Difference between revisions of "NTS ABSTRACT"
(→Feb 16) 

Line 63:  Line 63:  
{ style="color:black; fontsize:100%" table border="2" cellpadding="10" width="700" cellspacing="20"  { style="color:black; fontsize:100%" table border="2" cellpadding="10" width="700" cellspacing="20"  
    
−   bgcolor="#F0A0A0" align="center" style="fontsize:125%" '''  +   bgcolor="#F0A0A0" align="center" style="fontsize:125%" '''Tonghai Yang''' 
    
−   bgcolor="#BCD2EE" align="center"   +   bgcolor="#BCD2EE" align="center"  Lfunction aspect of the Colmez Conjecture 
    
−   bgcolor="#BCD2EE"   +   bgcolor="#BCD2EE"  Associate to a CM type, Colmez defined two invariants: Faltings height of the associated CM abelian varieties of this CM type, and the log derivative of some mysterious Artin Lfunction nifonstructed from this CM type. Furthermore, he conjectured them to be equal and proved the conjecture for Abelian CM number fields (up to log 2). The average version of the conjecture was proved recently by two groups of people which has significant implication to AndreOort conjecture. Some nonabelian cases were proved by myself and others. In all proved cases, the Lfunction is either Dirichlet characters or quadratic Hecke characters. A natural question is what kinds of Artin Lfunctions show up in this conjecture. In this talk, we will talk about some interesting examples in this. This is a joint work with Hongbo Yin. 
}  } 
Revision as of 09:07, 7 February 2017
Return to NTS Spring 2017
Contents
Jan 19
Bianca Viray 
On the dependence of the BrauerManin obstruction on the degree of a variety 
Let X be a smooth projective variety of degree d over a number field k. In 1970 Manin observed that elements of the Brauer group of X can obstruct the existence of a kpoint, even when X is everywhere locally soluble. In joint work with Brendan Creutz, we prove that if X is geometrically abelian, Kummer, or bielliptic then this BrauerManin obstruction to the existence of a kpoint can be detected from only the dprimary torsion Brauer classes. 
Jan 26
Jordan Ellenberg 
Upper bounds for Malle's conjecture over function fields 
I will talk about this paper
https://arxiv.org/abs/1701.04541 joint with Craig Westerland and TriThang Tran, which proves an upper bound, originally conjectured by Malle, for the number of Gextensions of F_q(t) of bounded discriminant.

Feb 2
Arul Shankar 
Bounds on the 2torsion in the class groups of number fields 
(Joint with M. Bhargava, T. Taniguchi, F. Thorne, J. Tsimerman, Y. Zhao)
Given a number field K of fixed degree n over Q, a classical theorem of BrauerSiegel asserts that the size of the class group of K is bounded by O_\epsilon(Disc(K)^(1/2+\epsilon). For any prime p, it is conjectured that the ptorsion subgroup of the class group of K is bounded by O_\epsilon(Disc(K)^\epsilon. Only the case n=p=2 of this conjecture in known. In fact, for most pairs (n,p), the best known bounds come from the "convex" BrauerSiegel bound. In this talk, we will discuss a proof of a subconvex bound on the size of the 2torsion in the class groups of number fields, for all degrees n. We will also discuss an application of this result towards improved bounds on the number of integral points on elliptic curves. 
Feb 9
Tonghai Yang 
Lfunction aspect of the Colmez Conjecture 
Associate to a CM type, Colmez defined two invariants: Faltings height of the associated CM abelian varieties of this CM type, and the log derivative of some mysterious Artin Lfunction nifonstructed from this CM type. Furthermore, he conjectured them to be equal and proved the conjecture for Abelian CM number fields (up to log 2). The average version of the conjecture was proved recently by two groups of people which has significant implication to AndreOort conjecture. Some nonabelian cases were proved by myself and others. In all proved cases, the Lfunction is either Dirichlet characters or quadratic Hecke characters. A natural question is what kinds of Artin Lfunctions show up in this conjecture. In this talk, we will talk about some interesting examples in this. This is a joint work with Hongbo Yin. 
Feb 16
Alexandra Florea 
Moments of Lfunctions over function fields 
I will talk about the moments of the family of quadratic Dirichlet L–functions over function fields. Fixing the finite field and letting the genus of the family go to infinity, I will explain how to obtain asymptotic formulas for the first four moments in the hyperelliptic ensemble.

Feb 23
Dongxi Ye 
Borcherds Products on Unitary Group U(2,1) 
In this talk, I will first briefly go over the concepts of Borcherds products on orthogonal groups and unitary groups. And then I will present a family of new explicit examples of Borcherds products on unitary group U(2,1), which arise from a canonical basis for the space of weakly holomorphic modular forms of weight $1$ for $\Gamma_{0}(4)$. This talk is based on joint work with Professor Tonghai Yang.

Mar 2
Frank Thorne 
Levels of distribution for prehomogeneous vector spaces 
One important technical ingredient in many arithmetic statistics papers is
upper bounds for finite exponential sums which arise as Fourier transforms of characteristic functions of orbits. This is typical in results obtaining power saving error terms, treating "local conditions", and/or applying any sort of sieve. In my talk I will explain what these exponential sums are, how they arise, and what their relevance is. I will outline a new method for explicitly and easily evaluating them, and describe some pleasant surprises in our end results. I will also outline a new sieve method for efficiently exploiting these results, involving Poisson summation and the BhargavaEkedahl geometric sieve. For example, we have proved that there are "many" quartic field discriminants with at most eight prime factors. This is joint work with Takashi Taniguchi.

Mar 9
Speaker 
title 
abstract

Mar 16
Mar 30
Speaker 
title 
abstract

Apr 6
Celine Maistret 
Apr 13
Apr 20
Yueke Hu 
title 
abstract

Apr 27
Speaker 
title 
abstract

May 4
Speaker 
title 
abstract
