Difference between revisions of "NTSGrad/Abstracts"
(→Oct 18) |
(→Oct 25) |
||
Line 123: | Line 123: | ||
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | {| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20" | ||
|- | |- | ||
− | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''''' | + | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Solly Parenti''' |
|- | |- | ||
− | | bgcolor="#BCD2EE" align="center" | '''' | + | | bgcolor="#BCD2EE" align="center" | ''Complex Multiplication'' |
|- | |- | ||
− | | bgcolor="#BCD2EE" | | + | | bgcolor="#BCD2EE" | As a youth, I had recurring nightmares about abelian extensions of number fields. Kronecker and Weber tell us about abelian extensions of Q, but even in the next simplest case, quadratic fields, what the Hecke can we say about these extensions? Deuring this talk, we will see what elliptic curves can tell us about extensions of imaginary quadratic fields. |
|} | |} |
Revision as of 15:16, 24 October 2016
Contents
Sep 06
Brandon Alberts |
Introduction to the Cohen-Lenstra Measure |
The Cohen-Lenstra heuristics describe a conjectured probability distribution for the class group of quadratic fields. In this talk, I will give a brief introduction to the heuristic and how it is related to random groups. The remainder of the talk will focus on the Cohen-Lenstra probability measure for choosing a random p-group. This talk is based on a similar talk given by Bjorn Poonen. |
Sep 13
Vlad Matei |
Overview of the Discrete Log Problem |
The discrete logarithm problem (DLP) was first proposed as a hard problem in cryptography in the seminal article of Diffie and Hellman. Since then, together with factorization, it has become one of the two major pillars of public key cryptography.
In its simplest version for $\mathbb{Z}/p\mathbb{Z}$, the problem is given $b\hspace{2mm} ( \text{mod}\hspace{2mm} p)$ and $b^n \hspace{2mm}(\text{mod} \hspace{2mm} p)$ to find $n$. As far as we know, this problem is VERY HARD to solve quickly. Nobody has admitted publicly to having proved that the discrete log can't be solved quickly, but many very smart people have tried hard and not succeeded. This is a prep talk for the Thursday seminar 9/15/2016 |
Sep 20
Wanlin Li |
Gauss's Genus Theory and 2-Selmer Groups of Elliptic Curves |
I'm going to talk about how Gauss's genus theory characterized 2 torsion elements of the class group for imaginary quadratic fields and how to use 2 decent to compute the 2-Selmer group for an elliptic curve. |
Sep 27
Ewan Dalby |
Modular forms of half integral weight |
Usually when we think of modular forms we think of functions that gain an integral power of the automorphic factor under a group action. However we can generalize this notion to allow half integral weights. I will describe how this generalization works and it's connections to the theory of integral weight modular forms. |
Oct 4
Daniel Hast |
Introduction to arboreal Galois representations |
Arboreal Galois representations are representations of Galois
groups as automorphism groups of certain trees. We'll introduce the main definitions, see how iterating polynomial functions gives an abundant source of arboreal representations, and survey some of the major theorems and conjectures about these representations. |
Oct 11
Peng Yu |
Modular Forms and Elliptic Curves |
I will give a quick review of the basics for the classical case of Galois representations associated to modular forms, including the definition of modular forms, Hecke operators, elliptic curves, Galois representations arising from the Tate modules of elliptic curves, and the Modularity Theorem (i.e. the Taniyama-Shimura-Weil conjecture) that every elliptic curve defined over Q is modular. |
Oct 18
Soumya Sankar |
Cohen Lenstra Heuristics for p=2, or the lack thereof |
I will introduce Cohen and Lenstra's Heuristics and talk about why they don't work for p=2. I will also talk about the alternative route to understanding the two-power torsion of the class group, in particular the work of Fouvry-Kluners and Gerth. |
Oct 25
Solly Parenti |
Complex Multiplication |
As a youth, I had recurring nightmares about abelian extensions of number fields. Kronecker and Weber tell us about abelian extensions of Q, but even in the next simplest case, quadratic fields, what the Hecke can we say about these extensions? Deuring this talk, we will see what elliptic curves can tell us about extensions of imaginary quadratic fields. |
Nov 1
' |
' |
Nov 8
' |
' |
Nov 15
' |
' |
Nov 22
' |
' |
Nov 29
' |
' |
Dec 6
' |
' |
Dec 13
' |
' |
Dec 20
' |
' |
Organizer contact information
Brandon Alberts (blalberts@math.wisc.edu)
Megan Maguire (mmaguire2@math.wisc.edu)
Return to the Number Theory Graduate Student Seminar Page
Return to the Number Theory Seminar Page
Return to the Algebra Group Page