Geometry and Topology Seminar
The Geometry and Topology seminar meets in room 901 of Van Vleck Hall on Fridays from 1:20pm - 2:10pm.
For more information, contact Alexandra Kjuchukova or Lu Wang .
Contents
Fall 2016
Spring 2017
date | speaker | title | host(s) | |
---|---|---|---|---|
Jan 20 | Carmen Rovi (University of Indiana Bloomington) | "The mod 8 signature of a fiber bundle" | Maxim | |
Jan 27 | ||||
Feb 3 | Rafael Montezuma (University of Chicago) | "TBA" | Lu Wang | |
Feb 10 | ||||
Feb 17 | Yair Hartman (Northwestern University) | "Intersectional Invariant Random Subgroups and Furstenberg Entropy." | Dymarz | |
Feb 24 | Lucas Ambrozio (University of Chicago) | "TBA" | Lu Wang | |
March 3 | Mark Powell (Université du Québec à Montréal) | "TBA" | Kjuchukova | |
March 10 | Autumn Kent (Wisconsin) | Analytic functions from hyperbolic manifolds | local | |
March 17 | ||||
March 24 | Spring Break | |||
March 31 | Xiangwen Zhang (University of California-Irvine) | "TBA" | Lu Wang | |
April 7 | ||||
April 14 | Xianghong Gong (Wisconsin) | "TBA" | local | |
April 21 | Joseph Maher (CUNY) | "TBA" | Dymarz | |
April 28 | Bena Tshishiku (Harvard) | "TBA" | Dymarz | |
Fall Abstracts
Ronan Conlon
New examples of gradient expanding K\"ahler-Ricci solitons
A complete K\"ahler metric $g$ on a K\"ahler manifold $M$ is a \emph{gradient expanding K\"ahler-Ricci soliton} if there exists a smooth real-valued function $f:M\to\mathbb{R}$ with $\nabla^{g}f$ holomorphic such that $\operatorname{Ric}(g)-\operatorname{Hess}(f)+g=0$. I will present new examples of such metrics on the total space of certain holomorphic vector bundles. This is joint work with Alix Deruelle (Universit\'e Paris-Sud).
Jiyuan Han
Deformation theory of scalar-flat ALE Kahler surfaces
We prove a Kuranishi-type theorem for deformations of complex structures on ALE Kahler surfaces. This is used to prove that for any scalar-flat Kahler ALE surfaces, all small deformations of complex structure also admit scalar-flat Kahler ALE metrics. A local moduli space of scalar-flat Kahler ALE metrics is then constructed, which is shown to be universal up to small diffeomorphisms (that is, diffeomorphisms which are close to the identity in a suitable sense). A formula for the dimension of the local moduli space is proved in the case of a scalar-flat Kahler ALE surface which deforms to a minimal resolution of \C^2/\Gamma, where \Gamma is a finite subgroup of U(2) without complex reflections. This is a joint work with Jeff Viaclovsky.
Sean Howe
Representation stability and hypersurface sections
We give stability results for the cohomology of natural local systems on spaces of smooth hypersurface sections as the degree goes to \infty. These results give new geometric examples of a weak version of representation stability for symmetric, symplectic, and orthogonal groups. The stabilization occurs in point-counting and in the Grothendieck ring of Hodge structures, and we give explicit formulas for the limits using a probabilistic interpretation. These results have natural geometric analogs -- for example, we show that the "average" smooth hypersurface in \mathbb{P}^n is \mathbb{P}^{n-1}!
Nan Li
Quantitative estimates on the singular sets of Alexandrov spaces
The definition of quantitative singular sets was initiated by Cheeger and Naber. They proved some volume estimates on such singular sets in non-collapsed manifolds with lower Ricci curvature bounds and their limit spaces. On the quantitative singular sets in Alexandrov spaces, we obtain stronger estimates in a collapsing fashion. We also show that the (k,\epsilon)-singular sets are k-rectifiable and such structure is sharp in some sense. This is a joint work with Aaron Naber.
Yu Li
In this talk, we prove that if an asymptotically Euclidean (AE) manifold with nonnegative scalar curvature has long time existence of Ricci flow, it converges to the Euclidean space in the strong sense. By convergence, the mass will drop to zero as time tends to infinity. Moreover, in three dimensional case, we use Ricci flow with surgery to give an independent proof of positive mass theorem. A classification of diffeomorphism types is also given for all AE 3-manifolds with nonnegative scalar curvature.
Peyman Morteza
We develop a procedure to construct Einstein metrics by gluing the Calabi metric to an Einstein orbifold. We show that our gluing problem is obstructed and we calculate the obstruction explicitly. When our obstruction does not vanish, we obtain a non-existence result in the case that the base orbifold is compact. When our obstruction vanishes and the base orbifold is non-degenerate and asymptotically hyperbolic we prove an existence result. This is a joint work with Jeff Viaclovsky.
Caglar Uyanik
Geometry and dynamics of free group automorphisms
A common theme in geometric group theory is to obtain structural results about infinite groups by analyzing their action on metric spaces. In this talk, I will focus on two geometrically significant groups; mapping class groups and outer automorphism groups of free groups.We will describe a particular instance of how the dynamics and geometry of their actions on various spaces provide deeper information about the groups.
Bing Wang
The extension problem of the mean curvature flow
We show that the mean curvature blows up at the first finite singular time for a closed smooth embedded mean curvature flow in R^3. A key ingredient of the proof is to show a two-sided pseudo-locality property of the mean curvature flow, whenever the mean curvature is bounded. This is a joint work with Haozhao Li.
Ben Weinkove
Gauduchon metrics with prescribed volume form
Every compact complex manifold admits a Gauduchon metric in each conformal class of Hermitian metrics. In 1984 Gauduchon conjectured that one can prescribe the volume form of such a metric. I will discuss the proof of this conjecture, which amounts to solving a nonlinear Monge-Ampere type equation. This is a joint work with Gabor Szekelyhidi and Valentino Tosatti.
Jonathan Zhu
Entropy and self-shrinkers of the mean curvature flow
The Colding-Minicozzi entropy is an important tool for understanding the mean curvature flow (MCF), and is a measure of the complexity of a submanifold. Together with Ilmanen and White, they conjectured that the round sphere minimises entropy amongst all closed hypersurfaces. We will review the basics of MCF and their theory of generic MCF, then describe the resolution of the above conjecture, due to J. Bernstein and L. Wang for dimensions up to six and recently claimed by the speaker for all remaining dimensions. A key ingredient in the latter is the classification of entropy-stable self-shrinkers that may have a small singular set.
Yu Zeng
Short time existence of the Calabi flow with rough initial data
Calabi flow was introduced by Calabi back in 1950’s as a geometric flow approach to the existence of extremal metrics. Analytically it is a fourth order nonlinear parabolic equation on the Kaehler potentials which deforms the Kaehler potential along its scalar curvature. In this talk, we will show that the Calabi flow admits short time solution for any continuous initial Kaehler metric. This is a joint work with Weiyong He.
Spring Abstracts
Lucas Ambrozio
"TBA"
Rafael Montezuma
"TBA"
Carmen Rovi
The mod 8 signature of a fiber bundle
In this talk we shall be concerned with the residues modulo 4 and modulo 8 of the signature of a 4k-dimensional geometric Poincare complex. I will explain the relation between the signature modulo 8 and two other invariants: the Brown-Kervaire invariant and the Arf invariant. In my thesis I applied the relation between these invariants to the study of the signature modulo 8 of a fiber bundle. In 1973 Werner Meyer used group cohomology to show that a surface bundle has signature divisible by 4. I will discuss current work with David Benson, Caterina Campagnolo and Andrew Ranicki where we are using group cohomology and representation theory of finite groups to detect non-trivial signatures modulo 8 of surface bundles.
Yair Hartman
"Intersectional Invariant Random Subgroups and Furstenberg Entropy."
In this talk I'll present a joint work with Ariel Yadin, in which we solve the Furstenberg Entropy Realization Problem for finitely supported random walks (finite range jumps) on free groups and lamplighter groups. This generalizes a previous result of Bowen. The proof consists of several reductions which have geometric and probabilistic flavors of independent interests. All notions will be explained in the talk, no prior knowledge of Invariant Random Subgroups or Furstenberg Entropy is assumed.
Bena Tshishiku
"TBA"
Autumn Kent
Analytic functions from hyperbolic manifolds
At the heart of Thurston's proof of Geometrization for Haken manifolds is a family of analytic functions between Teichmuller spaces called "skinning maps." These maps carry geometric information about their associated hyperbolic manifolds, and I'll discuss what is presently known about their behavior. The ideas involved form a mix of geometry, algebra, and analysis.
Xiangwen Zhang
"TBA"
Archive of past Geometry seminars
2015-2016: Geometry_and_Topology_Seminar_2015-2016
2014-2015: Geometry_and_Topology_Seminar_2014-2015
2013-2014: Geometry_and_Topology_Seminar_2013-2014
2012-2013: Geometry_and_Topology_Seminar_2012-2013
2011-2012: Geometry_and_Topology_Seminar_2011-2012
2010: Fall-2010-Geometry-Topology