Difference between revisions of "Probability Seminar"

From Math
Jump to: navigation, search
(Thursday, 3/16/2017, TBA)
(Thursday, 2/23/2017, TBA)
Line 41: Line 41:
== Thursday, 2/23/2017, TBA ==
== Thursday, 2/23/2017, [http://www.math.wisc.edu/~jeanluc/ Jean-Luc Thiffeault], [http://www.math.wisc.edu/ UW-Madison] ==
== Thursday, 3/2/2017, [http://people.maths.ox.ac.uk/woolley/ Thomas Wooley], [https://www.maths.ox.ac.uk/ Oxford] ==
== Thursday, 3/2/2017, [http://people.maths.ox.ac.uk/woolley/ Thomas Wooley], [https://www.maths.ox.ac.uk/ Oxford] ==

Revision as of 11:55, 20 January 2017

Spring 2017

Thursdays in 901 Van Vleck Hall at 2:25 PM, unless otherwise noted. We usually end for questions at 3:15 PM.

If you would like to sign up for the email list to receive seminar announcements then please send an email to join-probsem@lists.wisc.edu.

Monday, January 9, 4pm, B233 Van Vleck Miklos Racz, Microsoft Research

Please note the unusual day and time

Title: Statistical inference in networks and genomics

Abstract: From networks to genomics, large amounts of data are increasingly available and play critical roles in helping us understand complex systems. Statistical inference is crucial in discovering the underlying structures present in these systems, whether this concerns the time evolution of a network, an underlying geometric structure, or reconstructing a DNA sequence from partial and noisy information. In this talk I will discuss several fundamental detection and estimation problems in these areas.

I will present an overview of recent developments in source detection and estimation in randomly growing graphs. For example, can one detect the influence of the initial seed graph? How good are root-finding algorithms? I will also discuss inference in random geometric graphs: can one detect and estimate an underlying high-dimensional geometric structure? Finally, I will discuss statistical error correction algorithms for DNA sequencing that are motivated by DNA storage, which aims to use synthetic DNA as a high-density, durable, and easy-to-manipulate storage medium of digital data.

Thursday, 1/26/2017, Erik Bates, Stanford

Thursday, 2/9/2017, TBA

Thursday, 2/23/2017, Jean-Luc Thiffeault, UW-Madison

Thursday, 3/2/2017, Thomas Wooley, Oxford

Thursday, 3/9/2017, TBA

Thursday, 3/16/2017, Wei-Kuo Chen, Minnesota

Thursday, 3/23/2017, Spring Break

Thursday, 3/30/2017, TBA

Thursday, 4/6/2017, TBA

Thursday, 4/13/2017, TBA

Thursday, 4/20/2017, TBA

Thursday, 4/27/2017, TBA

Thursday, 5/4/2017, TBA

Thursday, 5/11/2017, TBA

Past Seminars