Difference between revisions of "NTS/Abstracts Spring 2011"

From Math
Jump to: navigation, search
Line 153: Line 153:
 
<br>
 
<br>
  
== TBA ==
+
== Frank Thorne ==
  
 
<center>
 
<center>
Line 166: Line 166:
  
 
<br>
 
<br>
== TBA ==
+
== Rafe Jones ==
  
 
<center>
 
<center>
Line 179: Line 179:
  
 
<br>
 
<br>
== TBA ==
+
== Liang Xiao ==
  
 
<center>
 
<center>
Line 190: Line 190:
 
|}                                                                         
 
|}                                                                         
 
</center>
 
</center>
 +
 +
 +
== Winnie Li ==
 +
 +
<center>
 +
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 +
|-
 +
| bgcolor="#DDDDDD" align="center"| Title: TBA 
 +
|-
 +
| bgcolor="#DDDDDD"| 
 +
Abstract: TBA
 +
|}                                                                       
 +
</center>
 +
 +
  
 
<br>
 
<br>
 +
 +
  
 
== Organizer contact information ==
 
== Organizer contact information ==

Revision as of 00:50, 18 January 2011

Anton Gershaschenko

Title: Moduli of Representations of Unipotent Groups

Abstract: Representations of reductive groups are discretely parameterized, but unipotent groups can have non-trivial families of representations, so it makes sense try to construct and understand a moduli stack (or space) of representations of a given unipotent group. If you restrict to certain kinds of representations, it is possible to actually get your hands on the moduli stack and to construct a moduli space. I'll summarize the few things I know about the general case and then give you a tour of some interesting features that appear in small examples.


Keerthi Madapusi

Title: A rationality property of Hodge cycles on abelian varieties, with an application to arithmetic compactifications of Shimura varieties

Abstract: TBA


Bei Zhang

Title: p-adic L-function of automorphic form of GL(2)

Abstract: Modular symbol is used to construct p-adic L-functions associated to a modular form. In this talk, I will explain how to generalize this powerful tool to the construction of p-adic L-functions attached to an automorphic representation on GL_{2}(A) where A is the ring of adeles over a number field. This is a joint work with Matthew Emerton.


David Brown

Title: Explicit modular approaches to generalized Fermat equations

Abstract: TBA



Tony Várilly-Alvarado

Title: TBA

Abstract: TBA


Wei Ho

Title: TBA

Abstract: TBA


Rob Rhoades

Title: TBA

Abstract: TBA


TBA

Title: TBA

Abstract: TBA


Chris Davis

Title: TBA

Abstract: TBA


Andrew Obus

Title: Cyclic Extensions and the Local Lifting Problem

Abstract: TBA


Bianca Viray

Title: TBA

Abstract: TBA


Frank Thorne

Title: TBA

Abstract: TBA


Rafe Jones

Title: TBA

Abstract: TBA


Liang Xiao

Title: TBA

Abstract: TBA


Winnie Li

Title: TBA

Abstract: TBA




Organizer contact information

David Brown:

Bryden Cais:




Return to the Number Theory Seminar Page

Return to the Algebra Group Page