Difference between revisions of "PDE Geometric Analysis seminar"

From Math
Jump to: navigation, search
(PDE GA Seminar Schedule Fall 2018-Spring 2019)
(Abstracts)
Line 93: Line 93:
 
== Abstracts ==
 
== Abstracts ==
  
=== ===
+
===Julian Lopez-Gomez===
  
Title:
+
Title: The theorem of characterization of the Strong Maximum Principle
 +
 
 +
Abstract: The main goal of this talk is to discuss the classical (well known) versions of the strong maximum principle of Hopf and Oleinik, as well as the generalized maximum principle of Protter and Weinberger. These results serve as steps towards the theorem of characterization of the strong maximum principle of the speaker, Molina-Meyer and Amann, which substantially generalizes  a popular result of Berestycki, Nirenberg and Varadhan.

Revision as of 09:14, 29 August 2018

The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.

Previous PDE/GA seminars

Tentative schedule for Fall 2019-Spring 2020

PDE GA Seminar Schedule Fall 2018-Spring 2019

date speaker title host(s)
August 31 (FRIDAY), Julian Lopez-Gomez (Complutense University of Madrid) The theorem of characterization of the Strong Maximum Principle Rabinowitz
September 10, Hiroyoshi Mitake (University of Tokyo) TBA Tran
September 17, Changyou Wang (Purdue) TBA Tran
September 24/26, Gunther Uhlmann (UWash) TBA Li
October 1, Matthew Schrecker (UW) TBA Kim and Tran
October 8, Anna Mazzucato (PSU) TBA Li and Kim
October 15, Lei Wu (Lehigh) TBA Kim
October 22, Annalaura Stingo (UCD) TBA Mihaela Ifrim
Time: TBD, Jessica Lin (McGill University) TBA Tran
November 5, Albert Ai (University of Berkeley) TBA Mihaela Ifrim
December 10, ( ) TBA
January 28, ( ) TBA
March 4 Vladimir Sverak (Minnesota) TBA(Wasow lecture) Kim
March 18, Spring recess (Mar 16-24, 2019)
April 29, ( ) TBA

Abstracts

Julian Lopez-Gomez

Title: The theorem of characterization of the Strong Maximum Principle

Abstract: The main goal of this talk is to discuss the classical (well known) versions of the strong maximum principle of Hopf and Oleinik, as well as the generalized maximum principle of Protter and Weinberger. These results serve as steps towards the theorem of characterization of the strong maximum principle of the speaker, Molina-Meyer and Amann, which substantially generalizes a popular result of Berestycki, Nirenberg and Varadhan.