Difference between revisions of "PDE Geometric Analysis seminar"
(→[Spring 2015 | Tentative schedule for Spring 2015]) |
|||
Line 2: | Line 2: | ||
===[[Previous PDE/GA seminars]]=== | ===[[Previous PDE/GA seminars]]=== | ||
− | ===[Spring 2015 | Tentative schedule for Spring 2015]=== | + | ===[[Spring 2015 | Tentative schedule for Spring 2015]]=== |
= Seminar Schedule Fall 2014 = | = Seminar Schedule Fall 2014 = |
Revision as of 14:30, 15 September 2014
The seminar will be held in room 901 of Van Vleck Hall on Mondays from 3:30pm - 4:30pm, unless indicated otherwise.
Contents
Previous PDE/GA seminars
Tentative schedule for Spring 2015
Seminar Schedule Fall 2014
date | speaker | title | host(s) |
---|---|---|---|
September 15 | Greg Kuperberg (UC-Davis) | Cartan-Hadamard and the Little Prince | Viaclovsky |
September 22 (joint with Analysis Seminar) | Steve Hofmann (U. of Missouri) | Quantitative Rectifiability and Elliptic Equations | Seeger |
Oct 6th, | Xiangwen Zhang (Columbia University) |
TBA |
B.Wang |
October 13 | Xuwen Chen (Brown University)[1] |
TBA |
C.Kim |
October 20 | Kyudong Choi (UW-Madison) |
Finite time blow up for 1D models for the 3D Axisymmetric Euler Equations the 2D Boussinesq system |
C.Kim |
October 27 | Chanwoo Kim (UW-Madison) |
BV-Regularity of the Boltzmann Equation in Non-Convex Domains |
Local |
November 10 | Philip Isett (MIT) | TBA | C.Kim |
Fall Abstracts
Greg Kuperberg
Cartan-Hadamard and the Little Prince.
Kyudong Choi
Finite time blow up for 1D models for the 3D Axisymmetric Euler Equations the 2D Boussinesq system
In connection with the recent proposal for possible singularity formation at the boundary for solutions of the 3d axi-symmetric incompressible Euler's equations / the 2D Boussinesq system (Luo and Hou, 2013), we study models for the dynamics at the boundary and show that they exhibit a finite-time blow-up from smooth data. This is joint work with T. Hou, A. Kiselev, G. Luo, V. Sverak, and Y. Yao.
Steve Hofmann
Quantitative Rectifiability and Elliptic Equations
A classical theorem of F. and M. Riesz states that for a simply connected domain in the complex plane with a rectifiable boundary, harmonic measure and arc length measure on the boundary are mutually absolutely continuous. On the other hand, an example of C. Bishop and P. Jones shows that the latter conclusion may fail, in the absence of some sort of connectivity hypothesis. In this talk, we discuss recent developments in an ongoing program to find scale-invariant, higher dimensional versions of the F. and M. Riesz Theorem, as well as converses. In particular, we discuss substitute results that continue to hold in the absence of any connectivity hypothesis.