Difference between revisions of "Math 567 -- Elementary Number Theory"

From Math
Jump to: navigation, search
(15 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
Elementary Number Theory'''
 
Elementary Number Theory'''
  
TR 9:30-11:00, Van Vleck B119
+
TR 9:30-10:45, Van Vleck B119
  
 
'''Professor:'''  [http://www.math.wisc.edu/~andreic/ Andrei Caldararu] (andreic@math.wisc.edu)
 
'''Professor:'''  [http://www.math.wisc.edu/~andreic/ Andrei Caldararu] (andreic@math.wisc.edu)
''Office Hours:'' Tuesdays, 1:30-3:00, Van Vleck 605.  
+
''Office Hours:'' Tuesdays 1:30-3:00, Van Vleck 605.  
  
'''Grader:'''  [Shouwei Hui] (shui5@wisc.edu)
+
'''Grader:'''  Shouwei Hui (shui5@wisc.edu)
''Office Hours:'' TBA.
+
''Office Hours:'' Wednesdays 3-4pm, Van Vleck 903.
  
Math 567 is a course in elementary number theory, aimed at undergraduates majoring in math or other quantitative disciplines.  A general familiarity with abstract algebra at the level of Math 541 will be assumed, but students who haven't taken 541 are welcome to attend if they're willing to play a little catchup.  We will be using William Stein's new (and cheap) textbook [http://www.amazon.com/Elementary-Number-Theory-Computational-Undergraduate/dp/0387855246 Elementary Number Theory:  Primes, Congruences, and Secrets], which emphasizes computational approaches to the subject.  If you don't need a physical copy of the book, [http://www.williamstein.org/ent/ it is available as a free legal .pdf.]  We will be using the (free, public-domain) mathematical software [http://www.sagemath.org/ SAGE], developed largely by Stein, as an integral component of our coursework.  There is a [http://www.sagemath.org/pdf/SageTutorial.pdf useful online tutorial.]  You can download SAGE to your own computer or [http://www.sagenb.org use it online].
+
Math 567 is a course in elementary number theory, aimed at undergraduates majoring in math or other quantitative disciplines.  A general familiarity with abstract algebra at the level of Math 541 will be assumed, but students who haven't taken 541 are welcome to attend if they're willing to play a little catchup.  We will be using William Stein's new (and cheap) textbook [http://www.amazon.com/Elementary-Number-Theory-Computational-Undergraduate/dp/0387855246 Elementary Number Theory:  Primes, Congruences, and Secrets], which emphasizes computational approaches to the subject.  If you don't need a physical copy of the book, [http://www.williamstein.org/ent/ it is available as a free legal .pdf.]  We will be using the (free, public-domain) mathematical software [http://www.sagemath.org/ SAGE], developed largely by Stein, as an integral component of our coursework.  There is a [http://doc.sagemath.org/pdf/en/tutorial/SageTutorial.pdf useful online tutorial.]  You can download SAGE to your own computer or [http://www.sagenb.org use it online].
  
 
Topics include some subset of, but are not limited to: Divisibility, the Euclidean algorithm and the GCD, linear Diophantine equations, prime numbers and uniqueness of factorization. Congruences, Chinese remainder theorem, Fermat's "little" theorem, Wilson's theorem, Euler's theorem and totient function, the RSA cryptosystem, Rabin's encryption scheme, Diffie-Hellman key exchange protocol. Number-theoretic functions, multiplicative functions, Möbius inversion. Primitive roots and indices. Quadratic reciprocity and the Legendre symbol. Perfect numbers, Mersenne primes, Fermat primes. Pythagorean triples, Special cases of Fermat's "last" theorem. Fibonacci numbers. Continued fractions. Distribution of primes, discussion of prime number theorem. Primality testing and factoring algorithms.
 
Topics include some subset of, but are not limited to: Divisibility, the Euclidean algorithm and the GCD, linear Diophantine equations, prime numbers and uniqueness of factorization. Congruences, Chinese remainder theorem, Fermat's "little" theorem, Wilson's theorem, Euler's theorem and totient function, the RSA cryptosystem, Rabin's encryption scheme, Diffie-Hellman key exchange protocol. Number-theoretic functions, multiplicative functions, Möbius inversion. Primitive roots and indices. Quadratic reciprocity and the Legendre symbol. Perfect numbers, Mersenne primes, Fermat primes. Pythagorean triples, Special cases of Fermat's "last" theorem. Fibonacci numbers. Continued fractions. Distribution of primes, discussion of prime number theorem. Primality testing and factoring algorithms.
Line 19: Line 19:
 
Many of the problems in this course will ask you to prove things.  I expect proofs to be written in English sentences; the proofs in Stein's book are a good model for the level of verbosity I am looking for.  
 
Many of the problems in this course will ask you to prove things.  I expect proofs to be written in English sentences; the proofs in Stein's book are a good model for the level of verbosity I am looking for.  
  
'''Grading:'''  The grade in Math 567 will be composed of 50% homework, 25% midterm, 25% final.  The final exam date and location will be announced by the University and posted here when available.
+
'''Grading:'''  The grade in Math 567 will be composed of 50% homework, 25% midterm, 25% final.  The midterm will be on November 9, in class. The final exam date and location will be announced by the University and posted here when available.
  
 
'''Syllabus:'''  
 
'''Syllabus:'''  
Line 31: Line 31:
 
* Oct 16-20:  Quadratic reciprocity (4.1-4.4)
 
* Oct 16-20:  Quadratic reciprocity (4.1-4.4)
 
* Oct 23-27:  Finite and infinite continued fractions (5.1-5.3)
 
* Oct 23-27:  Finite and infinite continued fractions (5.1-5.3)
* Oct 31: ''Midterm exam''
+
* Oct 31, Nov 2, Nov 7: Continued fractions and diophantine approximation (5.4-5.5)
* Nov 2, Nov 6-10: Continued fractions and diophantine approximation (5.4-5.5)
+
* Nov. 9: ''Midterm exam''
 
* Nov 13-17: Diophantine equations I:  Pell's equation and Lagrange's theorem
 
* Nov 13-17: Diophantine equations I:  Pell's equation and Lagrange's theorem
 
* Nov 21 and Nov 28-30: Elliptic curves (6.1-6.2)
 
* Nov 21 and Nov 28-30: Elliptic curves (6.1-6.2)
Line 39: Line 39:
  
 
'''Homework:'''
 
'''Homework:'''
Homework is due at the beginning of class on the specified Friday.  Typing your homework is not a requirement, but if you don't already know LaTeX I highly recommend that you learn it and use it to typeset your homework.  I will sometimes assign extra problems, which I will e-mail to the class list and include here.
+
Homework is due at the beginning of class on the specified Thursday.  Typing your homework is not a requirement, but if you don't already know LaTeX I highly recommend that you learn it and use it to typeset your homework.  I will sometimes assign extra problems, which I will e-mail to the class list and include here.
  
<!--
+
* '''Sep 19''' (note this is Tuesday, not Thursday!): 1.1, 1.3, 1.5, 1.7 (use SAGE), 1.8, 1.14.
 
+
Problem A: Use SAGE to compute the number of x in [1..N] such that x^2 + 1 is prime, for N = 100, N = 1000, and N = 10000.  Let f(N) be the number of such x.  
* '''Sep 13''' (note this is Monday, not Friday!): 1.1, 1.3, 1.5, 1.7 (use SAGE), 1.8, 1.14.
+
Problem A: Use SAGE to compute the number of x in [1..N] such that x^2 + 1 is prime, for N = 100, N = 1000, and N = 10000.  Let f(N) be the number of such N.  
+
  
 
a) Can you formulate a conjecture about the relationship between f(N) and N/log N?   
 
a) Can you formulate a conjecture about the relationship between f(N) and N/log N?   
Line 56: Line 54:
 
Note that, despite the evident regularities you'll observe in this problem, we do not even know whether there are infinitely many primes of the form x^2 + 1!  You would become very famous if you proved this.
 
Note that, despite the evident regularities you'll observe in this problem, we do not even know whether there are infinitely many primes of the form x^2 + 1!  You would become very famous if you proved this.
  
* '''Sep 17''':  2.6 (the formulation of numerical evidence should be done by Sage if you've got Sage working, and by calculator if not; you can use an online tool like [http://primes.utm.edu/curios/includes/primetest.php this] to test whether a number is prime.)  2.8,2.9,2.11,2.12,2.14,2.19
+
* '''Sep 28''':  2.6 (the formulation of numerical evidence should be done by Sage if you've got Sage working, and by calculator if not; you can use an online tool like [http://primes.utm.edu/curios/includes/primetest.php this] to test whether a number is prime.)  2.8,2.9,2.11,2.12,2.14,2.19
.
+
 
* '''Sep 24''': 2.15, 2.16 (note that I presented part a) of this in class), 2.20, 2.23, 2.26.
+
* '''Oct 5''': 2.15, 2.18, 2.23, 2.26, 2.30.
  
 
Problem A:  Prove that if n=pq, with p,q prime, then n is not a Carmichael number.
 
Problem A:  Prove that if n=pq, with p,q prime, then n is not a Carmichael number.
  
 
+
* '''Oct 12''':  Book problems:  3.4, 3.5, 3.6
* '''Oct 1''':   
+
 
+
Book problems: 2.31 (I will give a hint for this problem later in the week.) 3.4,3.5,3.6
+
  
 
Problem A.  Prove that there are infinitely many primes p such that 2 is '''not''' a primitive root in Z/pZ.  We break this up into steps.
 
Problem A.  Prove that there are infinitely many primes p such that 2 is '''not''' a primitive root in Z/pZ.  We break this up into steps.
 +
 
Problem A.1.  Prove that, if x is an element of Z/nZ, then x^2 is not a primitive root.
 
Problem A.1.  Prove that, if x is an element of Z/nZ, then x^2 is not a primitive root.
 +
 
Problem A.2.  Prove that there are infinitely many primes p such that 2 is a square in Z/pZ.  Hint:  suppose there are only finitely many such primes p_1, .. p_r, and define N = (p_1 .. p_r)^2 - 2.  Where can you go from here...?
 
Problem A.2.  Prove that there are infinitely many primes p such that 2 is a square in Z/pZ.  Hint:  suppose there are only finitely many such primes p_1, .. p_r, and define N = (p_1 .. p_r)^2 - 2.  Where can you go from here...?
 +
 
Problem A.3.  Give a list of five primes p such that 2 is not a primitive root in Z/pZ (you can use the method of this proof or any other.)
 
Problem A.3.  Give a list of five primes p such that 2 is not a primitive root in Z/pZ (you can use the method of this proof or any other.)
  
 
Problem B.  Prove that 24 is the largest integer n such that every element of (Z/nZ)^* is a root of x^2-1.
 
Problem B.  Prove that 24 is the largest integer n such that every element of (Z/nZ)^* is a root of x^2-1.
  
 +
<!--
 
* '''Oct 8''':
 
* '''Oct 8''':
 
Problem A.  Give a prime factorization of the Gaussian integer 7+9i.
 
Problem A.  Give a prime factorization of the Gaussian integer 7+9i.

Revision as of 18:11, 5 October 2017

MATH 567

Elementary Number Theory

TR 9:30-10:45, Van Vleck B119

Professor: Andrei Caldararu (andreic@math.wisc.edu) Office Hours: Tuesdays 1:30-3:00, Van Vleck 605.

Grader: Shouwei Hui (shui5@wisc.edu) Office Hours: Wednesdays 3-4pm, Van Vleck 903.

Math 567 is a course in elementary number theory, aimed at undergraduates majoring in math or other quantitative disciplines. A general familiarity with abstract algebra at the level of Math 541 will be assumed, but students who haven't taken 541 are welcome to attend if they're willing to play a little catchup. We will be using William Stein's new (and cheap) textbook Elementary Number Theory: Primes, Congruences, and Secrets, which emphasizes computational approaches to the subject. If you don't need a physical copy of the book, it is available as a free legal .pdf. We will be using the (free, public-domain) mathematical software SAGE, developed largely by Stein, as an integral component of our coursework. There is a useful online tutorial. You can download SAGE to your own computer or use it online.

Topics include some subset of, but are not limited to: Divisibility, the Euclidean algorithm and the GCD, linear Diophantine equations, prime numbers and uniqueness of factorization. Congruences, Chinese remainder theorem, Fermat's "little" theorem, Wilson's theorem, Euler's theorem and totient function, the RSA cryptosystem, Rabin's encryption scheme, Diffie-Hellman key exchange protocol. Number-theoretic functions, multiplicative functions, Möbius inversion. Primitive roots and indices. Quadratic reciprocity and the Legendre symbol. Perfect numbers, Mersenne primes, Fermat primes. Pythagorean triples, Special cases of Fermat's "last" theorem. Fibonacci numbers. Continued fractions. Distribution of primes, discussion of prime number theorem. Primality testing and factoring algorithms.

Course Policies: Homework will be due on Thursdays. It can be turned in late only with advance permission from your grader. It is acceptable to use calculators and computers on homework (indeed, some of it will require a computer) but calculators are not allowed during exams. You are encouraged to work together on homework, but writeups must be done individually.

Many of the problems in this course will ask you to prove things. I expect proofs to be written in English sentences; the proofs in Stein's book are a good model for the level of verbosity I am looking for.

Grading: The grade in Math 567 will be composed of 50% homework, 25% midterm, 25% final. The midterm will be on November 9, in class. The final exam date and location will be announced by the University and posted here when available.

Syllabus: (This may change as we see what pace works well for the course. All section numbers refer to Stein's book.)

  • Sep 7 + Sep 11-15: Prime numbers, prime factorizations, Euclidean algorithm and GCD (1.1-1.2)
  • Sep 18-22: The integers mod n, Euler's theorem, the phi function (2.1-2.2)
  • Sep 25-29: Modular exponentiation, primality testing, and primitive roots (2.4-2.5)
  • Oct 2-6: Public-key cryptography and RSA (3.1-3.4)
  • Oct 9-13: Rabin's algorithm (not in the book); algebraic numbers
  • Oct 16-20: Quadratic reciprocity (4.1-4.4)
  • Oct 23-27: Finite and infinite continued fractions (5.1-5.3)
  • Oct 31, Nov 2, Nov 7: Continued fractions and diophantine approximation (5.4-5.5)
  • Nov. 9: Midterm exam
  • Nov 13-17: Diophantine equations I: Pell's equation and Lagrange's theorem
  • Nov 21 and Nov 28-30: Elliptic curves (6.1-6.2)
  • Dec. 4-8: Applications of elliptic curves (6.3-6.4)
  • Dec. 12: advanced topic TBD: maybe additional discussion of cryptographic techniques?

Homework: Homework is due at the beginning of class on the specified Thursday. Typing your homework is not a requirement, but if you don't already know LaTeX I highly recommend that you learn it and use it to typeset your homework. I will sometimes assign extra problems, which I will e-mail to the class list and include here.

  • Sep 19 (note this is Tuesday, not Thursday!): 1.1, 1.3, 1.5, 1.7 (use SAGE), 1.8, 1.14.

Problem A: Use SAGE to compute the number of x in [1..N] such that x^2 + 1 is prime, for N = 100, N = 1000, and N = 10000. Let f(N) be the number of such x.

a) Can you formulate a conjecture about the relationship between f(N) and N/log N?

b) What if x^2 + 1 is replaced with x^2 + 2? Can you explain why x^2 + 2 appears less likely to be prime? (Hint: consider x mod 3.)

c) Prove that f(N) is at most (1/2)N+1. (Hint: consider x mod 2.)

d) Give as good an upper bound as you can for f(N).

Note that, despite the evident regularities you'll observe in this problem, we do not even know whether there are infinitely many primes of the form x^2 + 1! You would become very famous if you proved this.

  • Sep 28: 2.6 (the formulation of numerical evidence should be done by Sage if you've got Sage working, and by calculator if not; you can use an online tool like this to test whether a number is prime.) 2.8,2.9,2.11,2.12,2.14,2.19
  • Oct 5: 2.15, 2.18, 2.23, 2.26, 2.30.

Problem A: Prove that if n=pq, with p,q prime, then n is not a Carmichael number.

  • Oct 12: Book problems: 3.4, 3.5, 3.6

Problem A. Prove that there are infinitely many primes p such that 2 is not a primitive root in Z/pZ. We break this up into steps.

Problem A.1. Prove that, if x is an element of Z/nZ, then x^2 is not a primitive root.

Problem A.2. Prove that there are infinitely many primes p such that 2 is a square in Z/pZ. Hint: suppose there are only finitely many such primes p_1, .. p_r, and define N = (p_1 .. p_r)^2 - 2. Where can you go from here...?

Problem A.3. Give a list of five primes p such that 2 is not a primitive root in Z/pZ (you can use the method of this proof or any other.)

Problem B. Prove that 24 is the largest integer n such that every element of (Z/nZ)^* is a root of x^2-1.