Difference between revisions of "NTS Fall 2012/Abstracts"
(→September 20: oops: and add his name) |
(→September 27: add title and abstract for Jordan's talk) |
||
Line 38: | Line 38: | ||
| bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Jordan Ellenberg''' (UW–Madison) | | bgcolor="#F0A0A0" align="center" style="font-size:125%" | '''Jordan Ellenberg''' (UW–Madison) | ||
|- | |- | ||
− | | bgcolor="#BCD2EE" align="center" | Title: | + | | bgcolor="#BCD2EE" align="center" | Title: Topology of Hurwitz spaces and Cohen-Lenstra conjectures over function fields |
|- | |- | ||
| bgcolor="#BCD2EE" | | | bgcolor="#BCD2EE" | | ||
− | Abstract: | + | Abstract: We will discuss recent progress, joint with Akshay Venkatesh and Craig Westerland, towards the Cohen–Lenstra conjecture over the function field '''F'''<sub>''q''</sub>(''t''). There are two key novelties, one topological and one arithmetic. The first is a homotopy-theoretic description of the "moduli space of ''G''-covers with infinitely many branch points." The second is a description of the stable components of Hurwitz space over '''F'''<sub>''q''</sub>, as a module for Gal(<span style="text-decoration:overline;">'''F'''</span><sub>''q''</sub>/'''F'''<sub>''q''</sub>). At least half the talk will be devoted to explaining why these objects are relevant to a very down-to-earth question like Cohen–Lenstra. If time permits, I'll explain what this has to do with the conjectures Nigel spoke about two weeks ago, and a bit about what Daniel is up to. |
|} | |} | ||
</center> | </center> |
Revision as of 13:58, 24 September 2012
September 13
Nigel Boston (UW–Madison) |
Title: Non-abelian Cohen–Lenstra heuristics |
Abstract: In 1983, Cohen and Lenstra observed that the frequency with which a given abelian p-group A (p odd) arises as the p-class group of an imaginary quadratic field K is apparently proportional to 1/|Aut(A)|. The group A is isomorphic to the Galois group of the maximal unramified abelian p-extension of K. In work with Michael Bush and Farshid Hajir, I generalized this to non-abelian unramified p-extensions of imaginary quadratic fields. I shall recall all the above and describe a further generalization to non-abelian unramified p-extensions of H-extensions of Q, for any p, H, where p does not divide the order of H. |
September 20
Simon Marshall (Northwestern) |
Title: Multiplicities of automorphic forms on GL_{2} |
Abstract: I will discuss some ideas related to the theory of p-adically completed cohomology developed by Frank Calegari and Matthew Emerton. If F is a number field which is not totally real, I will use these ideas to prove a strong upper bound for the dimension of the space of cohomological automorphic forms on GL_{2} over F which have fixed level and growing weight. |
September 27
Jordan Ellenberg (UW–Madison) |
Title: Topology of Hurwitz spaces and Cohen-Lenstra conjectures over function fields |
Abstract: We will discuss recent progress, joint with Akshay Venkatesh and Craig Westerland, towards the Cohen–Lenstra conjecture over the function field F_{q}(t). There are two key novelties, one topological and one arithmetic. The first is a homotopy-theoretic description of the "moduli space of G-covers with infinitely many branch points." The second is a description of the stable components of Hurwitz space over F_{q}, as a module for Gal(F_{q}/F_{q}). At least half the talk will be devoted to explaining why these objects are relevant to a very down-to-earth question like Cohen–Lenstra. If time permits, I'll explain what this has to do with the conjectures Nigel spoke about two weeks ago, and a bit about what Daniel is up to. |
Organizer contact information
Sean Rostami
Return to the Number Theory Seminar Page
Return to the Algebra Group Page