Difference between revisions of "PDE Geometric Analysis seminar"

From UW-Math Wiki
Jump to: navigation, search
(Abstracts)
(PDE GA Seminar Schedule Fall 2020-Spring 2021)
 
(380 intermediate revisions by 10 users not shown)
Line 2: Line 2:
  
 
===[[Previous PDE/GA seminars]]===
 
===[[Previous PDE/GA seminars]]===
===[[Fall 2016 | Tentative schedule for Fall 2017]]===
+
===[[Fall 2021-Spring 2022 | Tentative schedule for Fall 2021-Spring 2022]]===
  
= PDE GA Seminar Schedule Spring 2017 =
 
  
{| cellpadding="8"
 
!style="width:20%" align="left" | date 
 
!align="left" | speaker
 
!align="left" | title
 
!style="width:20%" align="left" | host(s)
 
|-
 
|January 23<br>Special time and location:<br> 3-3:50pm, B325 Van Vleck
 
| Sigurd Angenent (UW)
 
|[[#Sigurd Angenent | Ancient convex solutions to Mean Curvature Flow]]
 
| Kim & Tran
 
|-
 
  
|-
+
== PDE GA Seminar Schedule Fall 2020-Spring 2021 ==
|January 30
+
Welcome to the new mode of our PDEGA seminar this semester. Each week, we'll introduce to you two talks that are interesting and related to our interests. As the videos are already on Youtube or other platforms, you could choose to watch them whenever you want to; our goal here is merely to pick our favorite ones out of thousands of already available recorded talks. 
| Serguei Denissov (UW)
+
 
|[[#Serguei Denissov | Instability in 2D Euler equation of incompressible inviscid fluid]]
+
'''Week 1 (9/1/2020-9/5/2020)'''
| Kim & Tran
+
 
|-  
+
1. Paul Rabinowitz - The calculus of variations and phase transition problems.
 +

https://www.youtube.com/watch?v=vs3rd8RPosA
 +
 
 +
2. Frank Merle - On the implosion of a three dimensional compressible fluid.
 +
https://www.youtube.com/watch?v=5wSNBN0IRdA&feature=youtu.be 
 +
 
 +
'''Week 2 (9/6/2020-9/12/2020)'''
 +
 
 +
1. Yoshikazu Giga - On large time behavior of growth by birth and spread.
 +
https://www.youtube.com/watch?v=4ndtUh38AU0
 +
 
 +
2. Tarek Elgindi - Singularity formation in incompressible fluids. https://youtu.be/29zUjm7xFlI
 +
 
 +
 
 +
 
 +
'''Week 3 (9/13/2020-9/19/2020)'''
 +
 
 +
1. Eugenia Malinnikova - Two questions of Landis and their applications. https://www.youtube.com/watch?v=lpTsW1noWTQ
 +
 
 +
2. Pierre Germain - On the derivation of the kinetic wave equation. https://youtu.be/ZbCjKwQ3KcE
 +
 
 +
 
 +
 
 +
'''Week 4 (9/20/2020-9/26/2020)'''
 +
 
 +
1. Robert M. Strain - Global mild solutions of the Landau and non-cutoff Boltzmann equation. https://www.youtube.com/watch?v=UWrCItk2euo&feature=youtu.be
 +
 
 +
2. Elena Kosygina - Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension https://www.youtube.com/watch?v=tVZv0ftT3PM
 +
 
 +
 
 +
 
 +
'''Week 5 (9/27/2020-10/03/2020)'''
 +
 
 +
1. Isabelle Gallagher - From Newton to Boltzmann, fluctuations and large deviations. https://www.youtube.com/watch?v=BkrKkUVadDo
 +
 
 +
2.  Connor Mooney - The Bernstein problem for elliptic functionals, https://www.youtube.com/watch?v=lSfnyfCL74c
 +
 
 +
 
 +
'''Week 6 (10/04/2020-10/10/2020)'''
 +
 
 +
1. Felix Otto - The thresholding scheme for mean curvature flow and De Giorgi's ideas for gradient flows. https://www.youtube.com/watch?v=7FQsiZpQA7E
 +
 
 +
2. Inwon Kim - Evolution of star-shaped sets in Mean curvature flow with forcing
 +
http://www.birs.ca/events/2018/5-day-workshops/18w5033/videos/watch/201806190900-Kim.html
 +
 
 +
 
 +
'''Week 7 (10/11/2020-10/17/2020)'''
 +
 
 +
1. Benoit Perthame - Multiphase models of living tissues and the Hele-Shaw limit. https://www.youtube.com/watch?v=UGVJnJCfw5s
 +
 
 +
2. Yifeng Yu - Properties of Effective Hamiltonians. https://www.youtube.com/watch?v=U06G4wjF-Hg
 +
 
 +
 
 +
'''Week 8 (10/18/2020-10/24/2020)'''
 +
 
 +
1. Carlos Kenig - Asymptotic simplification for solutions of the energy critical nonlinear wave equation. https://youtu.be/jvzUqAxU8Xg
 +
 
 +
2. Kyeongsu Choi - Ancient mean curvature flows and singularity analysis. https://www.youtube.com/watch?v=Iu1iLjdFjKQ
 +
 
 +
Virtual Analysis and PDE Seminar (VAPS): https://sites.uci.edu/pdeonlineseminar/. First talk by Ovidiu Savin.
 +
 
  
 +
'''Week 9 (10/25/2020-10/31/2020)'''
  
|-
+
1. John Ball - Some energy minimization problems for liquid crystals. https://www.youtube.com/watch?v=-j0jc-y7JzE
|February 6 - Wasow lecture
 
| Benoit Perthame (University of Paris VI)
 
|[[#| ]]
 
| Jin
 
|-  
 
  
 +
2. Tristan Buckmaster - Stable shock wave formation for the isentropic compressible Euler equations. https://stanford.zoom.us/rec/play/DwuT8rE-K1uJC0LghYPtsoaNmPBk9-P5EK4ZeWh1mVNJELRHn-ay-gOVXHSTRz_0X3iUZDBoUVYq8zfd.Tuqy8urKY4jESivm?continueMode=true&_x_zm_rtaid=GiRX307iT7encyYgIEgh9Q.1603308889393.b4a9b3af5c64cc9ca735cffbe25d8b7b&_x_zm_rhtaid=764
  
|-
 
|February 13
 
| Bing Wang (UW)
 
|[[#Bing Wang | The extension problem of the mean curvature flow]]
 
| Kim & Tran
 
|-
 
  
|-
 
|February 20
 
| Eric Baer (UW)
 
|[[#Eric Baer | Isoperimetric sets inside almost-convex cones]]
 
| Kim & Tran
 
|-
 
  
|-
+
'''Week 10 (11/1/2020-11/7/2020)'''
|February 27
 
| Ben Seeger (University of Chicago)
 
|[[#Ben Seeger | Homogenization of pathwise Hamilton-Jacobi equations ]]
 
| Tran
 
|-
 
  
|-
+
1. Sylvia Serfaty - Mean-Field limits for Coulomb-type dynamics. https://www.youtube.com/watch?v=f7iSTnAe808&feature=youtu.be
|March 7 - Mathematics Department Distinguished Lecture
 
| Roger Temam (Indiana University) 
 
|[[#Roger Temam | On the mathematical modeling of the humid atmosphere]]
 
| Smith 
 
|-  
 
  
 +
2. Luc Nguyen - Symmetry and multiple existence of critical points in 2D Landau-de Gennes Q-tensor theory http://www.birs.ca/events/2017/5-day-workshops/17w5110/videos/watch/201705041518-Nguyen.html
  
|-
 
|March 8 - Analysis/Applied math/PDE seminar
 
| Roger Temam (Indiana University) 
 
|[[#Roger Temam | Weak solutions of the Shigesada-Kawasaki-Teramoto system ]]
 
| Smith
 
|-
 
  
|-
 
|March 13
 
| Sona Akopian (UT-Austin)
 
|[[#Sona Akopian | Global $L^p$ well posed-ness of the Boltzmann equation with an angle-potential concentrated collision kernel.]]
 
| Kim
 
  
|-
+
'''Week 11 (11/8/2020-11/14/2020)'''
|March 27 - Analysis/PDE seminar
 
| Sylvia Serfaty (Courant)
 
|[[#Sylvia Serfaty | Mean-Field Limits for Ginzburg-Landau vortices ]]
 
| Tran
 
  
|-
+
1. Andrzej Święch - Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures https://www.youtube.com/watch?v=KC514krtWAc
|March 29 - Wasow lecture
 
| Sylvia Serfaty (Courant)
 
|[[#Sylvia Serfaty | Microscopic description of Coulomb-type systems ]]
 
|
 
  
|-
+
2. Alexandru Ionescu - On the nonlinear stability of shear flows and vortices, https://youtu.be/Zt_Izzi87V0
|April 3
 
| Zhenfu Wang (Maryland)
 
|[[#Zhenfu Wang | ]]
 
| Kim
 
  
|-
 
|April 10
 
| Andrei Tarfulea (Chicago)
 
|[[#Andrei Tarfulea | Improved estimates for thermal fluid equations]]
 
| Baer
 
  
|-
+
'''Week 12 (11/15/2020-11/21/2020)'''
|April 17
 
| Siao-Hao Guo (Rutgers)
 
|[[# Siao-Hao Guo | Analysis of Velázquez's solution to the mean curvature flow with a type II singularity]]
 
| Lu Wang
 
  
 +
1. Irene M. Gamba - Boltzmann type equations in a general framework: from the classical elastic flow, to gas mixtures, polyatomic gases, and more, https://youtu.be/fPlhAMGULtY
  
|-
+
2.  Andrej Zlatos - Euler Equations on General Planar Domains, https://www.youtube.com/watch?v=FdyyMZirRwk
|April 24
 
| Jianfeng Lu
 
|[[#Jianfeng Lu | TBA]]
 
| Li
 
  
|-
 
|April 25- joint Analysis/PDE seminar
 
| Chris Henderson (Chicago)
 
|[[#Chris Henderson | TBA]]
 
| Lin
 
  
|-
+
'''Week 13 (11/22/2020-11/28/2020)'''
|May 1st
 
| Jeffrey Streets (UC-Irvine)
 
|[[#Jeffrey Streets | ]]
 
| Bing Wang
 
|}
 
  
=Abstracts=
+
1. Camillo De Lellis - Flows of vector fields: classical and modern, https://www.youtube.com/watch?v=dVXSC3rtvok&feature=youtu.be
  
===Sigurd Angenent===
+
2. Wilfrid Gangbo - Analytical Aspect of Mean Field Games (Part 1/2), https://www.youtube.com/watch?v=KI5n6OYzzW8
The Huisken-Hamilton-Gage theorem on compact convex solutions to MCF shows that in forward time all solutions do the same thing, namely, they shrink to a point and become round as they do so. Even though MCF is ill-posed in backward time there do exist solutions that are defined for all t<0 , and one can try to classify all such &ldquo;Ancient Solutions.&rdquo;  In doing so one finds that there is interesting dynamics associated to ancient solutions.  I will discuss what is currently known about these solutions.  Some of the talk is based on joint work with Sesum and Daskalopoulos.
 
  
===Serguei Denissov===
+
'''Week 14 (11/29/2020-12/5/2020)'''
We consider the patch evolution under the 2D Euler dynamics and study how the geometry of the boundary can deteriorate in time.
 
  
 +
1. Juan Dávila - Leapfrogging vortex rings and other solutions with concentrated vorticity for the Euler equations,
 +
https://youtu.be/xfAKGc0IEUw
  
===Bing Wang===
+
2. Yao Yao - Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states, https://www.youtube.com/watch?v=C_4qCimIMYc
We show that the mean curvature blows up at the first finite singular time for a closed smooth embedded mean curvature flow in R3. This is a joint work with H.Z. Li.
 
  
===Eric Baer===
 
We discuss a recent result showing that a characterization of isoperimetric sets (that is, sets minimizing a relative perimeter functional with respect to a fixed volume constraint) inside convex cones as sections of balls centered at the origin (originally due to P.L. Lions and F. Pacella) remains valid for a class of "almost-convex" cones.  Key tools include compactness arguments and the use of classically known sharp characterizations of lower bounds for the first nonzero Neumann eigenvalue associated to (geodesically) convex domains in the hemisphere.  The work we describe is joint with A. Figalli.
 
  
===Ben Seeger===
 
I present a homogenization result for pathwise Hamilton-Jacobi equations with "rough" multiplicative driving signals. In doing so, I derive a new well-posedness result when the Hamiltonian is smooth, convex, and positively homogenous. I also demonstrate that equations involving multiple driving signals may homogenize or exhibit blow-up.
 
  
===Sona Akopian===
+
'''Week 15 (12/6/2020-12/12/2020)'''
Global $L^p$ well posed-ness of the Boltzmann equation with an angle-potential concentrated collision kernel.
 
  
We solve the Cauchy problem associated to an epsilon-parameter family of homogeneous Boltzmann equations for very soft and Coulomb potentials. Proposed in 2013 by Bobylev and Potapenko, the collision kernel that we use is a Dirac mass concentrated at very small angles and relative speeds. The main advantage of such a kernel is that it does not separate its variables (relative speed $u$ and scattering angle $\theta$) and can be viewed as a pseudo-Maxwell molecule collision kernel, which allows for the splitting of the Boltzmann collision operator into its gain and loss terms. Global estimates on the gain term gives us an existence theory for $L^1_k \capL^p$ with any $k\geq 2$ and $p\geq 1.$ Furthermore the bounds we obtain are independent of the epsilon parameter, which allows for analysis of the solutions in the grazing collisions limit, i.e., when epsilon approaches zero and the Boltzmann equation becomes the Landau equation.  
+
1. Pierre Gilles Lemarié-Rieusset - On weak solutions of the Navier-Stokes equations with infinite energy, https://www.youtube.com/watch?v=OeFJ6r-GLJc&feature=youtu.be
  
===Sylvia Serfaty===
 
Mean-Field Limits for Ginzburg-Landau vortices
 
  
Ginzburg-Landau type equations are models for superconductivity, superfluidity, Bose-Einstein condensation. A crucial feature is the presence of quantized vortices, which are topological zeroes of the complex-valued solutions. This talk will review some results on the derivation of effective models to describe the statics and dynamics of these vortices, with particular attention to the situation where the number of vortices blows up with the parameters of the problem. In particular we will present new results on the derivation of mean field limits for the dynamics of many vortices starting from the parabolic Ginzburg-Landau equation or the Gross-Pitaevskii (=Schrodinger Ginzburg-Landau) equation.
+
{| cellpadding="8"
 +
!style="width:20%" align="left" | date 
 +
!align="left" | speaker
 +
!align="left" | title
 +
!style="width:20%" align="left" | host(s)
 +
|-  
 +
|}
  
 +
== Abstracts ==
  
===Andrei Tarfulea===
+
=== ===
We consider a model for three-dimensional fluid flow on the torus that also keeps track of the local temperature. The momentum equation is the same as for Navier-Stokes, however the kinematic viscosity grows as a function of the local temperature. The temperature is, in turn, fed by the local dissipation of kinetic energy. Intuitively, this leads to a mechanism whereby turbulent regions increase their local viscosity and
 
dissipate faster. We prove a strong a priori bound (that would fall within the Ladyzhenskaya-Prodi-Serrin criterion for ordinary Navier-Stokes) on the thermally weighted enstrophy for classical solutions to the coupled system.
 
  
===Siao-hao Guo===
+
Title: 
Analysis of Velázquez's solution to the mean curvature flow with a type II singularity
 
  
Velázquez discovered a solution to the mean curvature flow which develops a type II singularity at the origin. He also showed that under a proper time-dependent rescaling of the solution, the rescaled flow converges in the C^0 sense to a minimal hypersurface which is tangent to Simons' cone at infinity. In this talk, we will present that the rescaled flow actually converges locally smoothly to the minimal hypersurface, which appears to be the singularity model of the type II singularity. In addition, we will show that the mean curvature of the solution blows up near the origin at a rate which is smaller than that of the second fundamental form. This is a joint work with N. Sesum.
+
Abstract:

Latest revision as of 18:53, 29 November 2020

The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.

Previous PDE/GA seminars

Tentative schedule for Fall 2021-Spring 2022

PDE GA Seminar Schedule Fall 2020-Spring 2021

Welcome to the new mode of our PDEGA seminar this semester. Each week, we'll introduce to you two talks that are interesting and related to our interests. As the videos are already on Youtube or other platforms, you could choose to watch them whenever you want to; our goal here is merely to pick our favorite ones out of thousands of already available recorded talks. 

Week 1 (9/1/2020-9/5/2020)

1. Paul Rabinowitz - The calculus of variations and phase transition problems. 
https://www.youtube.com/watch?v=vs3rd8RPosA

2. Frank Merle - On the implosion of a three dimensional compressible fluid. https://www.youtube.com/watch?v=5wSNBN0IRdA&feature=youtu.be 

Week 2 (9/6/2020-9/12/2020)

1. Yoshikazu Giga - On large time behavior of growth by birth and spread. https://www.youtube.com/watch?v=4ndtUh38AU0

2. Tarek Elgindi - Singularity formation in incompressible fluids. https://youtu.be/29zUjm7xFlI


Week 3 (9/13/2020-9/19/2020)

1. Eugenia Malinnikova - Two questions of Landis and their applications. https://www.youtube.com/watch?v=lpTsW1noWTQ

2. Pierre Germain - On the derivation of the kinetic wave equation. https://youtu.be/ZbCjKwQ3KcE


Week 4 (9/20/2020-9/26/2020)

1. Robert M. Strain - Global mild solutions of the Landau and non-cutoff Boltzmann equation. https://www.youtube.com/watch?v=UWrCItk2euo&feature=youtu.be

2. Elena Kosygina - Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension https://www.youtube.com/watch?v=tVZv0ftT3PM


Week 5 (9/27/2020-10/03/2020)

1. Isabelle Gallagher - From Newton to Boltzmann, fluctuations and large deviations. https://www.youtube.com/watch?v=BkrKkUVadDo

2. Connor Mooney - The Bernstein problem for elliptic functionals, https://www.youtube.com/watch?v=lSfnyfCL74c


Week 6 (10/04/2020-10/10/2020)

1. Felix Otto - The thresholding scheme for mean curvature flow and De Giorgi's ideas for gradient flows. https://www.youtube.com/watch?v=7FQsiZpQA7E

2. Inwon Kim - Evolution of star-shaped sets in Mean curvature flow with forcing http://www.birs.ca/events/2018/5-day-workshops/18w5033/videos/watch/201806190900-Kim.html


Week 7 (10/11/2020-10/17/2020)

1. Benoit Perthame - Multiphase models of living tissues and the Hele-Shaw limit. https://www.youtube.com/watch?v=UGVJnJCfw5s

2. Yifeng Yu - Properties of Effective Hamiltonians. https://www.youtube.com/watch?v=U06G4wjF-Hg


Week 8 (10/18/2020-10/24/2020)

1. Carlos Kenig - Asymptotic simplification for solutions of the energy critical nonlinear wave equation. https://youtu.be/jvzUqAxU8Xg

2. Kyeongsu Choi - Ancient mean curvature flows and singularity analysis. https://www.youtube.com/watch?v=Iu1iLjdFjKQ

Virtual Analysis and PDE Seminar (VAPS): https://sites.uci.edu/pdeonlineseminar/. First talk by Ovidiu Savin.


Week 9 (10/25/2020-10/31/2020)

1. John Ball - Some energy minimization problems for liquid crystals. https://www.youtube.com/watch?v=-j0jc-y7JzE

2. Tristan Buckmaster - Stable shock wave formation for the isentropic compressible Euler equations. https://stanford.zoom.us/rec/play/DwuT8rE-K1uJC0LghYPtsoaNmPBk9-P5EK4ZeWh1mVNJELRHn-ay-gOVXHSTRz_0X3iUZDBoUVYq8zfd.Tuqy8urKY4jESivm?continueMode=true&_x_zm_rtaid=GiRX307iT7encyYgIEgh9Q.1603308889393.b4a9b3af5c64cc9ca735cffbe25d8b7b&_x_zm_rhtaid=764


Week 10 (11/1/2020-11/7/2020)

1. Sylvia Serfaty - Mean-Field limits for Coulomb-type dynamics. https://www.youtube.com/watch?v=f7iSTnAe808&feature=youtu.be

2. Luc Nguyen - Symmetry and multiple existence of critical points in 2D Landau-de Gennes Q-tensor theory http://www.birs.ca/events/2017/5-day-workshops/17w5110/videos/watch/201705041518-Nguyen.html


Week 11 (11/8/2020-11/14/2020)

1. Andrzej Święch - Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures https://www.youtube.com/watch?v=KC514krtWAc

2. Alexandru Ionescu - On the nonlinear stability of shear flows and vortices, https://youtu.be/Zt_Izzi87V0


Week 12 (11/15/2020-11/21/2020)

1. Irene M. Gamba - Boltzmann type equations in a general framework: from the classical elastic flow, to gas mixtures, polyatomic gases, and more, https://youtu.be/fPlhAMGULtY

2. Andrej Zlatos - Euler Equations on General Planar Domains, https://www.youtube.com/watch?v=FdyyMZirRwk


Week 13 (11/22/2020-11/28/2020)

1. Camillo De Lellis - Flows of vector fields: classical and modern, https://www.youtube.com/watch?v=dVXSC3rtvok&feature=youtu.be

2. Wilfrid Gangbo - Analytical Aspect of Mean Field Games (Part 1/2), https://www.youtube.com/watch?v=KI5n6OYzzW8

Week 14 (11/29/2020-12/5/2020)

1. Juan Dávila - Leapfrogging vortex rings and other solutions with concentrated vorticity for the Euler equations, https://youtu.be/xfAKGc0IEUw

2. Yao Yao - Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states, https://www.youtube.com/watch?v=C_4qCimIMYc


Week 15 (12/6/2020-12/12/2020)

1. Pierre Gilles Lemarié-Rieusset - On weak solutions of the Navier-Stokes equations with infinite energy, https://www.youtube.com/watch?v=OeFJ6r-GLJc&feature=youtu.be


date speaker title host(s)

Abstracts

Title:

Abstract: