Difference between revisions of "NTS"

From Math
Jump to: navigation, search
(Spring 2015 Semester)
(Spring 2015 Semester)
Line 35: Line 35:
 
|-  
 
|-  
 
| bgcolor="#E0E0E0" align="center" | Feb 19
 
| bgcolor="#E0E0E0" align="center" | Feb 19
| bgcolor="#F0B0B0" align="center" | David Zureick-Brown
+
| bgcolor="#F0B0B0" align="center" | [http://www.mathcs.emory.edu/~dzb/ David Zureick-Brown]
 
| bgcolor="#BCE2FE"| [https://www.math.wisc.edu/wiki/index.php/NTS_Spring_2015_Abstract#Feb_19 ''The canonical ring of a stacky curve'']
 
| bgcolor="#BCE2FE"| [https://www.math.wisc.edu/wiki/index.php/NTS_Spring_2015_Abstract#Feb_19 ''The canonical ring of a stacky curve'']
 
|-  
 
|-  
 
| bgcolor="#E0E0E0" align="center" | Feb 26
 
| bgcolor="#E0E0E0" align="center" | Feb 26
| bgcolor="#F0B0B0" align="center" | Rachel Davis
+
| bgcolor="#F0B0B0" align="center" | [http://www.math.purdue.edu/~davis705/ Rachel Davis]
 
| bgcolor="#BCE2FE"| Coming soon...
 
| bgcolor="#BCE2FE"| Coming soon...
 
|-  
 
|-  

Revision as of 09:52, 14 January 2015

Number Theory / Representation Theory Seminar, University of Wisconsin - Madison

  • When: Thursdays, 2:30 PM – 3:30 PM
  • Where: Van Vleck B113
  • Please join the NT/RT mailing list: (you must be on a math department computer to use this link).

There is also an accompanying graduate-level seminar, which meets on Tuesdays.

Spring 2015 Semester

Date Speaker (click for homepage) Title (click for abstract)
Jan 22 (no speaker)
Jan 29 Lillian Pierce Averages and moments associated to class numbers of imaginary quadratic fields
Feb 05 Keerthi Madapusi Heights of special divisors on orthogonal Shimura varieties
Feb 12
Feb 19 David Zureick-Brown The canonical ring of a stacky curve
Feb 26 Rachel Davis Coming soon...
Mar 05 Hongbo Yin Coming soon...
Mar 12
Mar 19
Mar 26
Apr 02
Apr 09
Apr 16
Apr 23
Apr 30
May 07
May 14


Organizer contact information

Sean Rostami (srostami@math.wisc.edu)


The seminar webpage for last semester, Fall 2014, is here.
Empty templates for future NTS pages are here and here


Return to the Algebra Group Page