Difference between revisions of "Madison Math Circle Abstracts"
(→February 13 2017 (East)) 

Line 264:  Line 264:  
 bgcolor="#BDBDBD"    bgcolor="#BDBDBD"   
In this talk, we will work to discover a beautiful formula that allows us to quickly and easily compute the area of a polygon whose vertices are points of a grid. We will prove that this formula works!}  In this talk, we will work to discover a beautiful formula that allows us to quickly and easily compute the area of a polygon whose vertices are points of a grid. We will prove that this formula works!}  
+  </center>  
+  
+  == February 20 2017 (JMM) ==  
+  <center>  
+  { style="color:black; fontsize:100%" table border="2" cellpadding="10" width="700" cellspacing="20"  
+    
+   bgcolor="#e8b2b2" align="center" style="fontsize:125%"  '''Megan Maguire'''  
+    
+   bgcolor="#BDBDBD" align="center"  '''Title: Coloring Maps'''  
+    
+   bgcolor="#BDBDBD"   
+  Have you ever noticed that in colored maps of the US bordering states are never the same color? That's because it would be super confusing! But how many different colors do we need in order to avoid this? Come find out and learn more cool things about coloring maps.  
</center>  </center> 
Revision as of 16:16, 8 February 2017
Contents
August 6 2016
Science Saturday 
Title: Game Busters 
The goal of our station will be to explore the mathematics related to the games: Set, Nim, and Chomp. We will have stations where individuals can drop by play a few games and explore these games for themselves. (We will have worksheets and volunteers providing guidance.) Additionally, anyone will be able to challenge our Master of Nim with fun prizes available for beating them. (Note: This is at a special time and location.) 
September 12 2016
JeanLuc Thiffeault 
Title: Why do my earbuds keep getting entangled? 
I'll discuss the mathematics of random entanglements. Why is it that it's so easy for wires to get entangled, but so hard for them to detangle? 
September 19 2016
DJ Bruce 
Title: Is Any Knot Not the Unknot? 
You're walking home from school, and you pull out your head phones to listen to some tunes. However, inevitably they are a horribly tangled mess, but are they really a knot? We'll talk about what exactly is a knot, and how we can tell when something is not the unknot. 
September 26 2016
Megan Maguire 
Title: Coloring Maps 
Have you ever noticed that in colored maps of the US bordering states are never the same color? That's because it would be super confusing! But how many different colors do we need in order to avoid this? Come find out and learn more cool things about coloring maps. 
October 3 2016
Zach Charles 
Title: 1 + 1 = 10, or How does my smartphone do anything? 
Computers are used to do all kinds of complex tasks, from playing videos to running internet browsers. Secretly, computers do everything through numbers and mathematics. Surprisingly, they do all of this with "bits", numbers that are only 0 or 1. We will talk about bits and how we use them to do the mathematics we're familiar with as humans. If we have enough time, we will discuss "addition chains" and how computers use them to speed up their computations. 
October 10 2016
Keith Rush 
Title: Randomness, determinism and approximation: a historical question 
If you give me a function, can I find a simple function that approximates it well? This question played a central role in the development of mathematics. With a couple examples we will begin to investigate this for ourselves, and we'll touch on some interesting relationships to modeling random processes. 
October 17 2016
Philip Wood 
Title: The game of CrissCross 
Some say that mathematics is the science of patterns, and patterns are everywhere. You can find some remarkable patterns just by drawing lines connecting dots, and that is just what we will do in the game of CrissCross! Bring your pencils and be ready to play. 
October 24 2016
Ethan Beihl 
Title: A Chocolate Bar for Every Real Number 
By chopping up rectangles into squares repeatedly we obtain socalled "slicing diagrams" that correspond to every number. These diagrams have some very cool properties, and show up all over mathematics (under the name "continued fractions," which name we will investigate). Some questions I may ask you: Which chocolate bars look like themselves? Which chocolate bars look like themselves, except bigger? Which chocolate bars are interesting? Why did you come to a math talk expecting real chocolate? 
October 31 2016
No Meeting This Week 
Title: N/A 
Enjoy Halloween. 
November 7 2016
Polly Yu 
Title: Are we there yet? 
When you are told to clean your room, you have to first clean half of it; then half of what's left, and half of what's left, and so on. Seems like you will never be done! In fact, an ancient Greek philosopher, Zeno, used an argument like this to claim that it is impossible to move! Disclaimer: we are not saying that it's impossible to clean your room. What we will do is look at a special case of adding infinitely many numbers together, and use the resulting formula to calculate areas of fractals. 
November 14 2016
Micky Soule Steinberg 
Title: Circles and Triangles 
We’ll talk about the pythagorean theorem and areas of circles/triangles, and then use those tools to solve some cool problems! 
November 21 2016
Benedek Valko 
Title: Fun with hats 
We will discuss various fun logic problems involving colors of hats. The participants will also have a chance to win some of the speaker’s leftover Halloween candy. 
February 6 2017
Cullen McDonald 
Title: Building a 4dimensional house 
I think my dream home would be in the fourth dimension. I'd have a lot more room for activities. We will draw blueprints, build models, and measure how much more room we'll get by using mathematics to extend our understanding of 3 dimensions to 4 or beyond. 
High School Meetings
October 17 2016 (JMM)
<center>
Daniel Erman 
Title: What does math research look like? 
Using a concrete problem in combinatorics, I will try to give a feel for what math research looks like. We’ll discuss the various aspects of research including: gathering data, making conjectures, proving special cases, and asking new questions. 
October 24 2016 (West)
DJ Bruce 
Title: Shhh, This Message is Secret 
gur pbearefgbar bs gur zbqrea jbeyq eribyirf nebhaq orvat noyr gb rnfvyl pbzzhavpngr frpergf, jurgure gubfr frpergf or perqvg pneq ahzoref ba nznmba, grkg zrffntrf ba lbhe vcubar, be frpher tbireazrag nssnvef. va guvf gnyx jr jvyy rkcyber gur zngu haqrecvaavat bhe novyvgl gb qb guvf, naq frr whfg ubj fgheql gung pbearefgbar npghnyyl znl or. 
October 31 2016 (East)
DJ Bruce 
Title: Shhh, This Message Is Secret 
gur pbearefgbar bs gur zbqrea jbeyq eribyirf nebhaq orvat noyr gb rnfvyl pbzzhavpngr frpergf, jurgure gubfr frpergf or perqvg pneq ahzoref ba nznmba, grkg zrffntrf ba lbhe vcubar, be frpher tbireazrag nssnvef. va guvf gnyx jr jvyy rkcyber gur zngu haqrecvaavat bhe novyvgl gb qb guvf, naq frr whfg ubj fgheql gung pbearefgbar npghnyyl znl or. 
December 5 2016 (JMM)
Philip Matchett Wood 
Title: The game of CrissCross 
Some say that mathematics is the science of patterns, and patterns are everywhere. You can find some remarkable patterns just by drawing lines connecting dots, and that is just what we will do in the game of CrissCross! Bring your pencils and be ready to play. 
December 5 2016 (East)
Uri Andrews 
Title: How to split an apartment 
So you go off to college and after a year or two, you and some of your friends decide to get an apartment together. It'll be a lot of fun living with your best friends. Then movein day comes, and you realize that everyone wants the room by the kitchen (for easy latenight snacking). You have 4 rooms and 4 people. Surely there must be some way to make everybody happy. People are willing to settle for their secondfavorite room instead if maybe they pay a little less rent or do some less chores. How do you navigate this issue to make everybody happy? I'll share a way to do this based on a mathematical theorem which also explains the following fact: If you stir up a cup of hot chocolate, when the liquid has come to rest, some point in the liquid will end up in exactly the same place in the cup as before you stirred it. 
February 13 2017 (East)
Eva Elduque  
Title: Pick's Theorem  
In this talk, we will work to discover a beautiful formula that allows us to quickly and easily compute the area of a polygon whose vertices are points of a grid. We will prove that this formula works!} February 20 2017 (JMM)
