# Difference between revisions of "Geometry and Topology Seminar"

(→Fall 2019) |
|||

(6 intermediate revisions by 3 users not shown) | |||

Line 15: | Line 15: | ||

!align="left" | title | !align="left" | title | ||

!align="left" | host(s) | !align="left" | host(s) | ||

+ | |- | ||

+ | |Oct. 4 | ||

+ | |Ruobing Zhang (Stony Brook University) | ||

+ | | TBA | ||

+ | |(Chen) | ||

+ | |- | ||

|- | |- | ||

|Oct. 25 | |Oct. 25 | ||

Line 21: | Line 27: | ||

|(Dymarz) | |(Dymarz) | ||

|- | |- | ||

− | | | + | |Nov. 8 |

+ | |Max Forester (University of Oklahoma) | ||

+ | | TBA | ||

+ | |(Dymarz) | ||

+ | |- | ||

+ | |Nov. 22 | ||

+ | |Yu Li (Stony Brook University) | ||

+ | |On the structure of Ricci shrinkers | ||

+ | |(Huang) | ||

+ | |- | ||

|} | |} | ||

+ | ==Fall Abstracts== | ||

+ | |||

+ | ===Ruobing Zhang=== | ||

− | + | "TBA" | |

===Emily Stark=== | ===Emily Stark=== | ||

"TBA" | "TBA" | ||

+ | |||

+ | ===Max Forester=== | ||

+ | |||

+ | “TBA” | ||

+ | |||

+ | ===Yu Li=== | ||

+ | We develop a structure theory for non-collapsed Ricci shrinkers without any curvature condition. As an application, we show that any Ricci shrinker whose second eigenvalue of the curvature operator is positive must be a quotient of sphere. | ||

== Archive of past Geometry seminars == | == Archive of past Geometry seminars == |

## Latest revision as of 17:57, 20 September 2019

The Geometry and Topology seminar meets in room **901 of Van Vleck Hall** on **Fridays** from **1:20pm - 2:10pm**.

For more information, contact Shaosai Huang.

## Contents

## Fall 2019

date | speaker | title | host(s) |
---|---|---|---|

Oct. 4 | Ruobing Zhang (Stony Brook University) | TBA | (Chen) |

Oct. 25 | Emily Stark (Utah) | TBA | (Dymarz) |

Nov. 8 | Max Forester (University of Oklahoma) | TBA | (Dymarz) |

Nov. 22 | Yu Li (Stony Brook University) | On the structure of Ricci shrinkers | (Huang) |

## Fall Abstracts

### Ruobing Zhang

"TBA"

### Emily Stark

"TBA"

### Max Forester

“TBA”

### Yu Li

We develop a structure theory for non-collapsed Ricci shrinkers without any curvature condition. As an application, we show that any Ricci shrinker whose second eigenvalue of the curvature operator is positive must be a quotient of sphere.

## Archive of past Geometry seminars

2018-2019 Geometry_and_Topology_Seminar_2018-2019

2017-2018 Geometry_and_Topology_Seminar_2017-2018

2016-2017 Geometry_and_Topology_Seminar_2016-2017

2015-2016: Geometry_and_Topology_Seminar_2015-2016

2014-2015: Geometry_and_Topology_Seminar_2014-2015

2013-2014: Geometry_and_Topology_Seminar_2013-2014

2012-2013: Geometry_and_Topology_Seminar_2012-2013

2011-2012: Geometry_and_Topology_Seminar_2011-2012

2010: Fall-2010-Geometry-Topology