Difference between revisions of "Graduate Student Singularity Theory"
(→Spring 2013) |
|||
Line 32: | Line 32: | ||
|- | |- | ||
|Mar.20 (Wed) | |Mar.20 (Wed) | ||
− | | | + | |Jörg Schürmann (University of Münster, Germany) |
− | |'' | + | |''Characteristic classes of singular toric varieties'' |
|- | |- | ||
|Apr. 3 (Wed) | |Apr. 3 (Wed) |
Revision as of 17:13, 21 February 2013
It is a weekly seminar by graduate students. Anyone is welcome. If you would like to present a topic, please contact Tommy Wong. Most of the seminars are at Wednesdays 3:00pm in room 901. Please check below for unusual time and location.
Spring 2013
date | speaker | title |
---|---|---|
Feb. 6 (Wed) | Jeff Poskin | Toric Varieties III |
Feb.13 (Wed) | Yongqiang Liu | Intersection Alexander Module |
Feb.20 (Wed) | Yun Su (Suky) | How do singularities change shape and view of objects? |
Feb.27 (Wed) | KaiHo Wong | Fundamental groups of plane curves complements |
Mar.13 (Wed) | KaiHo Wong | Fundamental groups of plane curves complements II |
Mar.20 (Wed) | Jörg Schürmann (University of Münster, Germany) | Characteristic classes of singular toric varieties |
Apr. 3 (Wed) | ? | ? |
Apr.10 (Wed) | ? | ? |
Abstracts
Wed, 2/27: Tommy
Fundamental groups of plane curves complements
I will sketch the proof of the Zariski-Van Kampen thereon and say some general results about the fundamental groups of plane curves complements. In particular, we will investigate, under what conditions, these groups are abelian. Some simple examples will be provided. And if time permits, some classical examples of Zariski and Oka will be computed.
Fall 2012
date | speaker | title |
---|---|---|
Sept. 18 (Tue) | KaiHo Wong | Organization and Milnor fibration and Milnor Fiber |
Sept. 25 (Tue) | KaiHo Wong | Algebraic links and exotic spheres |
Oct. 4 (Thu) | Yun Su (Suky) | Alexander polynomial of complex algebraic curve (Note the different day but same time and location) |
Oct. 11 (Thu) | Yongqiang Liu | Sheaves and Hypercohomology |
Oct. 18 (Thu) | Jeff Poskin | Toric Varieties II |
Nov. 1 (Thu) | Yongqiang Liu | Mixed Hodge Structure |
Nov. 15 (Thu) | KaiHo Wong | Euler characteristics of hypersurfaces with isolated singularities |
Nov. 29 (Thu) | Markus Banagl, University of Heidelberg | High-Dimensional Topological Field Theory, Automata Theory, and Exotic spheres |
Abstracts
Thu, 10/4: Suky
Alexander polynomial of complex algebraic curve
I will extend the definition of Alexander polynomial in knot theory to an complex algebraic curve. From the definition, it is clear that Alexander polynomial is an topological invariant for curves. I will explain how the topology of a curve control its Alexander polynomial, in terms of the factors. Calculations of some examples will be provided.