NTS ABSTRACTFall2020

From UW-Math Wiki
Revision as of 09:57, 26 August 2020 by Shi (talk | contribs) (Sep 3)
Jump to: navigation, search

Return to [1]


Sep 3

Yifeng Liu
Beilinson-Bloch conjecture and arithmetic inner product formula

In this talk, we study the Chow group of the motive associated to a tempered global L-packet $\pi$ of unitary groups of even rank with respect to a CM extension, whose global root number is -1. We show that, under some restrictions on the ramification of $\pi$, if the central derivative $L'(1/2,\pi)$ is nonvanishing, then the $\pi$-nearly isotypic localization of the Chow group of a certain unitary Shimura variety over its reflex field does not vanish. This proves part of the Beilinson--Bloch conjecture for Chow groups and L-functions. Moreover, assuming the modularity of Kudla's generating functions of special cycles, we explicitly construct elements in a certain $\pi$-nearly isotypic subspace of the Chow group by arithmetic theta lifting, and compute their heights in terms of the central derivative $L'(1/2,\pi)$ and local doubling zeta integrals. This is a joint work with Chao Li.