic vesicles near walls in shear flow, to show its increased accuracy compared to the classical immersed boundary method. We present preliminary simulation results of cell suspensions, a problem in which near-contact occurs at multiple levels, such as cell-wall, cell-cell, and intracellular interactions, to highlight the importance of resolving thin fluid layers in order to obtain the correct overall dynamics.
 
===February 5 Alex Lubotzky (Hebrew University)===
 
Title:  High dimensional expanders: From Ramanujan graphs to Ramanujan complexes
 
Abstract:  
 
Expander graphs in general, and Ramanujan graphs , in particular,  have played a major role in  computer science in the last 5 decades  and more recently also in pure math. The first explicit construction of bounded degree expanding graphs was given by Margulis in the early 70's. In mid 80' Margulis and Lubotzky-Phillips-Sarnak provided Ramanujan graphs which are optimal such expanders.
 
In recent years a high dimensional theory of expanders is emerging.  A notion of topological expanders was defined by Gromov in 2010 who proved that the complete d-dimensional simplical complexes are such. He raised the basic question of existence of such bounded degree complexes of dimension d>1.
 
This question was answered recently affirmatively (by  T. Kaufman, D. Kazdhan and A. Lubotzky for d=2 and by S. Evra and T. Kaufman for general d) by showing that the d-skeleton of (d+1)-dimensional Ramanujan complexes provide such topological expanders. We will describe these developments and the general area of high dimensional expanders.
 
 
===February 6 Alex Lubotzky (Hebrew University)===
 
Title:  Groups' approximation, stability and high dimensional expanders
 
Abstract:
 
Several well-known open questions, such as: are all groups sofic or hyperlinear?,  have a common form: can all groups be approximated by asymptotic homomorphisms into the symmetric groups Sym(n) (in the sofic case) or the  unitary groups U(n) (in the hyperlinear case)? In the case of U(n), the question can be asked with respect to different metrics and norms.  We answer, for the first time, one of these versions, showing that there exist fintely presented groups which are  not approximated by U(n) with respect to the Frobenius (=L_2) norm.
 
The strategy is via the notion of "stability": some higher dimensional cohomology vanishing phenomena is proven to imply stability  and using  high dimensional expanders, it is shown that  some non-residually finite groups  (central extensions of some lattices in p-adic Lie groups)  are Frobenious stable and hence cannot be Frobenius approximated.
 
All notions will be explained.      Joint work with M, De Chiffre, L. Glebsky and A. Thom.
 
===February 9 Wes Pegden (CMU)===
 
Title: The fractal nature of the Abelian Sandpile
 
Abstract: The Abelian Sandpile is a simple diffusion process on the integer lattice, in which configurations of chips disperse according to a simple rule: when a vertex has at least 4 chips, it can distribute one chip to each neighbor.
 
Introduced in the statistical physics community in the 1980s, the Abelian sandpile exhibits striking fractal behavior which long resisted rigorous mathematical analysis (or even a plausible explanation).  We now have a relatively robust mathematical understanding of this fractal nature of the sandpile, which involves surprising connections between integer superharmonic functions on the lattice, discrete tilings of the plane, and Apollonian circle packings.  In this talk, we will survey our work in this area, and discuss avenues of current and future research.
 
===March 2 Aaron Bertram (Utah)===
 
Title: Stability in Algebraic Geometry
 
Abstract: Stability was originally introduced in algebraic geometry in the context of finding a projective quotient space for the action of an algebraic group on a projective manifold. This, in turn, led in the 1960s to a notion of slope-stability for vector bundles on a Riemann surface, which was an important tool in the classification of vector bundles. In the 1990s, mirror symmetry considerations led Michael Douglas to notions of stability for "D-branes" (on a higher-dimensional manifold) that corresponded to no previously known mathematical definition. We now understand each of these notions of stability as a distinct point of a complex "stability manifold" that is an important invariant of the (derived) category of complexes of vector bundles of a projective manifold. In this talk I want to give some examples to illustrate the various stabilities, and also to describe some current work in the area.
 
===March 16 Anne Gelb (Dartmouth)===
 
Title: Reducing the effects of bad data measurements using variance based weighted joint sparsity
 
Abstract: We introduce the variance based joint sparsity (VBJS) method for sparse signal recovery and image reconstruction from multiple measurement vectors. Joint sparsity techniques employing $\ell_{2,1}$ minimization are typically used, but the algorithm is computationally intensive and requires fine tuning of parameters. The VBJS method uses a weighted $\ell_1$ joint sparsity algorithm, where the weights depend on the pixel-wise variance. The VBJS method is accurate, robust, cost efficient and also reduces the effects of false data.
 
 
 
 
===April 5 John Baez (UC Riverside)===
 
Title: Monoidal categories of networks
 
Abstract: Nature and the world of human technology are full of networks. People like to draw diagrams of networks: flow charts, electrical circuit diagrams, chemical reaction networks, signal-flow graphs, Bayesian networks, food webs, Feynman diagrams and the like. Far from mere informal tools, many of these diagrammatic languages fit into a rigorous framework: category theory. I will explain a bit of how this works and discuss some applications.
 
 


===April 6 Edray Goins (Purdue)===
Title: Toroidal Bely&#301;  Pairs, Toroidal Graphs, and their Monodromy Groups
Abstract: A Bely&#301; map <math> \beta: \mathbb P^1(\mathbb C) \to \mathbb P^1(\mathbb C) </math> is a rational function with at most three critical values; we may assume these values are <math> \{ 0, \, 1, \, \infty \}. </math>  A Dessin d'Enfant is a planar bipartite graph obtained by considering the preimage of a path between two of these critical values, usually taken to be the line segment from 0 to 1.  Such graphs can be drawn on the sphere by composing with stereographic projection: <math> \beta^{-1} \bigl( [0,1] \bigr) \subseteq \mathbb P^1(\mathbb C) \simeq S^2(\mathbb R). </math>  Replacing <math> \mathbb P^1 </math> with an elliptic curve <math>E </math>, there is a similar definition of a Bely&#301; map <math> \beta: E(\mathbb C) \to \mathbb P^1(\mathbb C). </math>  Since <math> E(\mathbb C) \simeq \mathbb T^2(\mathbb R) </math> is a torus, we call <math> (E, \beta) </math> a toroidal Bely&#301; pair.  The corresponding Dessin d'Enfant can be drawn on the torus by composing with an elliptic logarithm: <math> \beta^{-1} \bigl( [0,1] \bigr) \subseteq E(\mathbb C) \simeq \mathbb T^2(\mathbb R). </math>
This project seeks to create a database of such Bely&#301; pairs, their corresponding Dessins d'Enfant, and their monodromy groups.  For each positive integer <math> N </math>, there are only finitely many toroidal Bely&#301; pairs <math> (E, \beta) </math> with <math> \deg \, \beta = N. </math>  Using the Hurwitz Genus formula, we can begin this database by considering all possible degree sequences <math> \mathcal D </math> on the ramification indices as multisets on three partitions of N.  For each degree sequence, we compute all possible monodromy groups <math> G = \text{im} \, \bigl[ \pi_1 \bigl( \mathbb P^1(\mathbb C) - \{ 0, \, 1, \, \infty \} \bigr) \to S_N \bigr]; </math> they are the ``Galois closure'' of the group of automorphisms of the graph.  Finally, for each possible monodromy group, we compute explicit formulas for Bely&#301; maps <math> \beta: E(\mathbb C) \to \mathbb P^1(\mathbb C) </math> associated to some elliptic curve <math> E: \ y^2 = x^3 + A \, x + B. </math>  We will discuss some of the challenges of determining the structure of these groups, and present visualizations of group actions on the torus.
This work is part of PRiME (Purdue Research in Mathematics Experience) with Chineze Christopher, Robert Dicks, Gina Ferolito, Joseph Sauder, and Danika Van Niel with assistance by Edray Goins and Abhishek Parab.
===April 13, Jill Pipher, Brown University===
Title:  Mathematical ideas in cryptography
Abstract:  This talk does not assume prior knowledge of public key crypto (PKC). I'll talk about the history of the subject and some current areas of research,
including homomorphic encryption.
===April 16, Christine Berkesch Zamaere (University of Minnesota)===
Title: Free complexes on smooth toric varieties
Abstract: Free resolutions have been a key part of using homological algebra to compute and characterize geometric invariants over projective space. Over more general smooth toric varieties, this is not the case. We will discuss the another family of complexes, called virtual resolutions, which appear to play the role of free resolutions in this setting. This is joint work with Daniel Erman and Gregory G. Smith.
===April 25, Hitoshi Ishii (Tsuda University)===
Title: Asymptotic problems for Hamilton-Jacobi equations and weak KAM theory
Abstract:  In the lecture, I discuss two asymptotic problems related to Hamilton-Jacobi equations. One concerns the long-time behavior of solutions of time evolutionary Hamilton-Jacobi equations and the other is the so-called vanishing discount problem for stationary Hamilton-Jacobi equations. The last two decades have seen a fundamental importance of weak KAM theory in the asymptotic analysis of Hamilton-Jacobi equations.  I explain briefly the Aubry sets and Mather measures from weak KAM theory and their use in the analysis of the two asymptotic problems above.
== Future Colloquia ==
[[Colloquia/Blank|Fall 2018]]


== Past Colloquia ==
== Past Colloquia ==


[[Colloquia/Blank|Blank Colloquia]]
[[Colloquia/Blank|Blank]]
 
[[Colloquia/Fall2017|Fall 2017]]


[[Colloquia/Spring2017|Spring 2017]]
[[Colloquia/Spring2017|Spring 2017]]

Revision as of 19:29, 17 April 2018

Mathematics Colloquium

All colloquia are on Fridays at 4:00 pm in Van Vleck B239, unless otherwise indicated.

Spring 2018

date speaker title host(s)
January 29 (Monday) Li Chao (Columbia) Elliptic curves and Goldfeld's conjecture Jordan Ellenberg
February 2 (Room: 911) Thomas Fai (Harvard) The Lubricated Immersed Boundary Method Spagnolie, Smith
February 5 (Monday, Room: 911) Alex Lubotzky (Hebrew University) High dimensional expanders: From Ramanujan graphs to Ramanujan complexes Ellenberg, Gurevitch
February 6 (Tuesday 2 pm, Room 911) Alex Lubotzky (Hebrew University) Groups' approximation, stability and high dimensional expanders Ellenberg, Gurevitch
February 9 Wes Pegden (CMU) The fractal nature of the Abelian Sandpile Roch
March 2 Aaron Bertram (University of Utah) Stability in Algebraic Geometry Caldararu
March 16 (Room: 911) Anne Gelb (Dartmouth) Reducing the effects of bad data measurements using variance based weighted joint sparsity WIMAW
April 5 (Thursday, Room: 911) John Baez (UC Riverside) Monoidal categories of networks Craciun
April 6 Edray Goins (Purdue) Toroidal Belyĭ Pairs, Toroidal Graphs, and their Monodromy Groups Melanie
April 13 (911 Van Vleck) Jill Pipher (Brown) Mathematical ideas in cryptography WIMAW
April 16 (Monday) Christine Berkesch Zamaere (University of Minnesota) Free complexes on smooth toric varieties Erman, Sam
April 25 (Wednesday, Room: 911) Hitoshi Ishii (Tsuda University) Wasow lecture Asymptotic problems for Hamilton-Jacobi equations and weak KAM theory Tran
May 1 (Tuesday, 4:30pm, Room: B102 VV) Andre Neves (University Chicago and Imperial College London) Distinguished lecture TBA Lu Wang
May 2 (Wednesday, 3pm, Room: B325 VV) Andre Neves (University of Chicago and Imperial College London) Distinguished lecture TBA Lu Wang
May 4 Henry Cohn (Microsoft Research and MIT) TBA Ellenberg
date person (institution) TBA hosting faculty
date person (institution) TBA hosting faculty
date person (institution) TBA hosting faculty
date person (institution) TBA hosting faculty
date person (institution) TBA hosting faculty
date person (institution) TBA hosting faculty
date person (institution) TBA hosting faculty
date person (institution) TBA hosting faculty

Spring Abstracts

January 29 Li Chao (Columbia)

Title: Elliptic curves and Goldfeld's conjecture

Abstract: An elliptic curve is a plane curve defined by a cubic equation. Determining whether such an equation has infinitely many rational solutions has been a central problem in number theory for centuries, which lead to the celebrated conjecture of Birch and Swinnerton-Dyer. Within a family of elliptic curves (such as the Mordell curve family y^2=x^3-d), a conjecture of Goldfeld further predicts that there should be infinitely many rational solutions exactly half of the time. We will start with a history of this problem, discuss our recent work (with D. Kriz) towards Goldfeld's conjecture and illustrate the key ideas and ingredients behind these new progresses.

February 2 Thomas Fai (Harvard)

Title: The Lubricated Immersed Boundary Method

Abstract: Many real-world examples of fluid-structure interaction, including the transit of red blood cells through the narrow slits in the spleen, involve the near-contact of elastic structures separated by thin layers of fluid. The separation of length scales between these fine lubrication layers and the larger elastic objects poses significant computational challenges. Motivated by the challenge of resolving such multiscale problems, we introduce an immersed boundary method that uses elements of lubrication theory to resolve thin fluid layers between immersed boundaries. We apply this method to two-dimensional flows of increasing complexity, including eccentric rotating cylinders and elastic vesicles near walls in shear flow, to show its increased accuracy compared to the classical immersed boundary method. We present preliminary simulation results of cell suspensions, a problem in which near-contact occurs at multiple levels, such as cell-wall, cell-cell, and intracellular interactions, to highlight the importance of resolving thin fluid layers in order to obtain the correct overall dynamics.

February 5 Alex Lubotzky (Hebrew University)

Title: High dimensional expanders: From Ramanujan graphs to Ramanujan complexes

Abstract:

Expander graphs in general, and Ramanujan graphs , in particular, have played a major role in computer science in the last 5 decades and more recently also in pure math. The first explicit construction of bounded degree expanding graphs was given by Margulis in the early 70's. In mid 80' Margulis and Lubotzky-Phillips-Sarnak provided Ramanujan graphs which are optimal such expanders.

In recent years a high dimensional theory of expanders is emerging. A notion of topological expanders was defined by Gromov in 2010 who proved that the complete d-dimensional simplical complexes are such. He raised the basic question of existence of such bounded degree complexes of dimension d>1.

This question was answered recently affirmatively (by T. Kaufman, D. Kazdhan and A. Lubotzky for d=2 and by S. Evra and T. Kaufman for general d) by showing that the d-skeleton of (d+1)-dimensional Ramanujan complexes provide such topological expanders. We will describe these developments and the general area of high dimensional expanders.


February 6 Alex Lubotzky (Hebrew University)

Title: Groups' approximation, stability and high dimensional expanders

Abstract:

Several well-known open questions, such as: are all groups sofic or hyperlinear?, have a common form: can all groups be approximated by asymptotic homomorphisms into the symmetric groups Sym(n) (in the sofic case) or the unitary groups U(n) (in the hyperlinear case)? In the case of U(n), the question can be asked with respect to different metrics and norms. We answer, for the first time, one of these versions, showing that there exist fintely presented groups which are not approximated by U(n) with respect to the Frobenius (=L_2) norm.

The strategy is via the notion of "stability": some higher dimensional cohomology vanishing phenomena is proven to imply stability and using high dimensional expanders, it is shown that some non-residually finite groups (central extensions of some lattices in p-adic Lie groups) are Frobenious stable and hence cannot be Frobenius approximated.

All notions will be explained. Joint work with M, De Chiffre, L. Glebsky and A. Thom.

February 9 Wes Pegden (CMU)

Title: The fractal nature of the Abelian Sandpile

Abstract: The Abelian Sandpile is a simple diffusion process on the integer lattice, in which configurations of chips disperse according to a simple rule: when a vertex has at least 4 chips, it can distribute one chip to each neighbor.

Introduced in the statistical physics community in the 1980s, the Abelian sandpile exhibits striking fractal behavior which long resisted rigorous mathematical analysis (or even a plausible explanation). We now have a relatively robust mathematical understanding of this fractal nature of the sandpile, which involves surprising connections between integer superharmonic functions on the lattice, discrete tilings of the plane, and Apollonian circle packings. In this talk, we will survey our work in this area, and discuss avenues of current and future research.

March 2 Aaron Bertram (Utah)

Title: Stability in Algebraic Geometry

Abstract: Stability was originally introduced in algebraic geometry in the context of finding a projective quotient space for the action of an algebraic group on a projective manifold. This, in turn, led in the 1960s to a notion of slope-stability for vector bundles on a Riemann surface, which was an important tool in the classification of vector bundles. In the 1990s, mirror symmetry considerations led Michael Douglas to notions of stability for "D-branes" (on a higher-dimensional manifold) that corresponded to no previously known mathematical definition. We now understand each of these notions of stability as a distinct point of a complex "stability manifold" that is an important invariant of the (derived) category of complexes of vector bundles of a projective manifold. In this talk I want to give some examples to illustrate the various stabilities, and also to describe some current work in the area.

March 16 Anne Gelb (Dartmouth)

Title: Reducing the effects of bad data measurements using variance based weighted joint sparsity

Abstract: We introduce the variance based joint sparsity (VBJS) method for sparse signal recovery and image reconstruction from multiple measurement vectors. Joint sparsity techniques employing $\ell_{2,1}$ minimization are typically used, but the algorithm is computationally intensive and requires fine tuning of parameters. The VBJS method uses a weighted $\ell_1$ joint sparsity algorithm, where the weights depend on the pixel-wise variance. The VBJS method is accurate, robust, cost efficient and also reduces the effects of false data.



April 5 John Baez (UC Riverside)

Title: Monoidal categories of networks

Abstract: Nature and the world of human technology are full of networks. People like to draw diagrams of networks: flow charts, electrical circuit diagrams, chemical reaction networks, signal-flow graphs, Bayesian networks, food webs, Feynman diagrams and the like. Far from mere informal tools, many of these diagrammatic languages fit into a rigorous framework: category theory. I will explain a bit of how this works and discuss some applications.



April 6 Edray Goins (Purdue)

Title: Toroidal Belyĭ Pairs, Toroidal Graphs, and their Monodromy Groups

Abstract: A Belyĭ map [math]\displaystyle{ \beta: \mathbb P^1(\mathbb C) \to \mathbb P^1(\mathbb C) }[/math] is a rational function with at most three critical values; we may assume these values are [math]\displaystyle{ \{ 0, \, 1, \, \infty \}. }[/math] A Dessin d'Enfant is a planar bipartite graph obtained by considering the preimage of a path between two of these critical values, usually taken to be the line segment from 0 to 1. Such graphs can be drawn on the sphere by composing with stereographic projection: [math]\displaystyle{ \beta^{-1} \bigl( [0,1] \bigr) \subseteq \mathbb P^1(\mathbb C) \simeq S^2(\mathbb R). }[/math] Replacing [math]\displaystyle{ \mathbb P^1 }[/math] with an elliptic curve [math]\displaystyle{ E }[/math], there is a similar definition of a Belyĭ map [math]\displaystyle{ \beta: E(\mathbb C) \to \mathbb P^1(\mathbb C). }[/math] Since [math]\displaystyle{ E(\mathbb C) \simeq \mathbb T^2(\mathbb R) }[/math] is a torus, we call [math]\displaystyle{ (E, \beta) }[/math] a toroidal Belyĭ pair. The corresponding Dessin d'Enfant can be drawn on the torus by composing with an elliptic logarithm: [math]\displaystyle{ \beta^{-1} \bigl( [0,1] \bigr) \subseteq E(\mathbb C) \simeq \mathbb T^2(\mathbb R). }[/math]

This project seeks to create a database of such Belyĭ pairs, their corresponding Dessins d'Enfant, and their monodromy groups. For each positive integer [math]\displaystyle{ N }[/math], there are only finitely many toroidal Belyĭ pairs [math]\displaystyle{ (E, \beta) }[/math] with [math]\displaystyle{ \deg \, \beta = N. }[/math] Using the Hurwitz Genus formula, we can begin this database by considering all possible degree sequences [math]\displaystyle{ \mathcal D }[/math] on the ramification indices as multisets on three partitions of N. For each degree sequence, we compute all possible monodromy groups [math]\displaystyle{ G = \text{im} \, \bigl[ \pi_1 \bigl( \mathbb P^1(\mathbb C) - \{ 0, \, 1, \, \infty \} \bigr) \to S_N \bigr]; }[/math] they are the ``Galois closure of the group of automorphisms of the graph. Finally, for each possible monodromy group, we compute explicit formulas for Belyĭ maps [math]\displaystyle{ \beta: E(\mathbb C) \to \mathbb P^1(\mathbb C) }[/math] associated to some elliptic curve [math]\displaystyle{ E: \ y^2 = x^3 + A \, x + B. }[/math] We will discuss some of the challenges of determining the structure of these groups, and present visualizations of group actions on the torus.

This work is part of PRiME (Purdue Research in Mathematics Experience) with Chineze Christopher, Robert Dicks, Gina Ferolito, Joseph Sauder, and Danika Van Niel with assistance by Edray Goins and Abhishek Parab.

April 13, Jill Pipher, Brown University

Title: Mathematical ideas in cryptography

Abstract: This talk does not assume prior knowledge of public key crypto (PKC). I'll talk about the history of the subject and some current areas of research, including homomorphic encryption.

April 16, Christine Berkesch Zamaere (University of Minnesota)

Title: Free complexes on smooth toric varieties

Abstract: Free resolutions have been a key part of using homological algebra to compute and characterize geometric invariants over projective space. Over more general smooth toric varieties, this is not the case. We will discuss the another family of complexes, called virtual resolutions, which appear to play the role of free resolutions in this setting. This is joint work with Daniel Erman and Gregory G. Smith.


April 25, Hitoshi Ishii (Tsuda University)

Title: Asymptotic problems for Hamilton-Jacobi equations and weak KAM theory

Abstract: In the lecture, I discuss two asymptotic problems related to Hamilton-Jacobi equations. One concerns the long-time behavior of solutions of time evolutionary Hamilton-Jacobi equations and the other is the so-called vanishing discount problem for stationary Hamilton-Jacobi equations. The last two decades have seen a fundamental importance of weak KAM theory in the asymptotic analysis of Hamilton-Jacobi equations. I explain briefly the Aubry sets and Mather measures from weak KAM theory and their use in the analysis of the two asymptotic problems above.

Future Colloquia

Fall 2018

Past Colloquia

Blank

Fall 2017

Spring 2017

Fall 2016

Spring 2016

Fall 2015

Spring 2015

Fall 2014

Spring 2014

Fall 2013

Spring 2013

Fall 2012