Difference between revisions of "Geometry and Topology Seminar 2019-2020"

From UW-Math Wiki
Jump to: navigation, search
Line 30: Line 30:
|Oct. 26
|Oct. 26
|Dingxin Zhang (Harvard)
|Dingxin Zhang (Harvard-CMSA)

Revision as of 12:18, 29 September 2018

The Geometry and Topology seminar meets in room 901 of Van Vleck Hall on Fridays from 1:20pm - 2:10pm.
For more information, contact Shaosai Huang.


Fall 2018

date speaker title host(s)
Sept. 14 Teddy Einstein (UIC) Quasiconvex Hierarchies for Relatively Hyperbolic Non-Positively Curved Cube Complexes (Dymarz)
Oct. 12 Marissa Loving TBA (Kent)
Oct. 19 Sara Maloni TBA (Kent)
Oct. 26 Dingxin Zhang (Harvard-CMSA) TBA (Huang)
Nov. 9 Zhongshan An (Stony Brook) Ellipticity of the Bartnik Boundary Conditions (Huang)
Nov. 16 Xiangdong Xie TBA (Dymarz)

Fall Abstracts

Teddy Einstein

"Quasiconvex Hierarchies for Relatively Hyperbolic Non-Positively Curved Cube Complexes"

Non-positively curved (NPC) cube complexes are important tools in low dimensional topology and group theory and play a prominent role in Agol's proof of the Virtual Haken Conjecture. Constructing a hierarchy for a NPC cube complex is a powerful method of decomposing its fundamental group essential to the theory of NPC cube complex theory. When a cube complex admits a hierarchy with nice properties, it becomes possible to use the hierarchy structure to make inductive arguments. I will explain what a quasiconvex hierarchy of an NPC cube complex is and briefly discuss some of the applications. We will see an outline of how to construct a quasiconvex hierarchy for a relatively hyperbolic NPC cube complex and some of the hyperbolic and relatively hyperbolic geometric tools used to ensure the hierarchy is indeed quasiconvex.

Zhongshan An

"Ellipticity of the Bartnik Boundary Conditions"

The Bartnik quasi-local mass is defined to measure the mass of a bounded manifold with boundary, where a collection of geometric boundary data — the so-called Bartnik boundary data— plays a key role. Bartnik proposed the open problem whether, on a given manifold with boundary, there exists a stationary vacuum metric so that the Bartnik boundary conditions are realized. In the effort to answer this question, it is important to prove the ellipticity of Bartnik boundary conditions for stationary vacuum metrics. In this talk, I will start with an introduction to the Bartnik quasi-local mass and the moduli space of stationary vacuum metrics. Then I will explain the ellipticity result for the Bartnik boundary conditions and, as an application, give a partial answer to the existence question.

Archive of past Geometry seminars

2017-2018 Geometry_and_Topology_Seminar_2017-2018

2016-2017 Geometry_and_Topology_Seminar_2016-2017

2015-2016: Geometry_and_Topology_Seminar_2015-2016

2014-2015: Geometry_and_Topology_Seminar_2014-2015

2013-2014: Geometry_and_Topology_Seminar_2013-2014

2012-2013: Geometry_and_Topology_Seminar_2012-2013

2011-2012: Geometry_and_Topology_Seminar_2011-2012

2010: Fall-2010-Geometry-Topology