Difference between revisions of "PDE Geometric Analysis seminar"

From UW-Math Wiki
Jump to: navigation, search
(PDE GA Seminar Schedule Fall 2018-Spring 2019)
(PDE GA Seminar Schedule Fall 2019-Spring 2020)
 
(120 intermediate revisions by 7 users not shown)
Line 2: Line 2:
  
 
===[[Previous PDE/GA seminars]]===
 
===[[Previous PDE/GA seminars]]===
===[[Fall 2019-Spring 2020 | Tentative schedule for Fall 2019-Spring 2020]]===
+
===[[Fall 2020-Spring 2021 | Tentative schedule for Fall 2020-Spring 2021]]===
  
== PDE GA Seminar Schedule Fall 2018-Spring 2019 ==
+
== PDE GA Seminar Schedule Fall 2019-Spring 2020 ==
  
  
Line 12: Line 12:
 
!align="left" | title
 
!align="left" | title
 
!style="width:20%" align="left" | host(s)
 
!style="width:20%" align="left" | host(s)
 
 
|-   
 
|-   
|August 31 (FRIDAY),
+
|Sep 9
| Julian Lopez-Gomez (Complutense University of Madrid)
+
| Scott Smith (UW Madison)
|[[#Julian Lopez-Gomez | The theorem of characterization of the Strong Maximum Principle ]]
+
|[[#Scott Smith | Recent progress on singular, quasi-linear stochastic PDE ]]
| Rabinowitz
+
| Kim and Tran
 
 
 
|-   
 
|-   
|September 10,
+
|Sep 14-15
| Hiroyoshi Mitake (University of Tokyo)
+
|  
|[[#Hiroyoshi Mitake | On approximation of time-fractional fully nonlinear equations ]]
+
|[[ # |AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html  ]]
| Tran
+
|   
|-  
 
|September 12 and September 14,
 
| Gunther Uhlmann (UWash)
 
|[[#Gunther Uhlmann | TBA ]]
 
| Li
 
 
|-   
 
|-   
|September 17,
+
|Sep 23
| Changyou Wang (Purdue)
+
| Son Tu (UW Madison)
|[[#Changyou Wang | Some recent results on mathematical analysis of Ericksen-Leslie System ]]
+
|[[#Son Tu | State-Constraint static Hamilton-Jacobi equations in nested domains ]]
| Tran
 
|-
 
|Sep 28, Colloquium
 
| [https://www.math.cmu.edu/~gautam/sj/index.html Gautam Iyer] (CMU)
 
|[[#Sep 28: Gautam Iyer (CMU)| Stirring and Mixing ]]
 
| Thiffeault
 
|- 
 
|October 1,
 
| Matthew Schrecker (UW)
 
|[[#Matthew Schrecker | Finite energy methods for the 1D isentropic Euler equations ]]
 
 
| Kim and Tran
 
| Kim and Tran
 
|-   
 
|-   
|October 8,
+
|Sep 28-29, VV901
| Anna Mazzucato (PSU)
+
| https://www.ki-net.umd.edu/content/conf?event_id=993
|[[#Anna Mazzucato | On the vanishing viscosity limit in incompressible flows ]]
+
|   | Recent progress in analytical aspects of kinetic equations and related fluid models 
| Li and Kim
+
|
 
|-   
 
|-   
|October 15,
+
|Oct 7
| Lei Wu (Lehigh)
+
| Jin Woo Jang (Postech)
|[[#Lei Wu | Hydrodynamic Limits in Kinetic Equations with Boundary Layer Effects ]]
+
|[[#Jin Woo Jang| On a Cauchy problem for the Landau-Boltzmann equation ]]
 
| Kim
 
| Kim
 
|-   
 
|-   
|October 22,
+
|Oct 14
| Annalaura Stingo (UCD)
+
| Stefania Patrizi (UT Austin)
|[[#Annalaura Stingo | Global existence of small solutions to a model wave-Klein-Gordon system in 2D ]]
+
|[[#Stefania Patrizi | Dislocations dynamics: from microscopic models to macroscopic crystal plasticity ]]
| Mihaela Ifrim
+
| Tran
 
|-   
 
|-   
|October 29,
+
|Oct 21
| Yeon-Eung Kim (UW)
+
| Claude Bardos (Université Paris Denis Diderot, France)
|[[#Yeon-Eung Kim | Construction of solutions to a Hamilton-Jacobi equation with a maximum constraint and some uniqueness properties ]]
+
|[[#Claude Bardos | From d'Alembert paradox to 1984 Kato criteria via 1941 1/3 Kolmogorov law and 1949 Onsager conjecture ]]
| Kim and Tran
+
| Li
 
|-   
 
|-   
|November 5,
+
|Oct 25-27, VV901
| Albert Ai (UC Berkeley)
+
| https://www.ki-net.umd.edu/content/conf?event_id=1015
|[[#Albert Ai | Low Regularity Solutions for Gravity Water Waves ]]
+
||  Forward and Inverse Problems in Kinetic Theory
| Mihaela Ifrim
+
| Li
 +
|-
 +
|Oct 28
 +
| Albert Ai (UW Madison)
 +
|[[#Albert Ai | Two dimensional gravity waves at low regularity: Energy estimates  ]]
 +
| Ifrim
 
|-   
 
|-   
|Nov 7 (Wednesday), Colloquium
+
|Nov 4
| [http://math.mit.edu/~lspolaor/ Luca Spolaor] (MIT)
+
| Yunbai Cao (UW Madison)
|[[#Nov 7: Luca Spolaor (MIT) | (Log)-Epiperimetric Inequality and the Regularity of Variational Problems  ]]
+
|[[#Yunbai Cao | Vlasov-Poisson-Boltzmann system in Bounded Domains]]
| Feldman
+
| Kim and Tran
 +
|- 
 +
|Nov 18
 +
| Ilyas Khan (UW Madison)
 +
|[[#Ilyas Khan | The Uniqueness of Asymptotically Conical Self-Shrinkers in High Codimension ]]
 +
| Kim and Tran
 
|-
 
|-
|December 3, ''' Time: 3:00, Room: B223 Van Vleck '''
+
|Nov 25
| Trevor Leslie (UW)
+
| Mathew Langford (UT Knoxville)
|[[#Trevor Leslie | Flocking Models with Singular Interaction Kernels ]]
+
|[[#Mathew Langford | Concavity of the arrival time ]]
| Kim and Tran
+
| Angenent
|-
+
|-  
|December 10, ''' Time: 2:25, Room: B223 Van Vleck '''
+
|Dec 9 - Colloquium (4-5PM)
|Serena Federico (MIT)
+
| Hui Yu (Columbia)
|[[#Serena Federico | Sufficient conditions for local solvability of some degenerate partial differential operators ]]
+
|[[#Hui Yu | TBA ]]
| Mihaela Ifrim
+
| Tran
 
|-  
 
|-  
|December 10, Colloquium, '''Time: 4:00'''
+
|Feb. 3
| [https://math.mit.edu/~maxe/ Max Engelstein] (MIT)
+
| Philippe LeFloch (Sorbonne University and CNRS)
|[[# Max Engelstein| The role of Energy in Regularity ]]
+
|[[#Philippe LeFloch | Nonlinear stability of self-gravitating matter under low decay and weak regularity conditions  ]]
 
| Feldman
 
| Feldman
 
|-  
 
|-  
|January 28,
+
|Feb. 10
| Ru-Yu Lai (Minnesota)
+
| Joonhyun La (Stanford)
|[[# Ru-Yu Lai | TBA ]]
+
|[[#Joonhyun La | On a kinetic model of polymeric fluids ]]
| Li and Kim  
+
| Kim
|-
+
|-
| Jan 31 '''Colloquium 4PM''',
+
|Feb 17
| Dean Baskin (Texas A&M)
+
| Yannick Sire (JHU)
|[[# Dean Baskin | Radiation fields for wave equations]]
+
|[[#Yannick Sire | Minimizers for the thin one-phase free boundary problem ]]
|
+
| Tran
|-
 
| February 4,
 
|
 
|[[# | No seminar (several relevant colloquiums in Jan/30-Feb/8)]]
 
|
 
|-
 
| February 11,
 
| Seokbae Yun (SKKU, long term visitor of UW-Madison)
 
|[[# Seokbae Yun | The propagations of uniform upper bounds fo the spatially homogeneous relativistic Boltzmann equation]]
 
| Kim
 
 
|-   
 
|-   
| February 18,  '''Room: VV B239'''
+
|Feb 19 - Colloquium (4-5PM)
| Daniel Tataru (Berkeley)
+
| Zhenfu Wang (University of Pennsylvania)
|[[# Daniel Tataru | TBA ]]
+
|[[#Zhenfu Wang | Quantitative Methods for the Mean Field Limit Problem ]]
| Ifrim
 
|-                                                                                                                                                         
 
| February 19,
 
| Wenjia Jing (Tsinghua University)
 
|[[#Wenjia Jing | TBA ]]
 
 
| Tran
 
| Tran
|-  
+
|-
|February 25,
+
|Feb 24
| Xiaoqin Guo (UW)
+
| Matthew Schrecker (UW Madison)
|[[#Xiaoqin Guo | TBA ]]
+
|[[#Matthew Schrecker | Existence theory and Newtonian limit for 1D relativistic Euler equations ]]
| Kim and Tran
+
| Feldman
 +
|- 
 +
|March 2
 +
| Theodora Bourni (UT Knoxville)
 +
|[[#Speaker | Polygonal Pancakes ]]
 +
| Angenent
 +
|- 
 +
|March 3 -- Analysis seminar
 +
| William Green (Rose-Hulman Institute of Technology)
 +
|[[#William Green  |  Dispersive estimates for the Dirac equation ]]
 +
| Betsy Stovall
 
|-
 
|-
|March 4
+
|March 9
| Vladimir Sverak (Minnesota)
+
| Ian Tice (CMU)
|[[#Vladimir Sverak | TBA(Wasow lecture) ]]
+
|[[#Ian Tice| Traveling wave solutions to the free boundary Navier-Stokes equations ]]
 
| Kim
 
| Kim
|-  
+
|-
|March 11
+
|March 16
| Jonathan Luk (Stanford)
+
| No seminar (spring break)
|[[#Jonathan Luk | TBA  ]]
+
|[[#Speaker | TBA ]]
 +
| Host
 +
|- 
 +
|March 23 (CANCELLED)
 +
| Jared Speck (Vanderbilt)
 +
|[[#Jared Speck | CANCELLED ]]
 +
| Schrecker
 +
|- 
 +
|March 30 (CANCELLED)
 +
| Huy Nguyen (Brown)
 +
|[[#Huy Nguyen | CANCELLED ]]
 +
| Kim and Tran
 +
|- 
 +
|April 6 (CANCELLED, will be rescheduled)
 +
| Zhiyan Ding (UW Madison)
 +
|[[#Zhiyan Ding | (CANCELLED) Ensemble Kalman Sampling: well-posedness, mean-field limit and convergence analysis ]]
 +
| Kim and Tran
 +
|-  
 +
|April 13 (CANCELLED)
 +
| Hyunju Kwon (IAS)
 +
|[[#Hyunju Kwon | CANCELLED ]]
 
| Kim
 
| Kim
|-
+
|-
|March 12, '''4:00 p.m. in VV B139'''
+
|April 20 (CANCELLED)
| Trevor Leslie (UW-Madison)
+
| Adrian Tudorascu (WVU)
|[[# Trevor Leslie| TBA ]]
+
|[[#Adrian Tudorascu | (CANCELLED) On the Lagrangian description of the Sticky Particle flow ]]
| Analysis seminar
+
| Feldman
|-
+
|-
|March 18,
+
|April 27 
| Spring recess (Mar 16-24, 2019)
+
| Christof Sparber (UIC)
|[[# | ]]
+
|[[#Christof Sparber | (CANCELLED) ]]
+
| Host
|-
+
|-   
|March 25 (open)
+
|May 18-21
| Open 
+
| Madison Workshop in PDE 2020
|[[# Open  |Open  ]]
+
|[[#Speaker | (CANCELLED) -- Move to 05/2021 ]]
|
 
|-  
 
|April 1
 
| Zaher Hani (Michigan)
 
|[[#Zaher Hani | TBA ]]
 
| Ifrim
 
|-  
 
|April 8 (open)
 
| Open 
 
|[[#Open | Open ]]
 
|  
 
|-
 
|April 15,
 
| Yao Yao (Gatech)
 
|[[#Yao Yao | TBA ]]
 
| Tran
 
|-   
 
|April 22,
 
| Jessica Lin (McGill University)
 
|[[#Jessica Lin | TBA ]]
 
 
| Tran
 
| Tran
|- 
 
|April 29,
 
| Beomjun Choi (Columbia)
 
|[[#Beomjun Choi  | Evolution of non-compact hypersurfaces by inverse mean curvature]]
 
|  Angenent
 
 
|}
 
|}
  
 
== Abstracts ==
 
== Abstracts ==
  
===Julian Lopez-Gomez===
+
===Scott Smith===
 +
 
 +
Title: Recent progress on singular, quasi-linear stochastic PDE
 +
 
 +
Abstract: This talk with focus on quasi-linear parabolic equations with an irregular forcing .  These equations are ill-posed in the traditional sense of distribution theory.  They require flexibility in the notion of solution as well as new a priori bounds.  Drawing on the philosophy of rough paths and regularity structures, we develop the analytic part of a small data solution theory.  This is joint work with Felix Otto, Hendrik Weber, and Jonas Sauer.
 +
 
  
Title: The theorem of characterization of the Strong Maximum Principle
+
===Son Tu===
  
Abstract: The main goal of this talk is to discuss the classical (well known) versions of the strong maximum principle of Hopf and Oleinik, as well as the generalized maximum principle of Protter and Weinberger. These results serve as steps towards the theorem of characterization of the strong maximum principle of the speaker, Molina-Meyer and Amann, which substantially generalizes  a popular result of Berestycki, Nirenberg and Varadhan.
+
Title: State-Constraint static Hamilton-Jacobi equations in nested domains
  
===Hiroyoshi Mitake===
+
Abstract: We study state-constraint static Hamilton-Jacobi equations in a sequence of domains $\{\Omega_k\}$ in $\mathbb R^n$ such that $\Omega_k \subset \Omega_{k+1}$ for all $k \in \mathbb N$. We obtain rates of convergence of $u_k$, the solution to the state-constraint problem in $\Omega_k$, to $u$, the solution to the corresponding problem in $\Omega=\bigcup_k \Omega_k$. In many cases,  the rates obtained are proven to be optimal (it's a joint work with Yeoneung Kim and Hung V. Tran).
Title: On approximation of time-fractional fully nonlinear equations
 
  
Abstract: Fractional calculus has been studied extensively these years in wide fields. In this talk, we consider time-fractional fully nonlinear equations. Giga-Namba (2017) recently has established the well-posedness (i.e., existence/uniqueness) of viscosity solutions to this equation. We introduce a natural approximation in terms of elliptic theory and prove the convergence. The talk is based on the joint work with Y. Giga (Univ. of Tokyo) and Q. Liu (Fukuoka Univ.)
 
  
 +
===Jin Woo Jang===
  
 +
Title: On a Cauchy problem for the Landau-Boltzmann equation
  
===Changyou Wang===
+
Abstract: In this talk, I will introduce a recent development in the global well-posedness of the Landau equation (1936) in a general smooth bounded domain, which has been a long-outstanding open problem. This work proves the global stability of the Landau equation in an $L^\infty_{x,v}$ framework with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. Our methods consist of the generalization of the well-posedness theory for the kinetic Fokker-Planck equation (HJV-2014, HJJ-2018) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi-Nash-Moser theory for the kinetic Fokker-Planck equations (GIMV-2016) and the Morrey estimates (BCM-1996) to further control the velocity derivatives, which ensures the uniqueness. This is a joint work with Y. Guo, H. J. Hwang, and Z. Ouyang.
  
Title: Some recent results on mathematical analysis of Ericksen-Leslie System
 
  
Abstract: The Ericksen-Leslie system is the governing equation  that describes the hydrodynamic evolution of nematic liquid crystal materials, first introduced by J. Ericksen and F. Leslie back in 1960's. It is a coupling system between the underlying fluid velocity field and the macroscopic average orientation field of the nematic liquid crystal molecules. Mathematically, this system couples the Navier-Stokes equation and the harmonic heat flow into the unit sphere. It is very challenging to analyze such a system by establishing the existence, uniqueness, and (partial) regularity of global (weak/large) solutions, with many basic questions to be further exploited. In this talk, I will report some results we obtained from the last few years.
+
===Stefania Patrizi===
  
===Matthew Schrecker===
+
Title:
 +
Dislocations dynamics: from microscopic models to macroscopic crystal plasticity
  
Title: Finite energy methods for the 1D isentropic Euler equations
+
Abstract: Dislocation theory aims at explaining the plastic behavior of materials by the motion of line defects in crystals. Peierls-Nabarro models consist in approximating the geometric motion of these defects by nonlocal reaction-diffusion equations. We study the asymptotic  limit of  solutions of  Peierls-Nabarro equations. Different scalings lead to different models at microscopic, mesoscopic and macroscopic scale. This is  joint work with E. Valdinoci.
  
Abstract: In this talk, I will present some recent results concerning the 1D isentropic Euler equations using the theory of compensated compactness in the framework of finite energy solutions. In particular, I will discuss the convergence of the vanishing viscosity limit of the compressible Navier-Stokes equations to the Euler equations in one space dimension. I will also discuss how the techniques developed for this problem can be applied to the existence theory for the spherically symmetric Euler equations and the transonic nozzle problem. One feature of these three problems is the lack of a priori estimates in the space $L^\infty$, which prevent the application of the standard theory for the 1D Euler equations.
 
  
===Anna Mazzucato===
+
===Claude Bardos===
 +
Title: From the d'Alembert paradox to the 1984 Kato criteria via the 1941 $1/3$ Kolmogorov law and the 1949 Onsager conjecture
  
Title: On the vanishing viscosity limit in incompressible flows
+
Abstract: Several of my recent contributions, with Marie Farge, Edriss Titi, Emile Wiedemann, Piotr and Agneska Gwiadza, were motivated by the following issues: The role of boundary effect in mathematical theory of fluids mechanic and the similarity, in presence of these effects, of the weak convergence in the zero viscosity limit and the statistical theory of turbulence. As a consequence, I will recall the Onsager conjecture and compare it to the issue of anomalous energy dissipation.
  
Abstract: I will discuss recent results on the analysis of the vanishing viscosity limit, that is, whether solutions of the Navier-Stokes equations converge to solutions of the Euler equations, for incompressible fluids when walls are present. At small viscosity, a viscous boundary layer arise near the walls where large gradients of velocity and vorticity  may form and propagate in the bulk (if the boundary layer separates). A rigorous justification of Prandtl approximation, in absence of analyticity or monotonicity of the data, is available essentially only in the linear or weakly linear regime under no-slip boundary conditions.  I will present in particular a detailed analysis of the boundary layer for an Oseen-type equation (linearization around a steady Euler flow) in general smooth domains.
+
Then I will give a proof of the local conservation of energy under convenient hypothesis in a domain with boundary and give supplementary condition that imply the global conservation of energy in a domain with boundary and the absence of anomalous energy dissipation in the zero viscosity limit of solutions of the Navier-Stokes equation in the presence of no slip boundary condition.
  
===Lei Wu===
+
Eventually the above results are compared with  several forms of a basic theorem of Kato in the presence of a Lipschitz solution of the Euler equations and one may insist on the fact that in such case the the absence of anomalous energy dissipation is {\bf equivalent} to the persistence of regularity in the zero viscosity limit. Eventually this remark contributes to the resolution of the d'Alembert Paradox.
  
Title: Hydrodynamic Limits in Kinetic Equations with Boundary Layer Effects
+
===Albert Ai===
 +
Title: Two dimensional gravity waves at low regularity: Energy estimates
  
Abstract: Hydrodynamic limits concern the rigorous derivation of fluid equations from kinetic theory. In bounded domains, kinetic boundary corrections (i.e. boundary layers) play a crucial role. In this talk, I will discuss a fresh formulation to characterize the boundary layer with geometric correction, and in particular, its applications in 2D smooth convex domains with in-flow or diffusive boundary conditions. We will focus on some newly developed techniques to justify the asymptotic expansion, e.g. weighted regularity in Milne problems and boundary layer decomposition.
+
Abstract: In this talk, we will consider the gravity water wave equations in two space dimensions. Our focus is on sharp cubic energy estimates and low regularity solutions. Precisely, we will introduce techniques to prove a new class of energy estimates, which we call balanced cubic estimates. This yields a key improvement over the earlier cubic estimates of Hunter-Ifrim-Tataru, while preserving their scale invariant character and their position-velocity potential holomorphic coordinate formulation. Even without using Strichartz estimates, these results allow us to significantly lower the Sobolev regularity threshold for local well-posedness. This is joint work with Mihaela Ifrim and Daniel Tataru.
  
 +
===Ilyas Khan===
 +
Title: The Uniqueness of Asymptotically Conical Self-Shrinkers in High Codimension.
  
===Annalaura Stingo===
+
Abstract: In this talk, we will consider self-shrinking solitons of the mean curvature flow that are smoothly asymptotic to a Riemannian cone in $\mathbb{R}^n$. In 2011, L. Wang proved the uniqueness of self-shrinking ends asymptotic to a cone $C$ in the case of hypersurfaces (codimension 1) by using a backwards uniqueness result for the heat equation due to Escauriaza, Sverak, and Seregin. Later, J. Bernstein proved the same fact using purely elliptic methods. We consider the case of self-shrinkers in high codimension, and outline how to prove the same uniqueness result in this significantly more general case, by using geometric arguments and extending Bernstein’s result.
  
Title: Global existence of small solutions to a model wave-Klein-Gordon system in 2D
+
===Mathew Langford===
 +
Title: Concavity of the arrival time
  
Abstract: This talk deals with the problem of global existence of solutions to a quadratic coupled wave-Klein-Gordon system in space dimension 2, when initial data are small, smooth and mildly decaying at infinity.Some physical models, especially related to general relativity, have shown the importance of studying such systems. At present, most of the existing results concern the 3-dimensional case or that of compactly supported initial data. We content ourselves here with studying the case of a model quadratic quasi-linear non-linearity, that expresses in terms of « null forms »  .
+
Abstract: We present a simple connection between differential Harnack inequalities for hypersurface flows and natural concavity properties of their time-of-arrival functions. We prove these concavity properties directly for a large class of flows by applying a novel concavity maximum principle argument to the corresponding level set flow equations. In particular, this yields a short proof of Hamilton’s differential Harnack inequality for mean curvature flow and, more generally, Andrews’ differential Harnack inequalities for certain “$\alpha$-inverse-concave” flows.
Our aim is to obtain some energy estimates on the solution when some Klainerman vector fields are acting on it, and sharp uniform estimates. The former ones are recovered making systematically use of normal forms’ arguments for quasi-linear equations, in their para-differential version, whereas we derive the latter ones by deducing a system of ordinary differential equations from the starting partial differential system. We hope this strategy will lead us in the future to treat the case of the most general non-linearities.
 
  
===Yeon-Eung Kim===
+
===Philippe LeFloch===
 +
Title: Nonlinear stability of self-gravitating matter under low decay and weak regularity conditions
  
Title: Construction of solutions to a Hamilton-Jacobi equation with a maximum constraint and some uniqueness properties
+
Abstract: I will present recent progress on the global evolution problem for self-gravitating matter. (1) For Einstein's constraint equations, motivated by a scheme proposed by Carlotto and Schoen I will show the existence of asymptotically Euclidean Einstein spaces with low decay; joint work with T. Nguyen.
  
A biological evolution model involving trait as space variable has a interesting feature phenomena called Dirac concentration of density as diffusion coefficient vanishes. The limiting equation from the model can be formulated by Hamilton Jacobi equation with a maximum constraint. In this talk, I will present a way of constructing a solution to a constraint Hamilton Jacobi equation together with some uniqueness and non-uniqueness properties.
+
(2) For Einstein's evolution equations in the regime near Minkowski spacetime, I will show the global nonlinear stability of massive matter fields; joint work with Y. Ma.  
  
===Albert Ai===
+
(3) For the colliding gravitational wave problem, I will show the existence of weakly regular spacetimes containing geometric singularities across which junction conditions are imposed; joint work with B. Le Floch and G. Veneziano.
  
Title: Low Regularity Solutions for Gravity Water Waves
 
  
Abstract: We consider the local well-posedness of the Cauchy problem for the gravity water waves equations, which model the free interface between a fluid and air in the presence of gravity. It has been known that by using dispersive effects, one can lower the regularity threshold for well-posedness below that which is attainable by energy estimates alone. Using a paradifferential reduction of Alazard-Burq-Zuily and low regularity Strichartz estimates, we apply this idea to the well-posedness of the gravity water waves equations in arbitrary space dimension. Further, in two space dimensions, we discuss how one can apply local smoothing effects to further extend this result.
+
===Joonhyun La===
 +
Title: On a kinetic model of polymeric fluids
  
===Trevor Leslie===
+
Abstract: In this talk, we prove global well-posedness of a system describing behavior of dilute flexible polymeric fluids. This model is based on kinetic theory, and a main difficulty for this system is its multi-scale nature. A new function space, based on moments, is introduced to address this issue, and this function space allows us to deal with larger initial data.
  
Title: Flocking Models with Singular Interaction Kernels
 
  
Abstract: Many biological systems exhibit the property of self-organization, the defining feature of which is coherent, large-scale motion arising from underlying short-range interactions between the agents that make up the system.  In this talk, we give an overview of some simple models that have been used to describe the so-called flocking phenomenon.  Within the family of models that we consider (of which the Cucker-Smale model is the canonical example), writing down the relevant set of equations amounts to choosing a kernel that governs the interaction between agents.  We focus on the recent line of research that treats the case where the interaction kernel is singular.  In particular, we discuss some new results on the wellposedness and long-time dynamics of the Euler Alignment model and the Shvydkoy-Tadmor model.
+
===Yannick Sire===
 +
Title: Minimizers for the thin one-phase free boundary problem
  
===Serena Federico===
+
Abstract: We consider the thin one-phase free boundary problem, associated to minimizing a weighted Dirichlet energy of thefunction in the half-space plus the area of the positivity set of that function restricted to the boundary. I will provide a rather complete picture of the (partial ) regularity of the free boundary, providing content and structure estimates on the singular set of the free boundary when it exists. All of these results hold for the full range of the relevant weight related to an anomalous diffusion on the boundary. The approach does not follow the standard one introduced in the seminal work of Alt and Caffarelli. Instead, the nonlocal nature of the distributional measure associated to a minimizer necessitates arguments which are less reliant on the underlying PDE. This opens several directions of research that I will try to describe.
  
Title: Sufficient conditions for local solvability of some degenerate partial differential operators
+
===Matthew Schrecker===
 +
Title: Existence theory and Newtonian limit for 1D relativistic Euler equations
  
Abstract: In  this  talk  we  will give  sufficient  conditions  for  the local  solvability  of a  class  of degenerate second order linear partial differential operators with smooth coefficients. The class under consideration, inspired by some generalizations of the Kannai operator, is characterized by the presence of a complex subprincipal symbolBy giving suitable conditions on the subprincipal part and using the technique of a priori estimates, we will show that the operators in the class are at least $L^2$ to $L^2$ locally solvable.
+
Abstract: I will present the results of my recent work with Gui-Qiang Chen on the Euler equations in the conditions of special relativityI will show how the theory of compensated compactness may be used to obtain the existence of entropy solutions to this system. Moreover, it is expected that as the light speed grows to infinity, solutions to the relativistic Euler equations will converge to their classical (Newtonian) counterparts. The theory we develop is also sufficient to demonstrate this convergence rigorously.
  
===Max Engelstein===
+
===Theodora Bourni===
 +
Title: Polygonal Pancakes
  
Title: The role of Energy in Regularity
+
Abstract: We study ancient collapsed solutions to mean curvature flow, $\{M^n_t\}_{t\in(-\infty,0)}$, in terms of their squash down: $\Omega_*=\lim_{t\to-\infty}\frac{1}{-t} M_t$. We show that $\Omega_*$ must be a convex body which circumscribes $S^1$ and for every such $\Omega_*$ we construct a solution with this prescribed squash down. Our analysis includes non-compact examples, in which setting we disprove a conjecture of White stating that all eternal solutions must be translators. This is joint work with Langford and Tinaglia.
  
Abstract: The calculus of variations asks us to minimize some energy and then describe the shape/properties of the minimizers. It is perhaps a surprising fact that minimizers to ``nice" energies are more regular than one, a priori, assumes. A useful tool for understanding this phenomenon is the Euler-Lagrange equation, which is a partial differential equation satisfied by the critical points of the energy.
+
===Ian Tice===
 +
Title: Traveling wave solutions to the free boundary Navier-Stokes equations
  
However, as we teach our calculus students, not every critical point is a minimizer. In this talk we will discuss some techniques to distinguish the behavior of general critical points from that of minimizers. We will then outline how these techniques may be used to solve some central open problems in the field.
+
Abstract: Consider a layer of viscous incompressible fluid bounded below
 +
by a flat rigid boundary and above by a moving boundary.  The fluid is
 +
subject to gravity, surface tension, and an external stress that is
 +
stationary when viewed in coordinate system moving at a constant
 +
velocity parallel to the lower boundary.  The latter can model, for
 +
instance, a tube blowing air on the fluid while translating across the
 +
surface.  In this talk we will detail the construction of traveling wave
 +
solutions to this problem, which are themselves stationary in the same
 +
translating coordinate system.  While such traveling wave solutions to
 +
the Euler equations are well-known, to the best of our knowledge this is
 +
the first construction of such solutions with viscosity.  This is joint
 +
work with Giovanni Leoni.
  
We will then turn the tables, and examine PDEs which look like they should be an Euler-Lagrange equation but for which there is no underlying energy. For some of these PDEs the solutions will regularize (as if there were an underlying energy) for others, pathological behavior can occur.
 
  
===Seokbae Yun===
+
===Zhiyan Ding===
Title: The propagations of uniform upper bounds fo the spatially homogeneous relativistic Boltzmann equation
+
Title: Ensemble Kalman Sampling: well-posedness, mean-field limit and convergence analysis
  
Abstract: In this talk, we consider the propagation of the uniform upper bounds
+
Abstract: Ensemble Kalman Sampling (EKS) is a method to find iid samples from a target distribution. As of today, why the algorithm works and how it converges is mostly unknown. In this talk, I will focus on the continuous version of EKS with linear forward map, a coupled SDE system. I will talk about its well-posedness and justify its mean-filed limit is a Fokker-Planck equation, whose equilibrium state is the target distribution.
for the spatially homogenous relativistic Boltzmann equation. For this, we establish two
 
types of estimates for the the gain part of the collision operator: namely, a potential
 
type estimate and a relativistic hyper-surface integral estimate. We then combine them
 
using the relativistic counter-part of the Carlemann representation to derive a uniform
 
control of the gain part, which gives the desired propagation of the uniform bounds of
 
the solution. Some applications of the results are also considered. This is a joint work
 
with Jin Woo Jang and Robert M. Strain.
 
  
===Beomjun Choi===
+
===Adrian Tudorascu===
In this talk, we first introduce the inverse mean curvature flow and its well known application in the the proof of Riemannian Penrose inequality by Huisken and Ilmanen. Then our main result on the existence and behavior of convex non-compact solution will be discussed. 
+
Title: On the Lagrangian description of the Sticky Particle flow
  
The key ingredient is a priori interior in time estimate on the inverse mean curvature in terms of the aperture of supporting cone at infinity. This is a joint work with P. Daskalopoulos and I will also mention the recent work with P.-K. Hung concerning the evolution of singular hypersurfaces.
+
Abstract: R. Hynd has recently proved that for absolutely continuous initial velocities the Sticky Particle system admits solutions described by monotone flow maps in Lagrangian coordinates. We present a generalization of this result to general initial velocities and discuss some consequences. (This is based on ongoing work with M. Suder.)

Latest revision as of 20:41, 6 April 2020

The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.

Previous PDE/GA seminars

Tentative schedule for Fall 2020-Spring 2021

PDE GA Seminar Schedule Fall 2019-Spring 2020

date speaker title host(s)
Sep 9 Scott Smith (UW Madison) Recent progress on singular, quasi-linear stochastic PDE Kim and Tran
Sep 14-15 AMS Fall Central Sectional Meeting https://www.ams.org/meetings/sectional/2267_program.html
Sep 23 Son Tu (UW Madison) State-Constraint static Hamilton-Jacobi equations in nested domains Kim and Tran
Sep 28-29, VV901 https://www.ki-net.umd.edu/content/conf?event_id=993 Recent progress in analytical aspects of kinetic equations and related fluid models
Oct 7 Jin Woo Jang (Postech) On a Cauchy problem for the Landau-Boltzmann equation Kim
Oct 14 Stefania Patrizi (UT Austin) Dislocations dynamics: from microscopic models to macroscopic crystal plasticity Tran
Oct 21 Claude Bardos (Université Paris Denis Diderot, France) From d'Alembert paradox to 1984 Kato criteria via 1941 1/3 Kolmogorov law and 1949 Onsager conjecture Li
Oct 25-27, VV901 https://www.ki-net.umd.edu/content/conf?event_id=1015 Forward and Inverse Problems in Kinetic Theory Li
Oct 28 Albert Ai (UW Madison) Two dimensional gravity waves at low regularity: Energy estimates Ifrim
Nov 4 Yunbai Cao (UW Madison) Vlasov-Poisson-Boltzmann system in Bounded Domains Kim and Tran
Nov 18 Ilyas Khan (UW Madison) The Uniqueness of Asymptotically Conical Self-Shrinkers in High Codimension Kim and Tran
Nov 25 Mathew Langford (UT Knoxville) Concavity of the arrival time Angenent
Dec 9 - Colloquium (4-5PM) Hui Yu (Columbia) TBA Tran
Feb. 3 Philippe LeFloch (Sorbonne University and CNRS) Nonlinear stability of self-gravitating matter under low decay and weak regularity conditions Feldman
Feb. 10 Joonhyun La (Stanford) On a kinetic model of polymeric fluids Kim
Feb 17 Yannick Sire (JHU) Minimizers for the thin one-phase free boundary problem Tran
Feb 19 - Colloquium (4-5PM) Zhenfu Wang (University of Pennsylvania) Quantitative Methods for the Mean Field Limit Problem Tran
Feb 24 Matthew Schrecker (UW Madison) Existence theory and Newtonian limit for 1D relativistic Euler equations Feldman
March 2 Theodora Bourni (UT Knoxville) Polygonal Pancakes Angenent
March 3 -- Analysis seminar William Green (Rose-Hulman Institute of Technology) Dispersive estimates for the Dirac equation Betsy Stovall
March 9 Ian Tice (CMU) Traveling wave solutions to the free boundary Navier-Stokes equations Kim
March 16 No seminar (spring break) TBA Host
March 23 (CANCELLED) Jared Speck (Vanderbilt) CANCELLED Schrecker
March 30 (CANCELLED) Huy Nguyen (Brown) CANCELLED Kim and Tran
April 6 (CANCELLED, will be rescheduled) Zhiyan Ding (UW Madison) (CANCELLED) Ensemble Kalman Sampling: well-posedness, mean-field limit and convergence analysis Kim and Tran
April 13 (CANCELLED) Hyunju Kwon (IAS) CANCELLED Kim
April 20 (CANCELLED) Adrian Tudorascu (WVU) (CANCELLED) On the Lagrangian description of the Sticky Particle flow Feldman
April 27 Christof Sparber (UIC) (CANCELLED) Host
May 18-21 Madison Workshop in PDE 2020 (CANCELLED) -- Move to 05/2021 Tran

Abstracts

Scott Smith

Title: Recent progress on singular, quasi-linear stochastic PDE

Abstract: This talk with focus on quasi-linear parabolic equations with an irregular forcing . These equations are ill-posed in the traditional sense of distribution theory. They require flexibility in the notion of solution as well as new a priori bounds. Drawing on the philosophy of rough paths and regularity structures, we develop the analytic part of a small data solution theory. This is joint work with Felix Otto, Hendrik Weber, and Jonas Sauer.


Son Tu

Title: State-Constraint static Hamilton-Jacobi equations in nested domains

Abstract: We study state-constraint static Hamilton-Jacobi equations in a sequence of domains $\{\Omega_k\}$ in $\mathbb R^n$ such that $\Omega_k \subset \Omega_{k+1}$ for all $k \in \mathbb N$. We obtain rates of convergence of $u_k$, the solution to the state-constraint problem in $\Omega_k$, to $u$, the solution to the corresponding problem in $\Omega=\bigcup_k \Omega_k$. In many cases, the rates obtained are proven to be optimal (it's a joint work with Yeoneung Kim and Hung V. Tran).


Jin Woo Jang

Title: On a Cauchy problem for the Landau-Boltzmann equation

Abstract: In this talk, I will introduce a recent development in the global well-posedness of the Landau equation (1936) in a general smooth bounded domain, which has been a long-outstanding open problem. This work proves the global stability of the Landau equation in an $L^\infty_{x,v}$ framework with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. Our methods consist of the generalization of the well-posedness theory for the kinetic Fokker-Planck equation (HJV-2014, HJJ-2018) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi-Nash-Moser theory for the kinetic Fokker-Planck equations (GIMV-2016) and the Morrey estimates (BCM-1996) to further control the velocity derivatives, which ensures the uniqueness. This is a joint work with Y. Guo, H. J. Hwang, and Z. Ouyang.


Stefania Patrizi

Title: Dislocations dynamics: from microscopic models to macroscopic crystal plasticity

Abstract: Dislocation theory aims at explaining the plastic behavior of materials by the motion of line defects in crystals. Peierls-Nabarro models consist in approximating the geometric motion of these defects by nonlocal reaction-diffusion equations. We study the asymptotic limit of solutions of Peierls-Nabarro equations. Different scalings lead to different models at microscopic, mesoscopic and macroscopic scale. This is joint work with E. Valdinoci.


Claude Bardos

Title: From the d'Alembert paradox to the 1984 Kato criteria via the 1941 $1/3$ Kolmogorov law and the 1949 Onsager conjecture

Abstract: Several of my recent contributions, with Marie Farge, Edriss Titi, Emile Wiedemann, Piotr and Agneska Gwiadza, were motivated by the following issues: The role of boundary effect in mathematical theory of fluids mechanic and the similarity, in presence of these effects, of the weak convergence in the zero viscosity limit and the statistical theory of turbulence. As a consequence, I will recall the Onsager conjecture and compare it to the issue of anomalous energy dissipation.

Then I will give a proof of the local conservation of energy under convenient hypothesis in a domain with boundary and give supplementary condition that imply the global conservation of energy in a domain with boundary and the absence of anomalous energy dissipation in the zero viscosity limit of solutions of the Navier-Stokes equation in the presence of no slip boundary condition.

Eventually the above results are compared with several forms of a basic theorem of Kato in the presence of a Lipschitz solution of the Euler equations and one may insist on the fact that in such case the the absence of anomalous energy dissipation is {\bf equivalent} to the persistence of regularity in the zero viscosity limit. Eventually this remark contributes to the resolution of the d'Alembert Paradox.

Albert Ai

Title: Two dimensional gravity waves at low regularity: Energy estimates

Abstract: In this talk, we will consider the gravity water wave equations in two space dimensions. Our focus is on sharp cubic energy estimates and low regularity solutions. Precisely, we will introduce techniques to prove a new class of energy estimates, which we call balanced cubic estimates. This yields a key improvement over the earlier cubic estimates of Hunter-Ifrim-Tataru, while preserving their scale invariant character and their position-velocity potential holomorphic coordinate formulation. Even without using Strichartz estimates, these results allow us to significantly lower the Sobolev regularity threshold for local well-posedness. This is joint work with Mihaela Ifrim and Daniel Tataru.

Ilyas Khan

Title: The Uniqueness of Asymptotically Conical Self-Shrinkers in High Codimension.

Abstract: In this talk, we will consider self-shrinking solitons of the mean curvature flow that are smoothly asymptotic to a Riemannian cone in $\mathbb{R}^n$. In 2011, L. Wang proved the uniqueness of self-shrinking ends asymptotic to a cone $C$ in the case of hypersurfaces (codimension 1) by using a backwards uniqueness result for the heat equation due to Escauriaza, Sverak, and Seregin. Later, J. Bernstein proved the same fact using purely elliptic methods. We consider the case of self-shrinkers in high codimension, and outline how to prove the same uniqueness result in this significantly more general case, by using geometric arguments and extending Bernstein’s result.

Mathew Langford

Title: Concavity of the arrival time

Abstract: We present a simple connection between differential Harnack inequalities for hypersurface flows and natural concavity properties of their time-of-arrival functions. We prove these concavity properties directly for a large class of flows by applying a novel concavity maximum principle argument to the corresponding level set flow equations. In particular, this yields a short proof of Hamilton’s differential Harnack inequality for mean curvature flow and, more generally, Andrews’ differential Harnack inequalities for certain “$\alpha$-inverse-concave” flows.

Philippe LeFloch

Title: Nonlinear stability of self-gravitating matter under low decay and weak regularity conditions

Abstract: I will present recent progress on the global evolution problem for self-gravitating matter. (1) For Einstein's constraint equations, motivated by a scheme proposed by Carlotto and Schoen I will show the existence of asymptotically Euclidean Einstein spaces with low decay; joint work with T. Nguyen.

(2) For Einstein's evolution equations in the regime near Minkowski spacetime, I will show the global nonlinear stability of massive matter fields; joint work with Y. Ma.

(3) For the colliding gravitational wave problem, I will show the existence of weakly regular spacetimes containing geometric singularities across which junction conditions are imposed; joint work with B. Le Floch and G. Veneziano.


Joonhyun La

Title: On a kinetic model of polymeric fluids

Abstract: In this talk, we prove global well-posedness of a system describing behavior of dilute flexible polymeric fluids. This model is based on kinetic theory, and a main difficulty for this system is its multi-scale nature. A new function space, based on moments, is introduced to address this issue, and this function space allows us to deal with larger initial data.


Yannick Sire

Title: Minimizers for the thin one-phase free boundary problem

Abstract: We consider the thin one-phase free boundary problem, associated to minimizing a weighted Dirichlet energy of thefunction in the half-space plus the area of the positivity set of that function restricted to the boundary. I will provide a rather complete picture of the (partial ) regularity of the free boundary, providing content and structure estimates on the singular set of the free boundary when it exists. All of these results hold for the full range of the relevant weight related to an anomalous diffusion on the boundary. The approach does not follow the standard one introduced in the seminal work of Alt and Caffarelli. Instead, the nonlocal nature of the distributional measure associated to a minimizer necessitates arguments which are less reliant on the underlying PDE. This opens several directions of research that I will try to describe.

Matthew Schrecker

Title: Existence theory and Newtonian limit for 1D relativistic Euler equations

Abstract: I will present the results of my recent work with Gui-Qiang Chen on the Euler equations in the conditions of special relativity. I will show how the theory of compensated compactness may be used to obtain the existence of entropy solutions to this system. Moreover, it is expected that as the light speed grows to infinity, solutions to the relativistic Euler equations will converge to their classical (Newtonian) counterparts. The theory we develop is also sufficient to demonstrate this convergence rigorously.

Theodora Bourni

Title: Polygonal Pancakes

Abstract: We study ancient collapsed solutions to mean curvature flow, $\{M^n_t\}_{t\in(-\infty,0)}$, in terms of their squash down: $\Omega_*=\lim_{t\to-\infty}\frac{1}{-t} M_t$. We show that $\Omega_*$ must be a convex body which circumscribes $S^1$ and for every such $\Omega_*$ we construct a solution with this prescribed squash down. Our analysis includes non-compact examples, in which setting we disprove a conjecture of White stating that all eternal solutions must be translators. This is joint work with Langford and Tinaglia.

Ian Tice

Title: Traveling wave solutions to the free boundary Navier-Stokes equations

Abstract: Consider a layer of viscous incompressible fluid bounded below by a flat rigid boundary and above by a moving boundary.  The fluid is subject to gravity, surface tension, and an external stress that is stationary when viewed in coordinate system moving at a constant velocity parallel to the lower boundary.  The latter can model, for instance, a tube blowing air on the fluid while translating across the surface.  In this talk we will detail the construction of traveling wave solutions to this problem, which are themselves stationary in the same translating coordinate system.  While such traveling wave solutions to the Euler equations are well-known, to the best of our knowledge this is the first construction of such solutions with viscosity.  This is joint work with Giovanni Leoni.


Zhiyan Ding

Title: Ensemble Kalman Sampling: well-posedness, mean-field limit and convergence analysis

Abstract: Ensemble Kalman Sampling (EKS) is a method to find iid samples from a target distribution. As of today, why the algorithm works and how it converges is mostly unknown. In this talk, I will focus on the continuous version of EKS with linear forward map, a coupled SDE system. I will talk about its well-posedness and justify its mean-filed limit is a Fokker-Planck equation, whose equilibrium state is the target distribution.

Adrian Tudorascu

Title: On the Lagrangian description of the Sticky Particle flow

Abstract: R. Hynd has recently proved that for absolutely continuous initial velocities the Sticky Particle system admits solutions described by monotone flow maps in Lagrangian coordinates. We present a generalization of this result to general initial velocities and discuss some consequences. (This is based on ongoing work with M. Suder.)