Difference between revisions of "Graduate Logic Seminar"

From UW-Math Wiki
Jump to: navigation, search
(February 16 3:30PM - Short talk by Sarah Reitzes (University of Chicago))
 
(78 intermediate revisions by 3 users not shown)
Line 1: Line 1:
The Graduate Logic Seminar is an informal space where graduate student and professors present topics related to logic which are not necessarly original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.
+
The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.
  
* '''When:''' Mondays 4p-5p
+
* '''When:''' TBA
* '''Where:''' Van Vleck B223.
+
* '''Where:''' on line (ask for code).
* '''Organizers:''' [https://www.math.wisc.edu/~omer/ Omer Mermelstein]
+
* '''Organizers:''' [https://www.math.wisc.edu/~jgoh/ Jun Le Goh]
  
 
The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact one of the organizers.
 
The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact one of the organizers.
Line 9: Line 9:
 
Sign up for the graduate logic seminar mailing list:  join-grad-logic-sem@lists.wisc.edu
 
Sign up for the graduate logic seminar mailing list:  join-grad-logic-sem@lists.wisc.edu
  
 +
== Spring 2021 - Tentative schedule ==
  
 +
=== February 16 3:30PM - Short talk by Sarah Reitzes (University of Chicago) ===
  
== Fall 2019 - Tentative schedule ==
+
Title: Reduction games over $\mathrm{RCA}_0$
  
=== September 5 - Organizational meeting ===
+
Abstract: In this talk, I will discuss joint work with Damir D. Dzhafarov and Denis R. Hirschfeldt. Our work centers on the characterization of problems P and Q such that P $\leq_{\omega}$ Q, as well as problems P and Q such that $\mathrm{RCA}_0 \vdash$ Q $\to$ P, in terms of winning strategies in certain games. These characterizations were originally introduced by Hirschfeldt and Jockusch. I will discuss extensions and generalizations of these characterizations, including a certain notion of compactness that allows us, for strategies satisfying particular conditions, to bound the number of moves it takes to win. This bound is independent of the instance of the problem P being considered. This allows us to develop the idea of Weihrauch and generalized Weihrauch reduction over some base theory. Here, we will focus on the base theory $\mathrm{RCA}_0$. In this talk, I will explore these notions of reduction among various principles, including bounding and induction principles.
 
 
=== September 9 - No seminar ===
 
 
 
=== September 16 - Daniel Belin I ===
 
Title: Lattice Embeddings of the m-Degrees and Second Order Arithmetic
 
 
 
Abstract: Lachlan, in a result later refined and clarified by Odifreddi, proved in 1970 that initial segments of the m-degrees can be embedded as an upper semilattice formed as the limit of finite distributive lattices. This allows us to show that the many-one degrees codes satisfiability in second-order arithmetic, due to a later result of Nerode and Shore. We will take a journey through Lachlan's rather complicated construction which sheds a great deal of light on the order-theoretic properties of many-one reducibility.
 
 
 
=== September 23 - Daniel Belin II ===
 
 
 
=== September 30 - Josiah Jacobsen-Grocott I - Date may change ===
 
 
 
=== October 7 - Josiah Jacobsen-Grocott II ===
 
 
 
=== October 14 - Tejas Bhojraj I - Date may change ===
 
 
 
=== October 21 - Tejas Bhojraj II - Date may change ===
 
 
 
=== October 28 - Two short talks ===
 
Speakers TBD
 
 
 
=== November 4 - Two short talks ===
 
Speakers TBD
 
 
 
=== November 11 - Manlio Valenti I ===
 
 
 
=== November 18 - Manlio Valenti II ===
 
 
 
=== November 25 - Two short talks ===
 
Speakers TBD
 
 
 
=== December 2 - Iván Ongay Valverde I ===
 
 
 
=== December 9 - Iván Ongay Valverde II ===
 
  
 
==Previous Years==
 
==Previous Years==
  
 
The schedule of talks from past semesters can be found [[Graduate Logic Seminar, previous semesters|here]].
 
The schedule of talks from past semesters can be found [[Graduate Logic Seminar, previous semesters|here]].

Latest revision as of 11:11, 28 January 2021

The Graduate Logic Seminar is an informal space where graduate students and professors present topics related to logic which are not necessarily original or completed work. This is a space focused principally on practicing presentation skills or learning materials that are not usually presented in a class.

  • When: TBA
  • Where: on line (ask for code).
  • Organizers: Jun Le Goh

The talk schedule is arranged at the beginning of each semester. If you would like to participate, please contact one of the organizers.

Sign up for the graduate logic seminar mailing list: join-grad-logic-sem@lists.wisc.edu

Spring 2021 - Tentative schedule

February 16 3:30PM - Short talk by Sarah Reitzes (University of Chicago)

Title: Reduction games over $\mathrm{RCA}_0$

Abstract: In this talk, I will discuss joint work with Damir D. Dzhafarov and Denis R. Hirschfeldt. Our work centers on the characterization of problems P and Q such that P $\leq_{\omega}$ Q, as well as problems P and Q such that $\mathrm{RCA}_0 \vdash$ Q $\to$ P, in terms of winning strategies in certain games. These characterizations were originally introduced by Hirschfeldt and Jockusch. I will discuss extensions and generalizations of these characterizations, including a certain notion of compactness that allows us, for strategies satisfying particular conditions, to bound the number of moves it takes to win. This bound is independent of the instance of the problem P being considered. This allows us to develop the idea of Weihrauch and generalized Weihrauch reduction over some base theory. Here, we will focus on the base theory $\mathrm{RCA}_0$. In this talk, I will explore these notions of reduction among various principles, including bounding and induction principles.

Previous Years

The schedule of talks from past semesters can be found here.