Difference between revisions of "PDE Geometric Analysis seminar"

From UW-Math Wiki
Jump to: navigation, search
(PDE GA Seminar Schedule Spring 2018)
(PDE GA Seminar Schedule Fall 2020-Spring 2021)
 
(254 intermediate revisions by 7 users not shown)
Line 2: Line 2:
  
 
===[[Previous PDE/GA seminars]]===
 
===[[Previous PDE/GA seminars]]===
===[[Fall 2018 | Tentative schedule for Fall 2018]]===
+
===[[Fall 2021-Spring 2022 | Tentative schedule for Fall 2021-Spring 2022]]===
  
  
  
== PDE GA Seminar Schedule Fall 2018-Spring 2019 ==
+
== PDE GA Seminar Schedule Fall 2020-Spring 2021 ==
 +
Welcome to the new mode of our PDEGA seminar this semester. Each week, we'll introduce to you two talks that are interesting and related to our interests. As the videos are already on Youtube or other platforms, you could choose to watch them whenever you want to; our goal here is merely to pick our favorite ones out of thousands of already available recorded talks. 
  
 +
'''Week 1 (9/1/2020-9/5/2020)'''
 +
 +
1. Paul Rabinowitz - The calculus of variations and phase transition problems.
 +

https://www.youtube.com/watch?v=vs3rd8RPosA
 +
 +
2. Frank Merle - On the implosion of a three dimensional compressible fluid.
 +
https://www.youtube.com/watch?v=5wSNBN0IRdA&feature=youtu.be 
 +
 +
'''Week 2 (9/6/2020-9/12/2020)'''
 +
 +
1. Yoshikazu Giga - On large time behavior of growth by birth and spread.
 +
https://www.youtube.com/watch?v=4ndtUh38AU0
 +
 +
2. Tarek Elgindi - Singularity formation in incompressible fluids. https://youtu.be/29zUjm7xFlI
 +
 +
 +
 +
'''Week 3 (9/13/2020-9/19/2020)'''
 +
 +
1. Eugenia Malinnikova - Two questions of Landis and their applications. https://www.youtube.com/watch?v=lpTsW1noWTQ
 +
 +
2. Pierre Germain - On the derivation of the kinetic wave equation. https://youtu.be/ZbCjKwQ3KcE
 +
 +
 +
 +
'''Week 4 (9/20/2020-9/26/2020)'''
 +
 +
1. Robert M. Strain - Global mild solutions of the Landau and non-cutoff Boltzmann equation. https://www.youtube.com/watch?v=UWrCItk2euo&feature=youtu.be
 +
 +
2. Elena Kosygina - Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension https://www.youtube.com/watch?v=tVZv0ftT3PM
 +
 +
 +
 +
'''Week 5 (9/27/2020-10/03/2020)'''
 +
 +
1. Isabelle Gallagher - From Newton to Boltzmann, fluctuations and large deviations. https://www.youtube.com/watch?v=BkrKkUVadDo
 +
 +
2.  Connor Mooney - The Bernstein problem for elliptic functionals, https://www.youtube.com/watch?v=lSfnyfCL74c
 +
 +
 +
'''Week 6 (10/04/2020-10/10/2020)'''
 +
 +
1. Felix Otto - The thresholding scheme for mean curvature flow and De Giorgi's ideas for gradient flows. https://www.youtube.com/watch?v=7FQsiZpQA7E
 +
 +
2. Inwon Kim - Evolution of star-shaped sets in Mean curvature flow with forcing
 +
http://www.birs.ca/events/2018/5-day-workshops/18w5033/videos/watch/201806190900-Kim.html
 +
 +
 +
'''Week 7 (10/11/2020-10/17/2020)'''
 +
 +
1. Benoit Perthame - Multiphase models of living tissues and the Hele-Shaw limit. https://www.youtube.com/watch?v=UGVJnJCfw5s
 +
 +
2. Yifeng Yu - Properties of Effective Hamiltonians. https://www.youtube.com/watch?v=U06G4wjF-Hg
  
{| cellpadding="8"
 
!style="width:20%" align="left" | date 
 
!align="left" | speaker
 
!align="left" | title
 
!style="width:20%" align="left" | host(s)
 
  
 +
'''Week 8 (10/18/2020-10/24/2020)'''
  
|-
+
1. Carlos Kenig - Asymptotic simplification for solutions of the energy critical nonlinear wave equation. https://youtu.be/jvzUqAxU8Xg
|September 10,
 
| Hiroyoshi Mitake (University of Tokyo)
 
|[[#Hiroyoshi Mitake | TBA ]]
 
| Tran
 
  
|-
+
2. Kyeongsu Choi - Ancient mean curvature flows and singularity analysis. https://www.youtube.com/watch?v=Iu1iLjdFjKQ
|September 17,
 
| Changyou Wang (Purdue)
 
|[[#Changyou Wang | TBA ]]
 
| Tran
 
  
|- 
+
Virtual Analysis and PDE Seminar (VAPS): https://sites.uci.edu/pdeonlineseminar/. First talk by Ovidiu Savin.
|September 24/26,
 
| Gunther Uhlmann (UWash)
 
|[[#Gunther Uhlmann | TBA ]]
 
| Li
 
  
|- 
 
|October 1,
 
| Matthew Schrecker (UW)
 
|[[#Matthew Schrecker | TBA ]]
 
| Kim and Tran
 
  
 +
'''Week 9 (10/25/2020-10/31/2020)'''
  
|-
+
1. John Ball - Some energy minimization problems for liquid crystals. https://www.youtube.com/watch?v=-j0jc-y7JzE
|October 8,
 
| Anna Mazzucato (PSU)
 
|[[#Anna Mazzucato | TBA ]]
 
| Li and Kim
 
  
 +
2. Tristan Buckmaster - Stable shock wave formation for the isentropic compressible Euler equations. https://stanford.zoom.us/rec/play/DwuT8rE-K1uJC0LghYPtsoaNmPBk9-P5EK4ZeWh1mVNJELRHn-ay-gOVXHSTRz_0X3iUZDBoUVYq8zfd.Tuqy8urKY4jESivm?continueMode=true&_x_zm_rtaid=GiRX307iT7encyYgIEgh9Q.1603308889393.b4a9b3af5c64cc9ca735cffbe25d8b7b&_x_zm_rhtaid=764
  
|- 
 
|October 15,
 
| Lei Wu (Lehigh)
 
|[[#Lei Wu | TBA ]]
 
| Kim
 
  
  
|-
+
'''Week 10 (11/1/2020-11/7/2020)'''
|October 22,
 
| Annalaura Stingo (UCD)
 
|[[#Annalaura Stingo | TBA ]]
 
| Mihaela Ifrim
 
  
+
1. Sylvia Serfaty - Mean-Field limits for Coulomb-type dynamics. https://www.youtube.com/watch?v=f7iSTnAe808&feature=youtu.be
|-
 
|October 29,
 
| Jessica Lin (McGill University)
 
|[[#Jessica Lin | TBA ]]
 
| Tran
 
 
|-
 
|November 5,
 
| Albert Ai (University of Berkeley)
 
|[[#Albert Ai | TBA ]]
 
| Mihaela Ifrim
 
  
 +
2. Luc Nguyen - Symmetry and multiple existence of critical points in 2D Landau-de Gennes Q-tensor theory http://www.birs.ca/events/2017/5-day-workshops/17w5110/videos/watch/201705041518-Nguyen.html
  
  
  
|-
+
'''Week 11 (11/8/2020-11/14/2020)'''
|March 4 2019
 
| Vladimir Sverak (Minnesota)
 
|[[#Vladimir Sverak | TBA(Wasow lecture) ]]
 
| Kim
 
  
== Abstracts ==
+
1. Andrzej Święch - Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures https://www.youtube.com/watch?v=KC514krtWAc
  
===Dan Knopf===
+
2. Alexandru Ionescu - On the nonlinear stability of shear flows and vortices, https://youtu.be/Zt_Izzi87V0
  
Title: Non-Kähler Ricci flow singularities that converge to Kähler-Ricci solitons
 
  
Abstract: We describe Riemannian (non-Kähler) Ricci flow solutions that develop finite-time Type-I singularities whose parabolic dilations converge to a shrinking Kähler–Ricci soliton singularity model. More specifically, the singularity model for these solutions is the “blowdown soliton” discovered by Feldman, Ilmanen, and Knopf in 2003. Our results support the conjecture that the blowdown soliton is stable under Ricci flow. This work also provides the first set of rigorous examples of non-Kähler solutions of Ricci flow that become asymptotically Kähler, in suitable space-time neighborhoods of developing singularities, at rates that break scaling invariance. These results support the conjectured stability of the subspace of Kähler metrics under Ricci flow.
+
'''Week 12 (11/15/2020-11/21/2020)'''
  
===Andreas Seeger===
+
1. Irene M. Gamba - Boltzmann type equations in a general framework: from the classical elastic flow, to gas mixtures, polyatomic gases, and more, https://youtu.be/fPlhAMGULtY
  
Title: Singular integrals and a problem on mixing flows
+
2.  Andrej Zlatos - Euler Equations on General Planar Domains, https://www.youtube.com/watch?v=FdyyMZirRwk
  
Abstract: The talk will be about  results related to Bressan's mixing problem. We present  an inequality for the change of a  Bianchini semi-norm of characteristic functions under the  flow generated by a divergence free time dependent vector field. The approach leads to a bilinear singular integral operator  for which one proves bounds  on Hardy spaces. This is joint work with Mahir Hadžić,  Charles Smart and    Brian Street.
 
  
===Sam Krupa===
+
'''Week 13 (11/22/2020-11/28/2020)'''
  
Title: Proving Uniqueness of Solutions for Burgers Equation Entropic for a Single Entropy, with Eye Towards Systems Case
+
1. Camillo De Lellis - Flows of vector fields: classical and modern, https://www.youtube.com/watch?v=dVXSC3rtvok&feature=youtu.be
  
Abstract: For hyperbolic systems of conservation laws, uniqueness of solutions is still largely open. We aim to expand the theory of uniqueness for systems of conservation laws. One difficulty is that many systems have only one entropy. This contrasts with scalar conservation laws, where many entropies exist. It took until 1994 to show that one entropy is enough to ensure uniqueness of solutions for the scalar conservation laws (Panov). This single entropy result was proven again by De Lellis, Otto and Westdickenberg in 2004. These two proofs both rely on the special connection between Hamilton--Jacobi equations and scalar conservation laws in one space dimension. However, this special connection does not extend to systems. In our new work, we prove the single entropy result for scalar conservation laws without using Hamilton--Jacobi.  Our proof lays out new techniques that are promising for showing uniqueness of solutions in the systems case. This is joint work with A. Vasseur.
+
2. Wilfrid Gangbo - Analytical Aspect of Mean Field Games (Part 1/2), https://www.youtube.com/watch?v=KI5n6OYzzW8
  
 +
'''Week 14 (11/29/2020-12/5/2020)'''
  
===Maja Taskovic===
+
1. Juan Dávila - Leapfrogging vortex rings and other solutions with concentrated vorticity for the Euler equations,
 +
https://youtu.be/xfAKGc0IEUw
  
Title: Exponential tails for the non-cutoff Boltzmann equation
+
2. Yao Yao - Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states, https://www.youtube.com/watch?v=C_4qCimIMYc
  
Abstract: The Boltzmann equation models the motion of a rarefied gas, in which particles interact through binary collisions, by describing the evolution of the particle density function.  The effect of collisions on the density function is modeled by a bilinear integral operator (collision operator) which in many cases has a non-integrable angular kernel.  For a long time the equation was simplified by assuming that this kernel is integrable (the so called Grad's cutoff) with a belief that such an assumption does not affect the equation significantly. However, in the last 20 years it has been observed that a non-integrable singularity carries regularizing properties which motivates further analysis of the equation in this setting.
 
  
We study behavior in time of tails of solutions to the Boltzmann equation in the non-cutoff regime by examining the generation and propagation of $L^1$ and $L^\infty$ exponentially weighted estimates and the relation between them. For this purpose we introduce Mittag-Leffler moments which can be understood as a generalization of exponential moments. An interesting aspect of this result is that the singularity rate of the angular kernel affects the order of tails that can be shown to propagate in time. This is based on joint works with Alonso, Gamba, Pavlovic and Gamba, Pavlovic.
 
  
 +
'''Week 15 (12/6/2020-12/12/2020)'''
  
===Ashish Kumar Pandey===
+
1. Pierre Gilles Lemarié-Rieusset - On weak solutions of the Navier-Stokes equations with infinite energy, https://www.youtube.com/watch?v=OeFJ6r-GLJc&feature=youtu.be
  
Title: Instabilities in shallow water wave models
+
2. Albert Fathi - Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation, https://www.youtube.com/watch?v=0y8slhbQlTU
  
Abstract: Slow modulations in wave characteristics of a nonlinear, periodic traveling wave in a dispersive medium may develop non-trivial structures which evolve as it propagates. This phenomenon is called modulational instability. In the context of water waves, this phenomenon was observed by Benjamin and Feir and, independently, by Whitham in Stokes' waves. I will discuss a general mechanism to study modulational instability of periodic traveling waves which can be applied to several classes of nonlinear dispersive equations including KdV, BBM, and regularized Boussinesq type equations.
 
  
 +
'''Spring 2021'''
  
===Khai Nguyen===
+
'''Week  ( / /2021- / /2021)'''
  
Title: Burgers Equation with Some Nonlocal Sources
+
1. Emmanuel Grenier -  instability of viscous shear layers https://www.youtube.com/watch?v=0_EG4VWIYvU&feature=youtu.be
  
Abstract: Consider the Burgers equation with some nonlocal sources, which were derived from models of nonlinear wave with constant frequency.  This talk  will present some recent results on the global existence of entropy weak solutions, priori estimates, and a uniqueness result for both Burgers-Poisson and Burgers-Hilbert equations.  Some open questions will be discussed.
+
2.  
  
===Hongwei Gao=== 
 
  
Title: Stochastic homogenization of certain nonconvex Hamilton-Jacobi equations
+
'''Week  ( / /2021- / /2021)'''
  
Abstract: In this talk, we discuss the stochastic homogenization of certain nonconvex Hamilton-Jacobi equations. The nonconvex Hamiltonians, which are generally uneven and inseparable, are generated by a sequence of (level-set) convex Hamiltonians and a sequence of (level-set) concave Hamiltonians through the min-max formula. We provide a monotonicity assumption on the contact values between those stably paired Hamiltonians so as to guarantee the stochastic homogenization. If time permits, we will talk about some homogenization results when the monotonicity assumption breaks down.
+
1. Jacob Bedrossian - Chaotic mixing of the Lagrangian flow map and the power spectrum of passive scalar turbulence in the Batchelor regime https://youtu.be/3lNQNsdlGTE
  
===Huy Nguyen===
+
2. 
  
Title : Compressible fluids and active potentials
 
  
Abstract: We consider a class of one dimensional compressible systems with degenerate diffusion coefficients. We establish the fact that the solutions remain smooth as long as the diffusion coefficients do not vanish, and give local and global existence results. The models include the barotropic compressible Navier-Stokes equations, shallow water systems and the lubrication approximation of slender jets. In all these models the momentum equation is forced by the gradient of a solution-dependent potential: the active potential. The method of proof uses the Bresch-Desjardins entropy and the analysis of the evolution of the active potential.
+
'''Week  ( / /2021- / /2021)'''
  
===In-Jee Jeong===
+
1. Hao Jia - nonlinear asymptotic stability in two dimensional incompressible Euler equations https://youtu.be/KMf7K2sTLXg
  
Title: Singularity formation for the 3D axisymmetric Euler equations
+
2. 
  
Abstract: We consider the 3D axisymmetric Euler equations on exterior domains  $\{ (x,y,z) : (1 + \epsilon|z|)^2 \le x^2 + y^2  \} $ for any $\epsilon > 0$ so that we can get arbitrarily close to the exterior of a cylinder. We construct a strong local well-posedness class, and show that within this class there exist compactly supported initial data which blows up in finite time. The local well-posedness class consists of velocities which are uniformly Lipschitz in space and have finite energy. Our results were inspired by recent works of Hou-Luo, Kiselev-Sverak, and many others, and the proof builds up on our previous works on 2D Euler and Boussinesq systems. This is joint work with Tarek Elgindi.
 
  
===Jeff Calder===
 
  
Title: Nonlinear PDE continuum limits in data science and machine learning
+
{| cellpadding="8"
 +
!style="width:20%" align="left" | date 
 +
!align="left" | speaker
 +
!align="left" | title
 +
!style="width:20%" align="left" | host(s)
 +
|- 
 +
|}
  
Abstract: We will present some recent results on PDE continuum limits for (random) discrete problems in data science and machine learning. All of the problems satisfy a type of discrete comparison/maximum principle and so the continuum PDEs are properly interpreted in the viscosity sense. We will present results for nondominated sorting, convex hull peeling, and graph-based semi-supervised learning. Nondominated sorting is an algorithm for arranging points in Euclidean space into layers by repeatedly peeling away coordinatewise minimal points, and the continuum PDE turns out to be a Hamilton-Jacobi equation. Convex hull peeling is used to order data by repeatedly peeling the vertices of the convex hull, and the continuum limit is motion by a power of Gauss curvature. Finally, a recently proposed class of graph-based learning problems have PDE continuum limits corresponding to weighted p-Laplace equations. In each case the continuum PDEs provide insights into the data science/engineering problems, and suggest avenues for fast approximate algorithms based on the PDE interpretations.
+
== Abstracts ==
  
===Hitoshi Ishii===
+
=== ===
  
Title: Asymptotic problems for Hamilton-Jacobi equations and weak KAM theory
+
Title:
  
Abstract:   In the lecture, I discuss two asymptotic problems related to Hamilton-Jacobi equations. One concerns the long-time behavior of solutions of time evolutionary Hamilton-Jacobi equations and the other is the so-called vanishing discount problem for stationary Hamilton-Jacobi equations. The last two decades have seen a fundamental importance of weak KAM theory in the asymptotic analysis of Hamilton-Jacobi equations.  I explain briefly the Aubry sets and Mather measures from weak KAM theory and their use in the analysis of the two asymptotic problems above.
+
Abstract:

Latest revision as of 08:06, 12 January 2021

The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.

Previous PDE/GA seminars

Tentative schedule for Fall 2021-Spring 2022

PDE GA Seminar Schedule Fall 2020-Spring 2021

Welcome to the new mode of our PDEGA seminar this semester. Each week, we'll introduce to you two talks that are interesting and related to our interests. As the videos are already on Youtube or other platforms, you could choose to watch them whenever you want to; our goal here is merely to pick our favorite ones out of thousands of already available recorded talks. 

Week 1 (9/1/2020-9/5/2020)

1. Paul Rabinowitz - The calculus of variations and phase transition problems. 
https://www.youtube.com/watch?v=vs3rd8RPosA

2. Frank Merle - On the implosion of a three dimensional compressible fluid. https://www.youtube.com/watch?v=5wSNBN0IRdA&feature=youtu.be 

Week 2 (9/6/2020-9/12/2020)

1. Yoshikazu Giga - On large time behavior of growth by birth and spread. https://www.youtube.com/watch?v=4ndtUh38AU0

2. Tarek Elgindi - Singularity formation in incompressible fluids. https://youtu.be/29zUjm7xFlI


Week 3 (9/13/2020-9/19/2020)

1. Eugenia Malinnikova - Two questions of Landis and their applications. https://www.youtube.com/watch?v=lpTsW1noWTQ

2. Pierre Germain - On the derivation of the kinetic wave equation. https://youtu.be/ZbCjKwQ3KcE


Week 4 (9/20/2020-9/26/2020)

1. Robert M. Strain - Global mild solutions of the Landau and non-cutoff Boltzmann equation. https://www.youtube.com/watch?v=UWrCItk2euo&feature=youtu.be

2. Elena Kosygina - Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension https://www.youtube.com/watch?v=tVZv0ftT3PM


Week 5 (9/27/2020-10/03/2020)

1. Isabelle Gallagher - From Newton to Boltzmann, fluctuations and large deviations. https://www.youtube.com/watch?v=BkrKkUVadDo

2. Connor Mooney - The Bernstein problem for elliptic functionals, https://www.youtube.com/watch?v=lSfnyfCL74c


Week 6 (10/04/2020-10/10/2020)

1. Felix Otto - The thresholding scheme for mean curvature flow and De Giorgi's ideas for gradient flows. https://www.youtube.com/watch?v=7FQsiZpQA7E

2. Inwon Kim - Evolution of star-shaped sets in Mean curvature flow with forcing http://www.birs.ca/events/2018/5-day-workshops/18w5033/videos/watch/201806190900-Kim.html


Week 7 (10/11/2020-10/17/2020)

1. Benoit Perthame - Multiphase models of living tissues and the Hele-Shaw limit. https://www.youtube.com/watch?v=UGVJnJCfw5s

2. Yifeng Yu - Properties of Effective Hamiltonians. https://www.youtube.com/watch?v=U06G4wjF-Hg


Week 8 (10/18/2020-10/24/2020)

1. Carlos Kenig - Asymptotic simplification for solutions of the energy critical nonlinear wave equation. https://youtu.be/jvzUqAxU8Xg

2. Kyeongsu Choi - Ancient mean curvature flows and singularity analysis. https://www.youtube.com/watch?v=Iu1iLjdFjKQ

Virtual Analysis and PDE Seminar (VAPS): https://sites.uci.edu/pdeonlineseminar/. First talk by Ovidiu Savin.


Week 9 (10/25/2020-10/31/2020)

1. John Ball - Some energy minimization problems for liquid crystals. https://www.youtube.com/watch?v=-j0jc-y7JzE

2. Tristan Buckmaster - Stable shock wave formation for the isentropic compressible Euler equations. https://stanford.zoom.us/rec/play/DwuT8rE-K1uJC0LghYPtsoaNmPBk9-P5EK4ZeWh1mVNJELRHn-ay-gOVXHSTRz_0X3iUZDBoUVYq8zfd.Tuqy8urKY4jESivm?continueMode=true&_x_zm_rtaid=GiRX307iT7encyYgIEgh9Q.1603308889393.b4a9b3af5c64cc9ca735cffbe25d8b7b&_x_zm_rhtaid=764


Week 10 (11/1/2020-11/7/2020)

1. Sylvia Serfaty - Mean-Field limits for Coulomb-type dynamics. https://www.youtube.com/watch?v=f7iSTnAe808&feature=youtu.be

2. Luc Nguyen - Symmetry and multiple existence of critical points in 2D Landau-de Gennes Q-tensor theory http://www.birs.ca/events/2017/5-day-workshops/17w5110/videos/watch/201705041518-Nguyen.html


Week 11 (11/8/2020-11/14/2020)

1. Andrzej Święch - Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures https://www.youtube.com/watch?v=KC514krtWAc

2. Alexandru Ionescu - On the nonlinear stability of shear flows and vortices, https://youtu.be/Zt_Izzi87V0


Week 12 (11/15/2020-11/21/2020)

1. Irene M. Gamba - Boltzmann type equations in a general framework: from the classical elastic flow, to gas mixtures, polyatomic gases, and more, https://youtu.be/fPlhAMGULtY

2. Andrej Zlatos - Euler Equations on General Planar Domains, https://www.youtube.com/watch?v=FdyyMZirRwk


Week 13 (11/22/2020-11/28/2020)

1. Camillo De Lellis - Flows of vector fields: classical and modern, https://www.youtube.com/watch?v=dVXSC3rtvok&feature=youtu.be

2. Wilfrid Gangbo - Analytical Aspect of Mean Field Games (Part 1/2), https://www.youtube.com/watch?v=KI5n6OYzzW8

Week 14 (11/29/2020-12/5/2020)

1. Juan Dávila - Leapfrogging vortex rings and other solutions with concentrated vorticity for the Euler equations, https://youtu.be/xfAKGc0IEUw

2. Yao Yao - Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states, https://www.youtube.com/watch?v=C_4qCimIMYc


Week 15 (12/6/2020-12/12/2020)

1. Pierre Gilles Lemarié-Rieusset - On weak solutions of the Navier-Stokes equations with infinite energy, https://www.youtube.com/watch?v=OeFJ6r-GLJc&feature=youtu.be

2. Albert Fathi - Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation, https://www.youtube.com/watch?v=0y8slhbQlTU


Spring 2021

Week ( / /2021- / /2021)

1. Emmanuel Grenier - instability of viscous shear layers https://www.youtube.com/watch?v=0_EG4VWIYvU&feature=youtu.be

2.


Week ( / /2021- / /2021)

1. Jacob Bedrossian - Chaotic mixing of the Lagrangian flow map and the power spectrum of passive scalar turbulence in the Batchelor regime https://youtu.be/3lNQNsdlGTE

2.


Week ( / /2021- / /2021)

1. Hao Jia - nonlinear asymptotic stability in two dimensional incompressible Euler equations https://youtu.be/KMf7K2sTLXg

2.


date speaker title host(s)

Abstracts

Title:

Abstract: