# Difference between revisions of "PDE Geometric Analysis seminar"

(→PDE GA Seminar Schedule Fall 2018-Spring 2019) |
(→PDE GA Seminar Schedule Fall 2020-Spring 2021) |
||

(185 intermediate revisions by 7 users not shown) | |||

Line 2: | Line 2: | ||

===[[Previous PDE/GA seminars]]=== | ===[[Previous PDE/GA seminars]]=== | ||

− | ===[[Fall | + | ===[[Fall 2021-Spring 2022 | Tentative schedule for Fall 2021-Spring 2022]]=== |

− | |||

− | + | == PDE GA Seminar Schedule Fall 2020-Spring 2021 == | |

− | + | Welcome to the new mode of our PDEGA seminar this semester. Each week, we'll introduce to you two talks that are interesting and related to our interests. As the videos are already on Youtube or other platforms, you could choose to watch them whenever you want to; our goal here is merely to pick our favorite ones out of thousands of already available recorded talks. | |

− | + | ||

− | + | '''Week 1 (9/1/2020-9/5/2020)''' | |

− | + | ||

+ | 1. Paul Rabinowitz - The calculus of variations and phase transition problems. | ||

+ |
https://www.youtube.com/watch?v=vs3rd8RPosA | ||

+ | |||

+ | 2. Frank Merle - On the implosion of a three dimensional compressible fluid. | ||

+ | https://www.youtube.com/watch?v=5wSNBN0IRdA&feature=youtu.be | ||

+ | |||

+ | '''Week 2 (9/6/2020-9/12/2020)''' | ||

+ | |||

+ | 1. Yoshikazu Giga - On large time behavior of growth by birth and spread. | ||

+ | https://www.youtube.com/watch?v=4ndtUh38AU0 | ||

+ | |||

+ | 2. Tarek Elgindi - Singularity formation in incompressible fluids. https://youtu.be/29zUjm7xFlI | ||

+ | |||

+ | |||

+ | |||

+ | '''Week 3 (9/13/2020-9/19/2020)''' | ||

+ | |||

+ | 1. Eugenia Malinnikova - Two questions of Landis and their applications. https://www.youtube.com/watch?v=lpTsW1noWTQ | ||

+ | |||

+ | 2. Pierre Germain - On the derivation of the kinetic wave equation. https://youtu.be/ZbCjKwQ3KcE | ||

+ | |||

+ | |||

+ | |||

+ | '''Week 4 (9/20/2020-9/26/2020)''' | ||

+ | |||

+ | 1. Robert M. Strain - Global mild solutions of the Landau and non-cutoff Boltzmann equation. https://www.youtube.com/watch?v=UWrCItk2euo&feature=youtu.be | ||

+ | |||

+ | 2. Elena Kosygina - Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension https://www.youtube.com/watch?v=tVZv0ftT3PM | ||

+ | |||

+ | |||

+ | |||

+ | '''Week 5 (9/27/2020-10/03/2020)''' | ||

+ | |||

+ | 1. Isabelle Gallagher - From Newton to Boltzmann, fluctuations and large deviations. https://www.youtube.com/watch?v=BkrKkUVadDo | ||

+ | |||

+ | 2. Connor Mooney - The Bernstein problem for elliptic functionals, https://www.youtube.com/watch?v=lSfnyfCL74c | ||

+ | |||

+ | |||

+ | '''Week 6 (10/04/2020-10/10/2020)''' | ||

+ | |||

+ | 1. Felix Otto - The thresholding scheme for mean curvature flow and De Giorgi's ideas for gradient flows. https://www.youtube.com/watch?v=7FQsiZpQA7E | ||

+ | |||

+ | 2. Inwon Kim - Evolution of star-shaped sets in Mean curvature flow with forcing | ||

+ | http://www.birs.ca/events/2018/5-day-workshops/18w5033/videos/watch/201806190900-Kim.html | ||

+ | |||

+ | |||

+ | '''Week 7 (10/11/2020-10/17/2020)''' | ||

+ | |||

+ | 1. Benoit Perthame - Multiphase models of living tissues and the Hele-Shaw limit. https://www.youtube.com/watch?v=UGVJnJCfw5s | ||

+ | |||

+ | 2. Yifeng Yu - Properties of Effective Hamiltonians. https://www.youtube.com/watch?v=U06G4wjF-Hg | ||

+ | |||

+ | |||

+ | '''Week 8 (10/18/2020-10/24/2020)''' | ||

+ | |||

+ | 1. Carlos Kenig - Asymptotic simplification for solutions of the energy critical nonlinear wave equation. https://youtu.be/jvzUqAxU8Xg | ||

+ | |||

+ | 2. Kyeongsu Choi - Ancient mean curvature flows and singularity analysis. https://www.youtube.com/watch?v=Iu1iLjdFjKQ | ||

+ | |||

+ | Virtual Analysis and PDE Seminar (VAPS): https://sites.uci.edu/pdeonlineseminar/. First talk by Ovidiu Savin. | ||

+ | |||

+ | |||

+ | '''Week 9 (10/25/2020-10/31/2020)''' | ||

+ | |||

+ | 1. John Ball - Some energy minimization problems for liquid crystals. https://www.youtube.com/watch?v=-j0jc-y7JzE | ||

+ | |||

+ | 2. Tristan Buckmaster - Stable shock wave formation for the isentropic compressible Euler equations. https://stanford.zoom.us/rec/play/DwuT8rE-K1uJC0LghYPtsoaNmPBk9-P5EK4ZeWh1mVNJELRHn-ay-gOVXHSTRz_0X3iUZDBoUVYq8zfd.Tuqy8urKY4jESivm?continueMode=true&_x_zm_rtaid=GiRX307iT7encyYgIEgh9Q.1603308889393.b4a9b3af5c64cc9ca735cffbe25d8b7b&_x_zm_rhtaid=764 | ||

+ | |||

+ | |||

+ | |||

+ | '''Week 10 (11/1/2020-11/7/2020)''' | ||

+ | |||

+ | 1. Sylvia Serfaty - Mean-Field limits for Coulomb-type dynamics. https://www.youtube.com/watch?v=f7iSTnAe808&feature=youtu.be | ||

+ | |||

+ | 2. Luc Nguyen - Symmetry and multiple existence of critical points in 2D Landau-de Gennes Q-tensor theory http://www.birs.ca/events/2017/5-day-workshops/17w5110/videos/watch/201705041518-Nguyen.html | ||

+ | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | + | '''Week 11 (11/8/2020-11/14/2020)''' | |

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

− | = | + | 1. Andrzej Święch - Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures https://www.youtube.com/watch?v=KC514krtWAc |

− | + | 2. Alexandru Ionescu - On the nonlinear stability of shear flows and vortices, https://youtu.be/Zt_Izzi87V0 | |

− | |||

− | + | '''Week 12 (11/15/2020-11/21/2020)''' | |

− | + | 1. Irene M. Gamba - Boltzmann type equations in a general framework: from the classical elastic flow, to gas mixtures, polyatomic gases, and more, https://youtu.be/fPlhAMGULtY | |

− | |||

− | + | 2. Andrej Zlatos - Euler Equations on General Planar Domains, https://www.youtube.com/watch?v=FdyyMZirRwk | |

+ | '''Week 13 (11/22/2020-11/28/2020)''' | ||

− | == | + | 1. Camillo De Lellis - Flows of vector fields: classical and modern, https://www.youtube.com/watch?v=dVXSC3rtvok&feature=youtu.be |

− | + | 2. Wilfrid Gangbo - Analytical Aspect of Mean Field Games (Part 1/2), https://www.youtube.com/watch?v=KI5n6OYzzW8 | |

− | + | '''Week 14 (11/29/2020-12/5/2020)''' | |

− | + | 1. Juan Dávila - Leapfrogging vortex rings and other solutions with concentrated vorticity for the Euler equations, | |

+ | https://youtu.be/xfAKGc0IEUw | ||

− | + | 2. Yao Yao - Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states, https://www.youtube.com/watch?v=C_4qCimIMYc | |

− | |||

− | |||

− | + | '''Week 15 (12/6/2020-12/12/2020)''' | |

− | + | 1. Pierre Gilles Lemarié-Rieusset - On weak solutions of the Navier-Stokes equations with infinite energy, https://www.youtube.com/watch?v=OeFJ6r-GLJc&feature=youtu.be | |

− | = | + | 2. Albert Fathi - Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation, https://www.youtube.com/watch?v=0y8slhbQlTU |

− | |||

− | + | '''Spring 2021''' | |

+ | '''Week ( / /2021- / /2021)''' | ||

− | == | + | 1. Emmanuel Grenier - instability of viscous shear layers https://www.youtube.com/watch?v=0_EG4VWIYvU&feature=youtu.be |

− | + | 2. | |

− | |||

− | |||

− | + | '''Week ( / /2021- / /2021)''' | |

− | + | 1. Jacob Bedrossian - Chaotic mixing of the Lagrangian flow map and the power spectrum of passive scalar turbulence in the Batchelor regime https://youtu.be/3lNQNsdlGTE | |

− | + | 2. | |

− | |||

− | + | '''Week ( / /2021- / /2021)''' | |

− | + | 1. Hao Jia - nonlinear asymptotic stability in two dimensional incompressible Euler equations https://youtu.be/KMf7K2sTLXg | |

− | + | 2. | |

− | |||

− | |||

− | === | + | {| cellpadding="8" |

+ | !style="width:20%" align="left" | date | ||

+ | !align="left" | speaker | ||

+ | !align="left" | title | ||

+ | !style="width:20%" align="left" | host(s) | ||

+ | |- | ||

+ | |} | ||

− | + | == Abstracts == | |

− | + | === === | |

− | + | Title: | |

− | + | Abstract: |

## Latest revision as of 08:06, 12 January 2021

The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.

## Contents

### Previous PDE/GA seminars

### Tentative schedule for Fall 2021-Spring 2022

## PDE GA Seminar Schedule Fall 2020-Spring 2021

Welcome to the new mode of our PDEGA seminar this semester. Each week, we'll introduce to you two talks that are interesting and related to our interests. As the videos are already on Youtube or other platforms, you could choose to watch them whenever you want to; our goal here is merely to pick our favorite ones out of thousands of already available recorded talks.

**Week 1 (9/1/2020-9/5/2020)**

1. Paul Rabinowitz - The calculus of variations and phase transition problems. https://www.youtube.com/watch?v=vs3rd8RPosA

2. Frank Merle - On the implosion of a three dimensional compressible fluid. https://www.youtube.com/watch?v=5wSNBN0IRdA&feature=youtu.be

**Week 2 (9/6/2020-9/12/2020)**

1. Yoshikazu Giga - On large time behavior of growth by birth and spread. https://www.youtube.com/watch?v=4ndtUh38AU0

2. Tarek Elgindi - Singularity formation in incompressible fluids. https://youtu.be/29zUjm7xFlI

**Week 3 (9/13/2020-9/19/2020)**

1. Eugenia Malinnikova - Two questions of Landis and their applications. https://www.youtube.com/watch?v=lpTsW1noWTQ

2. Pierre Germain - On the derivation of the kinetic wave equation. https://youtu.be/ZbCjKwQ3KcE

**Week 4 (9/20/2020-9/26/2020)**

1. Robert M. Strain - Global mild solutions of the Landau and non-cutoff Boltzmann equation. https://www.youtube.com/watch?v=UWrCItk2euo&feature=youtu.be

2. Elena Kosygina - Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension https://www.youtube.com/watch?v=tVZv0ftT3PM

**Week 5 (9/27/2020-10/03/2020)**

1. Isabelle Gallagher - From Newton to Boltzmann, fluctuations and large deviations. https://www.youtube.com/watch?v=BkrKkUVadDo

2. Connor Mooney - The Bernstein problem for elliptic functionals, https://www.youtube.com/watch?v=lSfnyfCL74c

**Week 6 (10/04/2020-10/10/2020)**

1. Felix Otto - The thresholding scheme for mean curvature flow and De Giorgi's ideas for gradient flows. https://www.youtube.com/watch?v=7FQsiZpQA7E

2. Inwon Kim - Evolution of star-shaped sets in Mean curvature flow with forcing http://www.birs.ca/events/2018/5-day-workshops/18w5033/videos/watch/201806190900-Kim.html

**Week 7 (10/11/2020-10/17/2020)**

1. Benoit Perthame - Multiphase models of living tissues and the Hele-Shaw limit. https://www.youtube.com/watch?v=UGVJnJCfw5s

2. Yifeng Yu - Properties of Effective Hamiltonians. https://www.youtube.com/watch?v=U06G4wjF-Hg

**Week 8 (10/18/2020-10/24/2020)**

1. Carlos Kenig - Asymptotic simplification for solutions of the energy critical nonlinear wave equation. https://youtu.be/jvzUqAxU8Xg

2. Kyeongsu Choi - Ancient mean curvature flows and singularity analysis. https://www.youtube.com/watch?v=Iu1iLjdFjKQ

Virtual Analysis and PDE Seminar (VAPS): https://sites.uci.edu/pdeonlineseminar/. First talk by Ovidiu Savin.

**Week 9 (10/25/2020-10/31/2020)**

1. John Ball - Some energy minimization problems for liquid crystals. https://www.youtube.com/watch?v=-j0jc-y7JzE

2. Tristan Buckmaster - Stable shock wave formation for the isentropic compressible Euler equations. https://stanford.zoom.us/rec/play/DwuT8rE-K1uJC0LghYPtsoaNmPBk9-P5EK4ZeWh1mVNJELRHn-ay-gOVXHSTRz_0X3iUZDBoUVYq8zfd.Tuqy8urKY4jESivm?continueMode=true&_x_zm_rtaid=GiRX307iT7encyYgIEgh9Q.1603308889393.b4a9b3af5c64cc9ca735cffbe25d8b7b&_x_zm_rhtaid=764

**Week 10 (11/1/2020-11/7/2020)**

1. Sylvia Serfaty - Mean-Field limits for Coulomb-type dynamics. https://www.youtube.com/watch?v=f7iSTnAe808&feature=youtu.be

2. Luc Nguyen - Symmetry and multiple existence of critical points in 2D Landau-de Gennes Q-tensor theory http://www.birs.ca/events/2017/5-day-workshops/17w5110/videos/watch/201705041518-Nguyen.html

**Week 11 (11/8/2020-11/14/2020)**

1. Andrzej Święch - Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures https://www.youtube.com/watch?v=KC514krtWAc

2. Alexandru Ionescu - On the nonlinear stability of shear flows and vortices, https://youtu.be/Zt_Izzi87V0

**Week 12 (11/15/2020-11/21/2020)**

1. Irene M. Gamba - Boltzmann type equations in a general framework: from the classical elastic flow, to gas mixtures, polyatomic gases, and more, https://youtu.be/fPlhAMGULtY

2. Andrej Zlatos - Euler Equations on General Planar Domains, https://www.youtube.com/watch?v=FdyyMZirRwk

**Week 13 (11/22/2020-11/28/2020)**

1. Camillo De Lellis - Flows of vector fields: classical and modern, https://www.youtube.com/watch?v=dVXSC3rtvok&feature=youtu.be

2. Wilfrid Gangbo - Analytical Aspect of Mean Field Games (Part 1/2), https://www.youtube.com/watch?v=KI5n6OYzzW8

**Week 14 (11/29/2020-12/5/2020)**

1. Juan Dávila - Leapfrogging vortex rings and other solutions with concentrated vorticity for the Euler equations, https://youtu.be/xfAKGc0IEUw

2. Yao Yao - Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states, https://www.youtube.com/watch?v=C_4qCimIMYc

**Week 15 (12/6/2020-12/12/2020)**

1. Pierre Gilles Lemarié-Rieusset - On weak solutions of the Navier-Stokes equations with infinite energy, https://www.youtube.com/watch?v=OeFJ6r-GLJc&feature=youtu.be

2. Albert Fathi - Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation, https://www.youtube.com/watch?v=0y8slhbQlTU

**Spring 2021**

**Week ( / /2021- / /2021)**

1. Emmanuel Grenier - instability of viscous shear layers https://www.youtube.com/watch?v=0_EG4VWIYvU&feature=youtu.be

2.

**Week ( / /2021- / /2021)**

1. Jacob Bedrossian - Chaotic mixing of the Lagrangian flow map and the power spectrum of passive scalar turbulence in the Batchelor regime https://youtu.be/3lNQNsdlGTE

2.

**Week ( / /2021- / /2021)**

1. Hao Jia - nonlinear asymptotic stability in two dimensional incompressible Euler equations https://youtu.be/KMf7K2sTLXg

2.

date | speaker | title | host(s) |
---|

## Abstracts

Title:

Abstract: