Difference between revisions of "NTS ABSTRACTSpring2019"

From UW-Math Wiki
Jump to: navigation, search
(Jan 23)
Line 32: Line 32:
 
</center>
 
</center>
  
== March 28 ==
+
 
 +
== Jan 31 ==
 +
 
 +
<center>
 +
{| style="color:black; font-size:100%" table border="2" cellpadding="10" width="700" cellspacing="20"
 +
|-
 +
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Kyle Pratt'''
 +
|-
 +
| bgcolor="#BCD2EE"  align="center" | Breaking the $\frac{1}{2}$-barrier]{Breaking the $\frac{1}{2}$-barrier for the twisted second moment of Dirichlet $L$-functions
 +
|-
 +
| bgcolor="#BCD2EE"  | Abstract: I will discuss recent work, joint with Bui, Robles, and Zaharescu, on a moment problem for Dirichlet $L$-functions. By way of motivation I will spend some time discussing the Lindel\"of Hypothesis, and work of Bettin, Chandee, and Radziwi\l\l. The talk will be accessible, as I will give lots of background information and will not dwell on technicalities.
 +
 
 +
|}                                                                       
 +
</center>
 +
 
 +
== Feb 7 ==
  
 
<center>
 
<center>

Revision as of 11:24, 25 January 2019

Return to [1]


Jan 23

Yunqing Tang
Reductions of abelian surfaces over global function fields
For a non-isotrivial ordinary abelian surface $A$ over a global function field, under mild assumptions, we prove that there are infinitely many places modulo which $A$ is geometrically isogenous to the product of two elliptic curves. This result can be viewed as a generalization of a theorem of Chai and Oort. This is joint work with Davesh Maulik and Ananth Shankar.


Jan 24

Hassan-Mao-Smith--Zhu
The diophantine exponent of the $\mathbb{Z}/q\mathbb{Z}$ points of $S^{d-2}\subset S^d$
Abstract: Assume a polynomial-time algorithm for factoring integers, Conjecture~\ref{conj}, $d\geq 3,$ and $q$ and $p$ prime numbers, where $p\leq q^A$ for some $A>0$. We develop a polynomial-time algorithm in $\log(q)$ that lifts every $\mathbb{Z}/q\mathbb{Z}$ point of $S^{d-2}\subset S^{d}$ to a $\mathbb{Z}[1/p]$ point of $S^d$ with the minimum height. We implement our algorithm for $d=3 \text{ and }4$. Based on our numerical results, we formulate a conjecture which can be checked in polynomial-time and gives the optimal bound on the diophantine exponent of the $\mathbb{Z}/q\mathbb{Z}$ points of $S^{d-2}\subset S^d$.


Jan 31

Kyle Pratt
Breaking the $\frac{1}{2}$-barrier]{Breaking the $\frac{1}{2}$-barrier for the twisted second moment of Dirichlet $L$-functions
Abstract: I will discuss recent work, joint with Bui, Robles, and Zaharescu, on a moment problem for Dirichlet $L$-functions. By way of motivation I will spend some time discussing the Lindel\"of Hypothesis, and work of Bettin, Chandee, and Radziwi\l\l. The talk will be accessible, as I will give lots of background information and will not dwell on technicalities.

Feb 7

Shamgar Gurevitch
Harmonic Analysis on GLn over finite fields
Abstract: There are many formulas that express interesting properties of a group G in terms of sums over its characters.

For evaluating or estimating these sums, one of the most salient quantities to understand is the {\it character ratio}: $$trace (\rho(g))/dim (\rho),$$ for an irreducible representation $\rho$ of G and an element g of G. For example, Diaconis and Shahshahani stated a formula of this type for analyzing G-biinvariant random walks on G. It turns out that, for classical groups G over finite fields (which provide most examples of finite simple groups), there is a natural invariant of representations that provides strong information on the character ratio. We call this invariant {\it rank}. This talk will discuss the notion of rank for GLn over finite fields, and apply the results to random walks. This is joint work with Roger Howe (TAMU).