Difference between revisions of "PDE Geometric Analysis seminar"

From UW-Math Wiki
Jump to: navigation, search
(PDE GA Seminar Schedule Fall 2020-Spring 2021)
 
(797 intermediate revisions by 18 users not shown)
Line 1: Line 1:
The seminar will be held  in room B115 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.
+
The seminar will be held  in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.
  
 
===[[Previous PDE/GA seminars]]===
 
===[[Previous PDE/GA seminars]]===
 +
===[[Fall 2021-Spring 2022 | Tentative schedule for Fall 2021-Spring 2022]]===
  
== Seminar Schedule Spring 2012 ==
 
{| cellpadding="8"
 
!align="left" | date 
 
!align="left" | speaker
 
!align="left" | title
 
!align="left" | host(s)
 
|-
 
|Feb 6
 
|Yao Yao (UCLA)
 
|[[#Yao Yao (UCLA)|
 
Degenerate diffusion with nonlocal aggregation: behavior of solutions]]
 
|Kiselev
 
|-
 
|March 12
 
| Xuan Hien Nguyen (Iowa State)
 
|[[#Xuan Hien Nguyen (Iowa State)|
 
Gluing constructions for solitons and self-shrinkers under mean curvature flow]]
 
|Angenent
 
|-
 
|March 21(Wednesday!), Room 901 Van Vleck
 
|Nestor Guillen (UCLA)
 
|[[#Nestor Guillen (UCLA)|
 
The local geometry of maps with c-convex potentials]]
 
|Feldman
 
|-
 
|March 26
 
|Vlad Vicol (University of Chicago)
 
|[[#Vlad Vicol (U Chicago)|
 
Shape dependent maximum principles and applications]]
 
|Kiselev
 
|-
 
|April 9
 
|Charles Smart (MIT)
 
|[[#Charles Smart (MIT)|
 
PDE methods for the Abelian sandpile
 
]]
 
|Seeger
 
|-
 
|April 16
 
|Jiahong Wu (Oklahoma)
 
|[[#Jiahong Wu (Oklahoma State)|
 
The 2D Boussinesq equations with partial dissipation]]
 
|Kiselev
 
|-
 
|April 23
 
|Joana Oliveira dos Santos Amorim (Universite Paris Dauphine)
 
|[[#Joana Oliveira dos Santos Amorim (Universite Paris Dauphine)|
 
A geometric look on Aubry-Mather theory and a theorem of Birkhoff]]
 
|Bolotin
 
|-
 
|April 27 (Colloquium. Friday at 4pm, in Van Vleck B239)
 
|Gui-Qiang Chen (Oxford)
 
|[[#Gui-Qiang Chen (Oxford) |
 
TBA]]
 
|Feldman
 
|-
 
|May 14
 
|Jacob Glenn-Levin (UT Austin)
 
|[[#Jacob Glenn-Levin (UT Austin)|
 
TBA]]
 
|Kiselev
 
|}
 
  
==Abstracts==
 
  
===Yao Yao (UCLA)===
+
== PDE GA Seminar Schedule Fall 2020-Spring 2021 ==
''Degenerate diffusion with nonlocal aggregation: behavior of solutions''
+
Welcome to the new mode of our PDEGA seminar this semester. Each week, we'll introduce to you two talks that are interesting and related to our interests. As the videos are already on Youtube or other platforms, you could choose to watch them whenever you want to; our goal here is merely to pick our favorite ones out of thousands of already available recorded talks. 
 +
 
 +
'''Week 1 (9/1/2020-9/5/2020)'''
 +
 
 +
1. Paul Rabinowitz - The calculus of variations and phase transition problems.
 +

https://www.youtube.com/watch?v=vs3rd8RPosA
 +
 
 +
2. Frank Merle - On the implosion of a three dimensional compressible fluid.
 +
https://www.youtube.com/watch?v=5wSNBN0IRdA&feature=youtu.be 
 +
 
 +
'''Week 2 (9/6/2020-9/12/2020)'''
 +
 
 +
1. Yoshikazu Giga - On large time behavior of growth by birth and spread.
 +
https://www.youtube.com/watch?v=4ndtUh38AU0
 +
 
 +
2. Tarek Elgindi - Singularity formation in incompressible fluids. https://youtu.be/29zUjm7xFlI
 +
 
 +
 
 +
 
 +
'''Week 3 (9/13/2020-9/19/2020)'''
 +
 
 +
1. Eugenia Malinnikova - Two questions of Landis and their applications. https://www.youtube.com/watch?v=lpTsW1noWTQ
 +
 
 +
2. Pierre Germain - On the derivation of the kinetic wave equation. https://youtu.be/ZbCjKwQ3KcE
 +
 
 +
 
 +
 
 +
'''Week 4 (9/20/2020-9/26/2020)'''
 +
 
 +
1. Robert M. Strain - Global mild solutions of the Landau and non-cutoff Boltzmann equation. https://www.youtube.com/watch?v=UWrCItk2euo&feature=youtu.be
 +
 
 +
2. Elena Kosygina - Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension https://www.youtube.com/watch?v=tVZv0ftT3PM
 +
 
 +
 
 +
 
 +
'''Week 5 (9/27/2020-10/03/2020)'''
 +
 
 +
1. Isabelle Gallagher - From Newton to Boltzmann, fluctuations and large deviations. https://www.youtube.com/watch?v=BkrKkUVadDo
 +
 
 +
2.  Connor Mooney - The Bernstein problem for elliptic functionals, https://www.youtube.com/watch?v=lSfnyfCL74c
 +
 
 +
 
 +
'''Week 6 (10/04/2020-10/10/2020)'''
 +
 
 +
1. Felix Otto - The thresholding scheme for mean curvature flow and De Giorgi's ideas for gradient flows. https://www.youtube.com/watch?v=7FQsiZpQA7E
 +
 
 +
2. Inwon Kim - Evolution of star-shaped sets in Mean curvature flow with forcing
 +
http://www.birs.ca/events/2018/5-day-workshops/18w5033/videos/watch/201806190900-Kim.html
 +
 
 +
 
 +
'''Week 7 (10/11/2020-10/17/2020)'''
 +
 
 +
1. Benoit Perthame - Multiphase models of living tissues and the Hele-Shaw limit. https://www.youtube.com/watch?v=UGVJnJCfw5s
 +
 
 +
2. Yifeng Yu - Properties of Effective Hamiltonians. https://www.youtube.com/watch?v=U06G4wjF-Hg
 +
 
 +
 
 +
'''Week 8 (10/18/2020-10/24/2020)'''
 +
 
 +
1. Carlos Kenig - Asymptotic simplification for solutions of the energy critical nonlinear wave equation. https://youtu.be/jvzUqAxU8Xg
 +
 
 +
2. Kyeongsu Choi - Ancient mean curvature flows and singularity analysis. https://www.youtube.com/watch?v=Iu1iLjdFjKQ
 +
 
 +
Virtual Analysis and PDE Seminar (VAPS): https://sites.uci.edu/pdeonlineseminar/. First talk by Ovidiu Savin.
 +
 
 +
 
 +
'''Week 9 (10/25/2020-10/31/2020)'''
 +
 
 +
1. John Ball - Some energy minimization problems for liquid crystals. https://www.youtube.com/watch?v=-j0jc-y7JzE
 +
 
 +
2. Tristan Buckmaster - Stable shock wave formation for the isentropic compressible Euler equations. https://stanford.zoom.us/rec/play/DwuT8rE-K1uJC0LghYPtsoaNmPBk9-P5EK4ZeWh1mVNJELRHn-ay-gOVXHSTRz_0X3iUZDBoUVYq8zfd.Tuqy8urKY4jESivm?continueMode=true&_x_zm_rtaid=GiRX307iT7encyYgIEgh9Q.1603308889393.b4a9b3af5c64cc9ca735cffbe25d8b7b&_x_zm_rhtaid=764
 +
 
 +
 
 +
 
 +
'''Week 10 (11/1/2020-11/7/2020)'''
 +
 
 +
1. Sylvia Serfaty - Mean-Field limits for Coulomb-type dynamics. https://www.youtube.com/watch?v=f7iSTnAe808&feature=youtu.be
 +
 
 +
2. Luc Nguyen - Symmetry and multiple existence of critical points in 2D Landau-de Gennes Q-tensor theory http://www.birs.ca/events/2017/5-day-workshops/17w5110/videos/watch/201705041518-Nguyen.html
 +
 
 +
 
 +
 
 +
'''Week 11 (11/8/2020-11/14/2020)'''
 +
 
 +
1. Andrzej Święch - Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures https://www.youtube.com/watch?v=KC514krtWAc
 +
 
 +
2. Alexandru Ionescu - On the nonlinear stability of shear flows and vortices, https://youtu.be/Zt_Izzi87V0
 +
 
 +
 
 +
'''Week 12 (11/15/2020-11/21/2020)'''
 +
 
 +
1. Irene M. Gamba - Boltzmann type equations in a general framework: from the classical elastic flow, to gas mixtures, polyatomic gases, and more, https://youtu.be/fPlhAMGULtY
 +
 
 +
2.  Andrej Zlatos - Euler Equations on General Planar Domains, https://www.youtube.com/watch?v=FdyyMZirRwk
 +
 
 +
 
 +
'''Week 13 (11/22/2020-11/28/2020)'''
 +
 
 +
1. Camillo De Lellis - Flows of vector fields: classical and modern, https://www.youtube.com/watch?v=dVXSC3rtvok&feature=youtu.be
 +
 
 +
2. Wilfrid Gangbo - Analytical Aspect of Mean Field Games (Part 1/2), https://www.youtube.com/watch?v=KI5n6OYzzW8
 +
 
 +
'''Week 14 (11/29/2020-12/5/2020)'''
 +
 
 +
1. Juan Dávila - Leapfrogging vortex rings and other solutions with concentrated vorticity for the Euler equations,
 +
https://youtu.be/xfAKGc0IEUw
 +
 
 +
2. Yao Yao - Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states, https://www.youtube.com/watch?v=C_4qCimIMYc
 +
 
 +
 
 +
 
 +
'''Week 15 (12/6/2020-12/12/2020)'''
 +
 
 +
1. Pierre Gilles Lemarié-Rieusset - On weak solutions of the Navier-Stokes equations with infinite energy, https://www.youtube.com/watch?v=OeFJ6r-GLJc&feature=youtu.be
 +
 
 +
2. Albert Fathi - Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation, https://www.youtube.com/watch?v=0y8slhbQlTU
 +
 
 +
 
 +
'''Spring 2021'''
 +
 
 +
'''Week 1 (1/31/2021- 2/6/2021)'''
 +
 
 +
1. Emmanuel Grenier -  instability of viscous shear layers https://www.youtube.com/watch?v=0_EG4VWIYvU&feature=youtu.be
 +
 
 +
2. Robert Pego - Dynamics and oscillations in models of coagulation and fragmentation https://www.youtube.com/watch?v=3712lImYP84
 +
 
 +
 
 +
'''Week 2 ( 2/7/2021- 2/13/2021)'''
 +
 
 +
1. Ryan Hynd, The Hamilton-Jacobi equation, past and present https://www.youtube.com/watch?v=jR6paJf7aek
 +
 
 +
2. Jacob Bedrossian - Chaotic mixing of the Lagrangian flow map and the power spectrum of passive scalar turbulence in the Batchelor regime https://youtu.be/3lNQNsdlGTE
 +
 
 +
Colloquium (2/12/2021): Bobby Wilson (University of Washington). More information can be found here http://www.math.wisc.edu/wiki/index.php/Colloquia.
 +
 
 +
'''Week 3 ( 2/14/2021- 2/20/2021)'''
 +
 
 +
1. Diogo A. Gomes - Monotone MFGs - theory and numerics https://www.youtube.com/watch?v=lj1L7AHHY3s
 +
 
 +
2. Hao Jia -  nonlinear asymptotic stability in two dimensional incompressible Euler equations https://youtu.be/KMf7K2sTLXg
 +
 
 +
 
 +
 
 +
'''Week 4 ( 2/21/2021- 2/27/2021)'''
 +
 
 +
1. Anne-Laure Dalibard -  Boundary layer methods in semilinear fluid equations https://www.msri.org/workshops/944/schedules/29309
 +
 
 +
2. Gui-Qiang G. Chen - On Nonlinear PDEs of Mixed Elliptic-Hyperbolic Type: Analysis and Connections https://www.youtube.com/watch?v=W3sa-8qtw68
 +
 
 +
'''Week 5 ( 2/28/2021- 3/6/2021)'''
 +
 
 +
1. Inwon Kim -  A variational scheme for Navier-Stokes Equations https://www.msri.org/workshops/944/schedules/29317
 +
 
 +
2. Robert L. Jerrard - Solutions of the Ginzburg–Landau equatons with vorticity concentrating near a nondegenerate geodesic https://www.youtube.com/watch?v=M0NQh2PET_k
 +
 
 +
'''Week 6 (3/7/2021-3/13/2021)'''
 +
 
 +
1. Ondřej Kreml -  Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial datas https://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011231027-Kreml.html
 +
 
 +
2. Rita Ferreira - Homogenization of a stationary mean-field game via two-scale convergence https://www.youtube.com/watch?v=EICMVmt5o9c
 +
 
 +
 
 +
'''Week 7 (3/14/2021-3/20/2021)'''
  
The Patlak-Keller-Segel (PKS) equation models the collective motion of
+
1. Sergey Denisov - Small scale formation in 2D Euler dynamics https://www.youtube.com/watch?v=7ffUgTC34tM
cells which are attracted by a self-emitted chemical substance. While the
 
global well-posedness and finite-time blow up criteria are well known, the
 
asymptotic behaviors of solutions are not completely clear.  In this talk I
 
will present some results on the asymptotic behavior of solutions when
 
there is global existence. The key tools used in the paper are
 
maximum-principle type arguments as well as estimates on mass concentration
 
of solutions. This is a joint work with Inwon Kim.
 
  
===Xuan Hien Nguyen (Iowa State)===
+
2. Alexis Vasseur -  Instability of finite time blow-ups for incompressible Euler https://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011231000-Vasseur.html
  
''Gluing constructions for solitons and self-shrinkers under mean curvature flow''
 
  
In the 1990s, Kapouleas and Traizet constructed new examples of minimal surfaces by desingularizing the intersection of existing ones with Scherk surfaces. Using this idea, one can find new examples of self-translating solutions for the mean curvature flow asymptotic at infinity to a finite family of grim reaper cylinders in general position. Recently, it has been shown that it is possible to desingularize the intersection of a sphere and a plane to obtain a family of self-shrinkers under mean curvature flow. I will discuss the main steps and difficulties for these gluing constructions, as well as open problems.
 
  
===Nestor Guillen (UCLA)===
+
'''Week 8 (3/21/2021- 3/27/2021)'''
  
We consider the Monge-Kantorovich problem, which consists in
+
1. Peter Sternberg - Variational Models for Phase Transitions in Liquid Crystals Based Upon Disparate Values of the Elastic Constants https://www.youtube.com/watch?v=4rSPsDvkTYs
transporting a given measure into another "target" measure in a way
 
that minimizes the total cost of moving each unit of mass to its new
 
location. When the transport cost is given by the square of the
 
distance between two points, the optimal map is given by a convex
 
potential which solves the Monge-Ampère equation, in general, the
 
solution is given by what is called a c-convex potential. In recent
 
work with Jun Kitagawa, we prove local Holder estimates of optimal
 
transport maps for more general cost functions satisfying a
 
"synthetic" MTW condition, in particular, the proof does not really
 
use the C^4 assumption made in all previous works. A similar result
 
was recently obtained by Figalli, Kim and McCann using different
 
methods and assuming strict convexity of the target.
 
  
===Charles Smart (MIT)===
+
2. François Golse -  Half-space problem for the Boltzmann equation with phase transition at the boundary https://mysnu-my.sharepoint.com/:v:/g/personal/bear0117_seoul_ac_kr/ETGjasFQ7ylHu04qUz4KomYB98uMHLd-q96DOJGwbbEB0A
  
''PDE methods for the Abelian sandpile''
 
  
Abstract:  The Abelian sandpile growth model is a deterministic
 
diffusion process for chips placed on the $d$-dimensional integer
 
lattice.  One of the most striking features of the sandpile is that it
 
appears to produce terminal configurations converging to a peculiar
 
lattice.  One of the most striking features of the sandpile is that it
 
appears to produce terminal configurations converging to a peculiar
 
fractal limit when begun from increasingly large stacks of chips at
 
the origin.  This behavior defied explanation for many years until
 
viscosity solution theory offered a new perspective.  This is joint
 
work with Lionel Levine and Wesley Pegden.
 
  
===Vlad Vicol (University of Chicago)===
+
'''Week 9 (3/28/2021- 4/3/2021)'''
  
Title: Shape dependent maximum principles and applications
+
1. Susan Friedlander - Kolmogorov, Onsager and a stochastic model for turbulence https://www.youtube.com/watch?v=xk3KZQ-anDM
  
Abstract: We present a non-linear lower bound for the fractional Laplacian, when
+
2. Sergei Chernyshenko - Auxiliary functionals: a path to solving the problem of turbulence https://www.youtube.com/watch?v=NrF7n3MyCy4&list=PLf_ipOSbWC86n18q4JMn_1J04S90FpdeE&index=9
evaluated at extrema of a function. Applications to the global well-posedness of active
 
scalar equations arising in fluid dynamics are discussed. This is joint work with P.
 
Constantin.
 
  
  
===Jiahong Wu (Oklahoma State)===
+
'''Week 10 (4/4/2021- 4/10/2021)'''
  
"The 2D Boussinesq equations with partial dissipation"
+
1. Camillo De Lellis - Transport equations and ODEs with nonsmooth coefficients https://www.msri.org/workshops/945/schedules/29235
  
The Boussinesq equations concerned here model geophysical flows such
+
2. Weinan E - PDE problems that arise from machine learning https://www.youtube.com/watch?v=5rb8DJkxfg8
as atmospheric fronts and ocean circulations. Mathematically the 2D Boussinesq
 
equations serve as a lower-dimensional model of the 3D hydrodynamics
 
equations. In fact, the 2D Boussinesq equations retain some key features
 
of the 3D Euler and the Navier-Stokes equations such as the vortex stretching
 
mechanism.  The global regularity problem on the 2D Boussinesq equations
 
with partial dissipation has attracted considerable attention in the last few years.
 
In this talk we will summarize recent results on various cases of partial dissipation,
 
present the work of Cao and Wu on the 2D Boussinesq equations with vertical
 
dissipation and vertical thermal diffusion,  and explain  the work of Chae and Wu on
 
the critical Boussinesq equations with a logarithmically singular velocity.
 
  
 +
'''Week 11(4/11/2021- 4/17/2021)'''
  
===Joana Oliveira dos Santos Amorim (Universit\'e Paris Dauphine)===
+
1. Marian Gidea - Topological methods and Hamiltonian instability https://youtu.be/aMN7zJZavDo
  
"A geometric look on Aubry-Mather theory and a theorem of Birkhoff"
+
2. David Gerard-Varet - On the effective viscosity of suspensions http://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011230644-Gerard-Varet.html
  
Given a Tonelli Hamiltonian $H:T^*M \lto \Rm$ in the cotangent bundle of a compact manifold $M$,
 
we can study its dynamic using the Aubry and Ma\~n\'e sets defined by Mather.
 
In this talk we will explain their importance and give a new geometric definition
 
which allows us to understand their property of symplectic invariance.
 
Moreover, using this geometric definition, we will show that an exact
 
Lipchitz Lagrangian manifold isotopic to a graph which is invariant
 
by the flow of a Tonelli Hamiltonian is itself a graph.
 
This result, in its smooth form, was a conjecture of Birkhoff.
 
  
  
===Gui-Qiang Chen (Oxford) ===
+
{| cellpadding="8"
 +
!style="width:20%" align="left" | date 
 +
!align="left" | speaker
 +
!align="left" | title
 +
!style="width:20%" align="left" | host(s)
 +
|- 
 +
|}
  
TBA
+
== Abstracts ==
  
 +
===  ===
  
===Jacob Glenn-Levin (UT Austin)===
+
Title: 
  
TBA
+
Abstract:

Latest revision as of 14:38, 11 April 2021

The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.

Previous PDE/GA seminars

Tentative schedule for Fall 2021-Spring 2022

PDE GA Seminar Schedule Fall 2020-Spring 2021

Welcome to the new mode of our PDEGA seminar this semester. Each week, we'll introduce to you two talks that are interesting and related to our interests. As the videos are already on Youtube or other platforms, you could choose to watch them whenever you want to; our goal here is merely to pick our favorite ones out of thousands of already available recorded talks. 

Week 1 (9/1/2020-9/5/2020)

1. Paul Rabinowitz - The calculus of variations and phase transition problems. 
https://www.youtube.com/watch?v=vs3rd8RPosA

2. Frank Merle - On the implosion of a three dimensional compressible fluid. https://www.youtube.com/watch?v=5wSNBN0IRdA&feature=youtu.be 

Week 2 (9/6/2020-9/12/2020)

1. Yoshikazu Giga - On large time behavior of growth by birth and spread. https://www.youtube.com/watch?v=4ndtUh38AU0

2. Tarek Elgindi - Singularity formation in incompressible fluids. https://youtu.be/29zUjm7xFlI


Week 3 (9/13/2020-9/19/2020)

1. Eugenia Malinnikova - Two questions of Landis and their applications. https://www.youtube.com/watch?v=lpTsW1noWTQ

2. Pierre Germain - On the derivation of the kinetic wave equation. https://youtu.be/ZbCjKwQ3KcE


Week 4 (9/20/2020-9/26/2020)

1. Robert M. Strain - Global mild solutions of the Landau and non-cutoff Boltzmann equation. https://www.youtube.com/watch?v=UWrCItk2euo&feature=youtu.be

2. Elena Kosygina - Stochastic homogenization of a class of nonconvex viscous HJ equations in one space dimension https://www.youtube.com/watch?v=tVZv0ftT3PM


Week 5 (9/27/2020-10/03/2020)

1. Isabelle Gallagher - From Newton to Boltzmann, fluctuations and large deviations. https://www.youtube.com/watch?v=BkrKkUVadDo

2. Connor Mooney - The Bernstein problem for elliptic functionals, https://www.youtube.com/watch?v=lSfnyfCL74c


Week 6 (10/04/2020-10/10/2020)

1. Felix Otto - The thresholding scheme for mean curvature flow and De Giorgi's ideas for gradient flows. https://www.youtube.com/watch?v=7FQsiZpQA7E

2. Inwon Kim - Evolution of star-shaped sets in Mean curvature flow with forcing http://www.birs.ca/events/2018/5-day-workshops/18w5033/videos/watch/201806190900-Kim.html


Week 7 (10/11/2020-10/17/2020)

1. Benoit Perthame - Multiphase models of living tissues and the Hele-Shaw limit. https://www.youtube.com/watch?v=UGVJnJCfw5s

2. Yifeng Yu - Properties of Effective Hamiltonians. https://www.youtube.com/watch?v=U06G4wjF-Hg


Week 8 (10/18/2020-10/24/2020)

1. Carlos Kenig - Asymptotic simplification for solutions of the energy critical nonlinear wave equation. https://youtu.be/jvzUqAxU8Xg

2. Kyeongsu Choi - Ancient mean curvature flows and singularity analysis. https://www.youtube.com/watch?v=Iu1iLjdFjKQ

Virtual Analysis and PDE Seminar (VAPS): https://sites.uci.edu/pdeonlineseminar/. First talk by Ovidiu Savin.


Week 9 (10/25/2020-10/31/2020)

1. John Ball - Some energy minimization problems for liquid crystals. https://www.youtube.com/watch?v=-j0jc-y7JzE

2. Tristan Buckmaster - Stable shock wave formation for the isentropic compressible Euler equations. https://stanford.zoom.us/rec/play/DwuT8rE-K1uJC0LghYPtsoaNmPBk9-P5EK4ZeWh1mVNJELRHn-ay-gOVXHSTRz_0X3iUZDBoUVYq8zfd.Tuqy8urKY4jESivm?continueMode=true&_x_zm_rtaid=GiRX307iT7encyYgIEgh9Q.1603308889393.b4a9b3af5c64cc9ca735cffbe25d8b7b&_x_zm_rhtaid=764


Week 10 (11/1/2020-11/7/2020)

1. Sylvia Serfaty - Mean-Field limits for Coulomb-type dynamics. https://www.youtube.com/watch?v=f7iSTnAe808&feature=youtu.be

2. Luc Nguyen - Symmetry and multiple existence of critical points in 2D Landau-de Gennes Q-tensor theory http://www.birs.ca/events/2017/5-day-workshops/17w5110/videos/watch/201705041518-Nguyen.html


Week 11 (11/8/2020-11/14/2020)

1. Andrzej Święch - Finite dimensional approximations of Hamilton-Jacobi-Bellman equations in spaces of probability measures https://www.youtube.com/watch?v=KC514krtWAc

2. Alexandru Ionescu - On the nonlinear stability of shear flows and vortices, https://youtu.be/Zt_Izzi87V0


Week 12 (11/15/2020-11/21/2020)

1. Irene M. Gamba - Boltzmann type equations in a general framework: from the classical elastic flow, to gas mixtures, polyatomic gases, and more, https://youtu.be/fPlhAMGULtY

2. Andrej Zlatos - Euler Equations on General Planar Domains, https://www.youtube.com/watch?v=FdyyMZirRwk


Week 13 (11/22/2020-11/28/2020)

1. Camillo De Lellis - Flows of vector fields: classical and modern, https://www.youtube.com/watch?v=dVXSC3rtvok&feature=youtu.be

2. Wilfrid Gangbo - Analytical Aspect of Mean Field Games (Part 1/2), https://www.youtube.com/watch?v=KI5n6OYzzW8

Week 14 (11/29/2020-12/5/2020)

1. Juan Dávila - Leapfrogging vortex rings and other solutions with concentrated vorticity for the Euler equations, https://youtu.be/xfAKGc0IEUw

2. Yao Yao - Aggregation-diffusion equation: symmetry, uniqueness and non-uniqueness of steady states, https://www.youtube.com/watch?v=C_4qCimIMYc


Week 15 (12/6/2020-12/12/2020)

1. Pierre Gilles Lemarié-Rieusset - On weak solutions of the Navier-Stokes equations with infinite energy, https://www.youtube.com/watch?v=OeFJ6r-GLJc&feature=youtu.be

2. Albert Fathi - Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation, https://www.youtube.com/watch?v=0y8slhbQlTU


Spring 2021

Week 1 (1/31/2021- 2/6/2021)

1. Emmanuel Grenier - instability of viscous shear layers https://www.youtube.com/watch?v=0_EG4VWIYvU&feature=youtu.be

2. Robert Pego - Dynamics and oscillations in models of coagulation and fragmentation https://www.youtube.com/watch?v=3712lImYP84


Week 2 ( 2/7/2021- 2/13/2021)

1. Ryan Hynd, The Hamilton-Jacobi equation, past and present https://www.youtube.com/watch?v=jR6paJf7aek

2. Jacob Bedrossian - Chaotic mixing of the Lagrangian flow map and the power spectrum of passive scalar turbulence in the Batchelor regime https://youtu.be/3lNQNsdlGTE

Colloquium (2/12/2021): Bobby Wilson (University of Washington). More information can be found here http://www.math.wisc.edu/wiki/index.php/Colloquia.

Week 3 ( 2/14/2021- 2/20/2021)

1. Diogo A. Gomes - Monotone MFGs - theory and numerics https://www.youtube.com/watch?v=lj1L7AHHY3s

2. Hao Jia - nonlinear asymptotic stability in two dimensional incompressible Euler equations https://youtu.be/KMf7K2sTLXg


Week 4 ( 2/21/2021- 2/27/2021)

1. Anne-Laure Dalibard - Boundary layer methods in semilinear fluid equations https://www.msri.org/workshops/944/schedules/29309

2. Gui-Qiang G. Chen - On Nonlinear PDEs of Mixed Elliptic-Hyperbolic Type: Analysis and Connections https://www.youtube.com/watch?v=W3sa-8qtw68

Week 5 ( 2/28/2021- 3/6/2021)

1. Inwon Kim - A variational scheme for Navier-Stokes Equations https://www.msri.org/workshops/944/schedules/29317

2. Robert L. Jerrard - Solutions of the Ginzburg–Landau equatons with vorticity concentrating near a nondegenerate geodesic https://www.youtube.com/watch?v=M0NQh2PET_k

Week 6 (3/7/2021-3/13/2021)

1. Ondřej Kreml - Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial datas https://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011231027-Kreml.html

2. Rita Ferreira - Homogenization of a stationary mean-field game via two-scale convergence https://www.youtube.com/watch?v=EICMVmt5o9c


Week 7 (3/14/2021-3/20/2021)

1. Sergey Denisov - Small scale formation in 2D Euler dynamics https://www.youtube.com/watch?v=7ffUgTC34tM

2. Alexis Vasseur - Instability of finite time blow-ups for incompressible Euler https://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011231000-Vasseur.html


Week 8 (3/21/2021- 3/27/2021)

1. Peter Sternberg - Variational Models for Phase Transitions in Liquid Crystals Based Upon Disparate Values of the Elastic Constants https://www.youtube.com/watch?v=4rSPsDvkTYs

2. François Golse - Half-space problem for the Boltzmann equation with phase transition at the boundary https://mysnu-my.sharepoint.com/:v:/g/personal/bear0117_seoul_ac_kr/ETGjasFQ7ylHu04qUz4KomYB98uMHLd-q96DOJGwbbEB0A


Week 9 (3/28/2021- 4/3/2021)

1. Susan Friedlander - Kolmogorov, Onsager and a stochastic model for turbulence https://www.youtube.com/watch?v=xk3KZQ-anDM

2. Sergei Chernyshenko - Auxiliary functionals: a path to solving the problem of turbulence https://www.youtube.com/watch?v=NrF7n3MyCy4&list=PLf_ipOSbWC86n18q4JMn_1J04S90FpdeE&index=9


Week 10 (4/4/2021- 4/10/2021)

1. Camillo De Lellis - Transport equations and ODEs with nonsmooth coefficients https://www.msri.org/workshops/945/schedules/29235

2. Weinan E - PDE problems that arise from machine learning https://www.youtube.com/watch?v=5rb8DJkxfg8

Week 11(4/11/2021- 4/17/2021)

1. Marian Gidea - Topological methods and Hamiltonian instability https://youtu.be/aMN7zJZavDo

2. David Gerard-Varet - On the effective viscosity of suspensions http://www.birs.ca/events/2020/5-day-workshops/20w5188/videos/watch/202011230644-Gerard-Varet.html


date speaker title host(s)

Abstracts

Title:

Abstract: