Math 764 -- Algebraic Geometry II -- Homeworks

From UW-Math Wiki
Revision as of 14:47, 29 January 2017 by Arinkin (talk | contribs) (Homeworks)
Jump to: navigation, search

Homeworks

I tried to convert the homeworks into the wiki format with pandoc. This does not always work as expected; in case of doubt, check the pdf files.

Homework 1

Due Friday, February 3rd

In all these problems, we fix a topological space [math]X[/math]; all sheaves and presheaves are sheaves on [math]X[/math].

  1. Example: Let [math]X[/math] be the unit circle, and let [math]{\mathcal{F}}[/math] be the sheaf of [math]C^\infty[/math]-functions on [math]X[/math]. Find the (sheaf) image and the kernel of the morphism [math]\frac{d}{dt}:{\mathcal{F}}\to{\mathcal{F}}.[/math] Here [math]t\in{\mathbb{R}}/2\pi{\mathbb{Z}}[/math] is the polar coordinate on the circle.
  2. Sheaf operations: Let [math]{\mathcal{F}}[/math] and [math]{\mathcal{G}}[/math] be sheaves of sets. Recall that a morphism [math]\phi:{\mathcal{F}}\to {\mathcal{G}}[/math] is a (categorical) monomorphism if and only if for any sheaf [math]{\mathcal{F}}'[/math] and any two morphisms [math]\psi_1,\psi_2:{\mathcal{F}}'\to {\mathcal{F}}[/math], the equality [math]\phi\circ\psi_1=\phi\circ\psi_2[/math] implies [math]\psi_1=\psi_2[/math]. Show that [math]\phi[/math] is a monomorphism if and only if it induces injective maps on all stalks.
  3. Let [math]{\mathcal{F}}[/math] and [math]{\mathcal{G}}[/math] be sheaves of sets. Recall that a morphism [math]\phi:{\mathcal{F}}\to{\mathcal{G}}[/math] is a (categorical) epimorphism if and only if for any sheaf [math]{\mathcal{G}}'[/math] and any two morphisms [math]\psi_1,\psi_2:{\mathcal{G}}\to{\mathcal{G}}'[/math], the equality [math]\psi_1\circ\phi=\psi_2\circ\phi[/math] implies [math]\psi_1=\psi_2[/math]. Show that [math]\phi[/math] is a epimorphism if and only if it induces surjective maps on all stalks.
  4. Show that any morphism of sheaves can be written as a composition of an epimorphism and a monomorphism. (You should know what order of composition I mean here.)
  5. Let [math]{\mathcal{F}}[/math] be a sheaf, and let [math]{\mathcal{G}}\subset{\mathcal{F}}[/math] be a sub-presheaf of [math]{\mathcal{F}}[/math] (thus, for every open set [math]U\subset X[/math], [math]{\mathcal{G}}(U)[/math] is a subset of [math]{\mathcal{F}}(U)[/math] and the restriction maps for [math]{\mathcal{F}}[/math] and [math]{\mathcal{G}}[/math] agree). Show that the sheafification [math]\tilde{\mathcal{G}}[/math] of [math]{\mathcal{G}}[/math] is naturally identified with a subsheaf of [math]{\mathcal{F}}[/math].
  6. Let [math]{\mathcal{F}}_i[/math] be a family of sheaves of abelian groups on [math]X[/math] indexed by a set [math]I[/math] (not necessarily finite). Show that the direct sum and direct product of this family exists in the category of sheaves of abelian groups. (E.g., a direct sum would be a sheaf of abelian groups [math]{\mathcal{F}}[/math] together with a universal family of homomorphisms [math]{\mathcal{F}}_i\to {\mathcal{F}}[/math].) Do these operations agree with (a) taking stalks at a point [math]x\in X[/math] (b) taking sections over an open subset [math]U\subset X[/math]?
  7. Locally constant sheaves:

    Definition. A sheaf [math]{\mathcal{F}}[/math] is constant over an open set [math]U\subset X[/math] if there is a subset [math]S\subset F(U)[/math] such that the map [math]{\mathcal{F}}(U)\to{\mathcal{F}}_x:s\mapsto s_x[/math] (the germ of [math]s[/math] at [math]x[/math]) gives a bijection between [math]S[/math] and [math]{\mathcal{F}}_x[/math] for all [math]x\in U[/math].

    [math]{\mathcal{F}}[/math] is locally constant (on [math]X[/math]) if every point of [math]X[/math] has a neighborhood on which [math]{\mathcal{F}}[/math] is constant.

    Recall that a covering space [math]\pi:Y\to X[/math] is a continuous map of topological spaces such that every [math]x\in X[/math] has a neighborhood [math]U\ni x[/math] whose preimage [math]\pi^{-1}(U)\subset U[/math] is homeomorphic to [math]U\times Z[/math] for some discrete topological space [math]Z[/math]. ([math]Z[/math] may depend on [math]x[/math]; also, the homeomorphism is required to respect the projection to [math]U[/math].)

    Show that if [math]\pi:Y\to X[/math] is a covering space, its sheaf of sections [math]{\mathcal{F}}[/math] is locally constant. Moreover, prove that this correspondence is an equivalence between the category of covering spaces and the category of locally constant sheaves. (If [math]X[/math] is pathwise connected, both categories are equivalent to the category of sets with an action of the fundamental group of [math]X[/math].)

  8. Sheafification: (This problem may be hard, but it is still a good idea to try it) Prove or disprove the following statement (contained in the lecture notes). Let [math]{\mathcal{F}}[/math] be a presheaf on [math]X[/math], and let [math]\tilde{\mathcal{F}}[/math] be its sheafification. Then every section [math]s\in\tilde{\mathcal{F}}(U)[/math] can be represented as (the equivalence class of) the following gluing data: an open cover [math]U=\bigcup U_i[/math] and a family of sections [math]s_i\in{\mathcal{F}}(U_i)[/math] such that [math]s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}[/math].