Difference between revisions of "NTS"
(→Fall 2020 Semester) |
(→Spring 2021 Semester) |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 32: | Line 32: | ||
| bgcolor="#E0E0E0" align="center" | Jan 28 | | bgcolor="#E0E0E0" align="center" | Jan 28 | ||
| bgcolor="#F0B0B0" align="center" | Monica Nevins | | bgcolor="#F0B0B0" align="center" | Monica Nevins | ||
− | | bgcolor="#BCE2FE"| | + | | bgcolor="#BCE2FE"|[https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTSpring2021#Jan_28 Interpreting the local character expansion of p-adic SL(2)] |
|- | |- | ||
| bgcolor="#E0E0E0" align="center" | Feb 4 | | bgcolor="#E0E0E0" align="center" | Feb 4 | ||
| bgcolor="#F0B0B0" align="center" | Ke Chen | | bgcolor="#F0B0B0" align="center" | Ke Chen | ||
− | | bgcolor="#BCE2FE"| | + | | bgcolor="#BCE2FE"|[https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTSpring2021#Feb_4 On CM points away from the Torelli locus] |
|- | |- | ||
| bgcolor="#E0E0E0" align="center" | Feb 11 | | bgcolor="#E0E0E0" align="center" | Feb 11 | ||
| bgcolor="#F0B0B0" align="center" | Dmitry Gourevitch | | bgcolor="#F0B0B0" align="center" | Dmitry Gourevitch | ||
− | | bgcolor="#BCE2FE"| | + | | bgcolor="#BCE2FE"|[https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTSpring2021#Feb_11 Relations between Fourier coefficients of automorphic forms, with applications to vanishing and to Eulerianity] |
|- | |- | ||
| bgcolor="#E0E0E0" align="center" | Feb 18 | | bgcolor="#E0E0E0" align="center" | Feb 18 | ||
| bgcolor="#F0B0B0" align="center" | Eyal Kaplan | | bgcolor="#F0B0B0" align="center" | Eyal Kaplan | ||
− | | bgcolor="#BCE2FE"| | + | | bgcolor="#BCE2FE"| [https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTSpring2021#Feb_18 The generalized doubling method, multiplicity one and the application to global functoriality] |
|- | |- | ||
| bgcolor="#E0E0E0" align="center" | Feb 25 | | bgcolor="#E0E0E0" align="center" | Feb 25 | ||
| bgcolor="#F0B0B0" align="center" | Roger Van Peski | | bgcolor="#F0B0B0" align="center" | Roger Van Peski | ||
− | | bgcolor="#BCE2FE"| | + | | bgcolor="#BCE2FE"| [https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTSpring2021#Feb_25 Random matrices, random groups, singular values, and symmetric functions] |
|- | |- | ||
| bgcolor="#E0E0E0" align="center" | March 4 | | bgcolor="#E0E0E0" align="center" | March 4 | ||
| bgcolor="#F0B0B0" align="center" | Amos Nevo | | bgcolor="#F0B0B0" align="center" | Amos Nevo | ||
− | | bgcolor="#BCE2FE"| | + | | bgcolor="#BCE2FE"| [https://www.math.wisc.edu/wiki/index.php/NTS_ABSTRACTSpring2021#Mar_4 Intrinsic Diophantine approximation on homogeneous algebraic varieties] |
|- | |- | ||
| bgcolor="#E0E0E0" align="center" | March 11 | | bgcolor="#E0E0E0" align="center" | March 11 | ||
Line 67: | Line 67: | ||
|- | |- | ||
| bgcolor="#E0E0E0" align="center" | April 1 | | bgcolor="#E0E0E0" align="center" | April 1 | ||
− | | bgcolor="#F0B0B0" align="center" | | + | | bgcolor="#F0B0B0" align="center" | Abhishek Oswal |
| bgcolor="#BCE2FE"| | | bgcolor="#BCE2FE"| | ||
|- | |- | ||
Line 75: | Line 75: | ||
|- | |- | ||
| bgcolor="#E0E0E0" align="center" | April 15 | | bgcolor="#E0E0E0" align="center" | April 15 | ||
− | | bgcolor="#F0B0B0" align="center" | | + | | bgcolor="#F0B0B0" align="center" | [http://people.math.harvard.edu/~ylam/ Joshua Lam] |
| bgcolor="#BCE2FE"| | | bgcolor="#BCE2FE"| | ||
|- | |- | ||
Line 87: | Line 87: | ||
|- | |- | ||
| bgcolor="#E0E0E0" align="center" | May 6 | | bgcolor="#E0E0E0" align="center" | May 6 | ||
− | | bgcolor="#F0B0B0" align="center" | | + | | bgcolor="#F0B0B0" align="center" | [https://padmask.github.io/ Padmavathi Srinivasan] |
| bgcolor="#BCE2FE"| | | bgcolor="#BCE2FE"| | ||
|- | |- |
Latest revision as of 17:39, 23 February 2021
Contents
Number Theory / Representation Theory Seminar, University of Wisconsin - Madison
- When: Thursdays, 2:30 PM – 3:30 PM
- Where: Van Vleck B321 or remotely
- Please join the NT/RT mailing list: (you must be on a math department computer to use this link).
There is also an accompanying graduate-level seminar, which meets on Tuesdays.
You can find our Spring 2021 speakers in Spring 2021.
You can find our Fall 2020 speakers in Fall 2020.
You can find our Spring 2020 speakers in Spring 2020.
You can find our Fall 2019 speakers in Fall 2019.
You can find our Spring 2019 speakers in Spring 2019.
You can find our previous speakers in Fall 2018.
Spring 2021 Semester
Date | Speaker (click for homepage) | Title (click for abstract) |
Jan 28 | Monica Nevins | Interpreting the local character expansion of p-adic SL(2) |
Feb 4 | Ke Chen | On CM points away from the Torelli locus |
Feb 11 | Dmitry Gourevitch | Relations between Fourier coefficients of automorphic forms, with applications to vanishing and to Eulerianity |
Feb 18 | Eyal Kaplan | The generalized doubling method, multiplicity one and the application to global functoriality |
Feb 25 | Roger Van Peski | Random matrices, random groups, singular values, and symmetric functions |
March 4 | Amos Nevo | Intrinsic Diophantine approximation on homogeneous algebraic varieties |
March 11 | Carlo Pagano | |
March 18 | Siddhi Pathak | |
March 25 | Emmanuel Kowalski | Remembrances of polynomial values: Fourier's way |
April 1 | Abhishek Oswal | |
April 8 | ||
April 15 | Joshua Lam | |
April 22 | Brian Lawrence | |
April 29 | Maria Fox | |
May 6 | Padmavathi Srinivasan |
*to be confirmed
Organizer contact information
Yousheng Shi Yousheng Shi:shi58@wisc.edu
Ananth Shankar Ananth Shankar:ashankar@math.wisc.edu
VaNTAGe
This is a virtual math seminar on open conjectures in number theory and arithmetic geometry. The seminar will be presented in English at (1 pm Eastern time)=(10 am Pacific time), every first and third Tuesday of the month. The Math Department of UW, Madison broadcasts the seminar in the math lounge room at Room 911, Van Vleck Building. For more information, please visit the official website: VaNTAGe
New Developments in Number Theory
This is a new seminar series that features the work of early career number theorists from around the globe. For more information, please visit the official website: NDNT
Return to the Algebra Group Page