Difference between revisions of "Spring 2018"

From UW-Math Wiki
Jump to: navigation, search
(PDE GA Seminar Schedule Spring 2018)
(Dan Knopf)
Line 44: Line 44:
 
===Dan Knopf===
 
===Dan Knopf===
  
Title: Non-Kahler Ricci flow singularities that converge to Kahler-Ricci solitons
+
Title: Non-Kähler Ricci flow singularities that converge to Kähler-Ricci solitons
  
Abstract: We describe Riemannian (non-Kahler) Ricci flow solutions that develop finite-time Type-I singularities whose parabolic dilations converge to a shrinking Kahler–Ricci soliton singularity model. More specifically, the singularity model for these solutions is the “blowdown soliton” discovered by Feldman, Ilmanen, and Knopf in 2003. Our results support the conjecture that the blowdown soliton is stable under Ricci flow. This work also provides the first set of rigorous examples of non-Kahler solutions of Ricci flow that become asymptotically Kahler, in suitable space-time neighborhoods of developing singularities, at rates that break scaling invariance. These results support the conjectured stability of the subspace of Kahler metrics under Ricci flow.
+
Abstract: We describe Riemannian (non-Kähler) Ricci flow solutions that develop finite-time Type-I singularities whose parabolic dilations converge to a shrinking Kähler–Ricci soliton singularity model. More specifically, the singularity model for these solutions is the “blowdown soliton” discovered by Feldman, Ilmanen, and Knopf in 2003. Our results support the conjecture that the blowdown soliton is stable under Ricci flow. This work also provides the first set of rigorous examples of non-Kähler solutions of Ricci flow that become asymptotically Kähler, in suitable space-time neighborhoods of developing singularities, at rates that break scaling invariance. These results support the conjectured stability of the subspace of Kähler metrics under Ricci flow.

Revision as of 16:00, 21 November 2017

PDE GA Seminar Schedule Spring 2018

date speaker title host(s)
January 29 Dan Knopf (UT Austin) Non-Kähler Ricci flow singularities that converge to Kähler-Ricci solitons Angenent
February 5 Andreas Seeger (UW) TBD Kim & Tran
February 19 Maja Taskovic (UPenn) TBD Kim
March 5 Khai Nguyen (NCSU) TBD Tran
April 21-22 (Saturday-Sunday) Midwest PDE seminar Angenent, Feldman, Kim, Tran.
April 25 (Wednesday) Hitoshi Ishii (Wasow lecture) TBD Tran.

Abstracts

Dan Knopf

Title: Non-Kähler Ricci flow singularities that converge to Kähler-Ricci solitons

Abstract: We describe Riemannian (non-Kähler) Ricci flow solutions that develop finite-time Type-I singularities whose parabolic dilations converge to a shrinking Kähler–Ricci soliton singularity model. More specifically, the singularity model for these solutions is the “blowdown soliton” discovered by Feldman, Ilmanen, and Knopf in 2003. Our results support the conjecture that the blowdown soliton is stable under Ricci flow. This work also provides the first set of rigorous examples of non-Kähler solutions of Ricci flow that become asymptotically Kähler, in suitable space-time neighborhoods of developing singularities, at rates that break scaling invariance. These results support the conjectured stability of the subspace of Kähler metrics under Ricci flow.