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Abstract. In general, if M is a moduli space of stable sheaves on X, there is a
unique element α in the Brauer group of M such that a π∗Mα

−1-twisted universal
sheaf exists on X ×M . In this paper we study the situation when X and M are
K3 surfaces, and we identify α in terms of Mukai’s map between the cohomology
of X and of M (defined by means of a quasi-universal sheaf). We prove that the
derived category of sheaves on X and the derived category of α-twisted sheaves on
M are equivalent.

This suggests a conjecture which describes, in terms of Hodge isometries of lat-
tices, when derived categories of twisted sheaves on two K3 surfaces are equivalent.
If proven true, this conjecture would generalize a theorem of Orlov and a recent
result of Donagi-Pantev.

1. Introduction

1.1. Ever since Mukai’s seminal paper [13], moduli spaces of sheaves on K3 surfaces
have attracted constant interest, largely because of the wealth of geometric properties
they possess. Such moduli spaces are always even-dimensional, so the first case with
non-trivial geometry is when M is a 2-dimensional moduli space of sheaves on a K3
surface X. In this paper we’ll focus on this situation, whose study was initiated by
Mukai, and later continued in a slightly different direction by Orlov [15].

The guiding principle when studying such moduli spaces can be loosely stated by
saying that the geometry of M is inherited from X. In our case, for example, M
is again a K3; however, M could be quite different from X, and this is why this
situation is so interesting. The question that arises is what relations can be found
between geometric objects on X and on M , and most of the time we will be interested
in relating cohomology groups (integral or rational, plus Hodge structure) of X and
of M , as well as certain derived categories of sheaves on X and M .

1.2. Mukai’s original paper was concerned with studying the cohomology of M , and
we’ll start by presenting a sketch of his ideas. This can be done most easily in the
case when M is fine, in other words when a universal sheaf exists on X ×M .

The Mukai lattice of X is defined as the group

H̃(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z),

endowed with the Mukai product (3.3), which is a slight modification of the usual
product in cohomology. Using the Chern classes of a universal sheaf one defines (3.7)
a class in H∗(X ×M,Z), which induces a correspondence

ϕ : H̃(X,Z)→ H̃(M,Z).
1
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This correspondence is in fact an isomorphism, which respects the Mukai product and
the natural Hodge structure on the Mukai lattice induced from the Hodge structure
of X (3.4). Thus the integral Mukai lattices of X and of M are Hodge isometric, and
from this Mukai is able to give a complete description of M , by means of the Torelli
theorem.

1.3. Although it can be presented entirely in terms of cohomology, the above con-
struction relies heavily on the fact that there is an underlying equivalence of derived
categories between X and M . More precisely, the integral functor defined using a uni-
versal sheaf is a Fourier-Mukai transform, i.e., an equivalence Db

coh(M) ∼= Db
coh(X).

It is an interesting question to ask for what other K3’s M do we have such equiv-
alences, and Orlov’s work has provided an answer to this question. His main result
can be stated as follows:

Theorem (Orlov [15]). Let X and M be K3 surfaces. Then the following are
equivalent:

1. M is a fine, compact, 2-dimensional moduli space of stable sheaves on X;
2. there is a Hodge isometry TX ∼= TM between the transcendental lattices of X and

of M ;
3. the derived categories Db

coh(X) and Db
coh(M) are equivalent.

The implication (1) ⇒ (2) is an immediate consequence of Mukai’s results: since
the map ϕ is defined by means of an algebraic class, it takes algebraic classes on X
to algebraic classes on M . Being a Hodge isometry, it follows that the transcendental
lattice of X will be mapped Hodge isometrically by ϕ onto the transcendental lattice
of M .

1.4. Orlov’s theorem should be viewed as a derived version of the Torelli theorem:
given a Mukai lattice with a Hodge structure, singling out the H2 lattice will de-
termine the K3 surface (by Torelli), and therefore the category of coherent sheaves;
singling out a smaller lattice as the transcendental lattice of a K3 will no longer
determine the surface itself, but it will determine the derived category of sheaves on
the K3.

1.5. The issue with the above results is the fact that the condition that M be fine
is quite restrictive (at the moment, only one explicit class of examples of this type
is known). There are many situations in which relaxing this condition would be
relevant – for example, the first example studied by Mukai ([14, 2.2]) is not fine. (In
this case one calculates the moduli space of spinor bundles on a (2, 2, 2) complete
intersection in P5 and finds it to be a double cover of P2 branched over a sextic.) On
the level of cohomology, Mukai is able to avoid the condition of fineness, defining the
map ϕ by means of a quasi-universal sheaf (3.6), as a replacement for the universal
sheaf in the original construction. (One needs to move to rational cohomology, instead
of the integral one used before.) While a universal sheaf may not exist in general, a
quasi-universal sheaf always exists.
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1.6. Since Mukai’s main interest was to obtain a correspondence between the coho-
mology of M and the cohomology of X, constructing ϕ by means of a quasi-universal
sheaf is enough. What is lost in this approach is the equivalence of derived categories
– one can not hope to get a Fourier-Mukai transform by using a quasi-universal sheaf.
In this paper we propose a different approach, which makes apparent an underlying
equivalence of derived categories even in the non-fine case. Using this idea, we are
able to generalize to the case of non-fine moduli problems the implications (1)⇒ (2)
and (1) ⇒ (3) of Orlov’s result, and to suggest a conjectural generalization of the
equivalence (2) ⇔ (3). The key idea is that instead of replacing the universal sheaf
by a quasi-universal one, we can replace it by a twisted universal sheaf. This yields
an equivalence

Db
coh(M,α) ∼= Db

coh(X),

where α is the twisting (an element of the Brauer group of M , determined by the
original moduli problem data), and Db

coh(M,α) is the derived category of α-twisted
sheaves on M . (A brief review of the Brauer group and twisted sheaves is included
in Section 2. For further details, the reader is referred to [3] or [4].)

1.7. We can rephrase this idea in the language of modules over an Azumaya algebra
(which we’ll avoid in the sequel, preferring the more intuitive language of twisted
sheaves). In [13], Mukai constructs a module over an Azumaya algebra A over OX

(i.e., a twisted sheaf), but then he forgets the extra structure as an A -module, and
only uses the OX-module structure. We make use of the extra structure available to
get the equivalence of derived categories.

1.8. Using twisted sheaves (or modules over an Azumaya algebra) is particularly
relevant in view of current developments of mirror symmetry. Recall that one of
the fundamental ingredients of Kontsevich’s Homological Mirror Symmetry [10] is
the derived category of sheaves on a Calabi-Yau manifold. Recently there have been
suggestions ([3, 6.8], [9]) that in order to get a mathematical description of the
full physical picture, one needs to study not only derived categories of sheaves, but
also derived categories of twisted sheaves. In the physical context, the equivalence
Db

coh(M,α) ∼= Db
coh(X) suggests that turning on discrete torsion α on M yields the

same physical theory as having no discrete torsion on X.

1.9. Reverting back to questions about moduli spaces of sheaves, it is a general
fact [3, 3.3.2 and 3.3.4] that although a universal sheaf may not exist, there is always
a twisting α ∈ Br(M) such that a π∗Mα

−1-twisted universal sheaf exists on X ×M ,
when M is a moduli space of stable sheaves on X. (Here πM is the projection from
X ×M on the second factor.) An α with this property is unique, and it is called the
obstruction to the existence of a universal sheaf on X ×M (because an untwisted
universal sheaf exists only if α = 0). Once a twisted universal sheaf is found, the
proof that it induces an equivalence of derived categories is almost the same as in
the untwisted case. What this paper actually brings new is the calculation of the
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obstruction α in terms of the map ϕ introduced earlier by Mukai. (This map has a
natural interpretation in the context of twisted sheaves, see Sections 2 and 3.)

1.10. Before we can state our results, we need to list a few facts about the situation
we study – X is a K3 surface, v ∈ H̃(X,Z) is an isotropic Mukai vector, and M is
the moduli space of stable sheaves on X whose Mukai vector is v (3.5). The vector
v and the polarization of X are such that M is non-empty and compact, so it is a
K3 surface (Theorem 3.1). We do not assume that M is fine, so Mukai’s map we
consider is defined on the rational cohomology, ϕ : H̃(X,Q)→ H̃(M,Q).

1. The Brauer group Br(M) of any smooth surface M is isomorphic to the coho-
mological Brauer group Br′(M), defined as

Br′(M) = H2
ét(M,O∗M).

For a K3 surface there is a natural identification (2.4)

Br′(M) ∼= T ∨M ⊗Q/Z ∼= HomZ(TM ,Q/Z).

2. The map ϕ restricts to an injection TX ↪→ TM , which fits into an exact sequence

0→ TX
ϕ−→ TM → Z/nZ→ 0,

where n is an integer determined by the initial moduli problem ([13, 6.4], Theo-
rem 3.4). Although ϕ depends on the choice of quasi-universal sheaf, its restric-
tion to TX is independent of this choice.

3. Applying HomZ( · ,Q/Z) to the above exact sequence yields

0→ Z/nZ→ HomZ(TM ,Q/Z)
ϕ∨−→ HomZ(TX ,Q/Z)→ 0,

or, in view of (1),

0→ Z/nZ→ Br(M)
ϕ∨−→ Br(X)→ 0.

Elements of Kerϕ∨ are those α ∈ HomZ(TM ,Q/Z) that satisfy ϕ(TX) ⊆ Kerα.

1.11. As a matter of notation, for w ∈ H̃(M,Q) the functional

(w. · )|TM mod Z ∈ HomZ(TM ,Q/Z) = Br(M)

will be denoted by [w]. Note that since it is restricted to TM , [w] only depends on
the H2(M,Q)-component of w. The condition in (3) above can be written as

[w] ∈ Kerϕ∨ for w ∈ H̃(M,Q)⇔ (w.ϕ(t)) ∈ Z for all t ∈ TX .

1.12. Now we can state our main results:

Theorem 1.1. Let X be a polarized K3 surface, let v be a primitive isotropic Mukai
vector, and let M be the moduli space of stable sheaves whose Mukai vector is v.
Assume that M is compact and non-empty, and let ϕ : TX → TM be the restriction
of Mukai’s map (defined by means of a quasi-universal or twisted universal sheaf).

If u ∈ H̃(X,Z) is such that (u.v) = 1 then [ϕ(u)] ∈ Br(M) is the obstruction to
the existence of a universal sheaf on X ×M .
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Theorem 1.2. Under the assumptions of the previous theorem, let ϕ∨ be the dual of
ϕ, tensored with Q/Z. Then we have:

1. the kernel of ϕ∨ : Br(M)→ Br(X) is a cyclic group of order n, generated by the
obstruction α to the existence of a universal sheaf on X ×M ;

2. the map ϕ restricts to a Hodge isometry TX ∼= Kerα;
3. any π∗Mα

−1-twisted universal sheaf on X ×M induces an equivalence of derived
categories

Db
coh(M,α) ∼= Db

coh(X).

1.13. Theorem 1.2 provides the desired generalization of the implications (1)⇒ (2)
and (1) ⇒ (3) in Orlov’s theorem. For the equivalence (2) ⇔ (3) we can only
conjecture what the result should be:

Conjecture 1.3. Let X and Y be K3 surfaces, and let α and β be elements in
Br(X) and Br(Y ), respectively. Using (1.10.1), α can be identified with a group
homomorphism TX → Q/Z, and similarly for β. Then the following are equivalent:

1. the derived categories Db
coh(X,α) and Db

coh(Y, β) are equivalent;
2. the lattices Kerα ⊆ TX and Ker β ⊆ TY are Hodge isometric, where Kerα

and Ker β inherit the Hodge structure from the overlying lattices TX and TY ,
respectively.

1.14. This generalizes the original Orlov result, for α = β = 0. If Y is a moduli
space of stable sheaves on X, β ∈ Br(Y ) is the obstruction to the existence of a
universal sheaf on X×Y , and α = 0, the conjecture is a restatement of Theorem 1.2:
ϕ induces a Hodge isometry between TX = Kerα and Ker β.

1.15. Conjecture 1.3 also generalizes the following result of Donagi-Pantev, which
is relevant in the study of moduli spaces of twisted Higgs bundles:

Theorem (Donagi-Pantev [6]). Let J/S be an elliptic K3 surface with a section,
and let α, β ∈ Br(J). Identifying Br(J) with XS(J), the Ogg-Shafarevich group of J ,
yields elliptic K3 surfaces Jα and Jβ (in general without a section) which correspond
to α and β, respectively. Viewing J as a moduli space of stable sheaves on Jα and Jβ
gives surjections Br(J) → Br(Jα) and Br(J) → Br(Jβ); let β̄ be the image of β in
Br(Jα) and ᾱ the image of α in Br(Jβ). Then there exists an equivalence of derived
categories of twisted sheaves Db

coh(Jα, β̄) ∼= Db
coh(Jβ, ᾱ).

1.16. A few words of explanation are in order here. Ogg-Shafarevich theory as-
sociates to an elliptic fibration X/S without a section an element αX of the Tate-
Shafarevich group XS(J) of the relative Jacobian J/S of X/S, and this association
gives rise to a bijection between the set of all elliptic fibrations whose relative Jacobian
is J/S and the group XS(J). When J is a surface, XS(J) is naturally isomorphic
to Br(J).

Given an elliptic fibration X/S without a section, one obtains J/S as the relative
moduli space of rank 1, degree 0 semistable sheaves on the fibers of X/S, and thus one
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gets an obstruction to the existence of a universal sheaf onX×J which is an element α
in Br(J). In [5] it was shown that α coincides with the element αX ∈XS(J) = Br(J)
that classifies X/S.

Now we can see that Conjecture 1.3 would imply the Donagi-Pantev result: we
have TJα = Kerα and, viewing elements of the Brauer group as group homomor-
phisms from the transcendental lattice to Q/Z, β̄ is just the restriction of β to Kerα.
Therefore

KerTJα β̄ = KerTJ α ∩KerTJ β,

and similarly,

KerTJβ ᾱ = KerTJ α ∩KerTJ β,

both these equalities respecting the Hodge structures (being induced on all the lattices
from the Hodge structure of TJ). By Conjecture 1.3,

Db
coh(Jα, β̄) ∼= Db

coh(Jβ, ᾱ),

which is the Donagi-Pantev result.
In full honesty, the actual statement proven in [6] is much stronger: one of α or β

can be non-algebraic, i.e. an element of H2
an(J,O∗J) which is not necessarily torsion.

In this situation the corresponding Jα or Jβ is non-algebraic, a situation which we
cannot handle. Therefore Conjecture 1.3 should be thought of as a generalization of
the result in [6] to the case of algebraic K3 surfaces.

1.17. In the spirit of our earlier comment (1.4), Conjecture 1.3 describes the rela-
tionship between sublattices of the Mukai lattice and twisted derived categories. The
following is a dictionary of the correspondence between sublattices of a Mukai lattice
endowed with a Hodge structure and categories on a K3 X (α ∈ Br(X)):

Lattice Category

H2(X,Z) Coh(X)

TX Db
coh(X)

Ker(α) Db
coh(X,α)

1.18. The paper is organized as follows: in Section 2 we present general results
about the Brauer group on a K3, twisted sheaves, and derived categories. We follow
up in the next section with facts about K3 surfaces, along with Mukai’s results on
moduli spaces of stable sheaves on them. Section 4 deals with deformations of vector
bundles as twisted sheaves, and in Section 5 we prove the main theorem and discuss
some possible ways of approaching the proof of Conjecture 1.3.

Conventions. All our spaces are complex manifolds over C, and the topology used
is either the analytic or étale one. When referring to derived categories, we mean the
bounded derived category of complexes with coherent cohomology.

Acknowledgments. The results in this paper are part of my Ph.D. work, com-
pleted at Cornell University. I would like to thank my supervisor, Mark Gross, for
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taking the time to teach me algebraic geometry, and for providing plenty of help and
encouragement. It is a pleasure also to thank Tony Pantev, discussions with whom
have been extremely useful in clarifying some of the main ideas in this work.

2. Twisted sheaves and derived categories

In this section we list some results about the Brauer group of a scheme. Our
reference for this topic is [11, Chapter IV]. We also include a sketch of the definition
and main properties of twisted sheaves. The reader unfamiliar with the subject
is referred to [3, Chapters 1 and 2] or [4]. The topology used, unless otherwise
mentioned, is the étale or analytic topology.

2.1. The cohomological Brauer group of a scheme X is the group

Br′(X) = H2
ét(X,O

∗
X).

It naturally occurs in many aspects of algebraic geometry, as a higher generalization
of the Picard group. To have an example in mind consider the question of classifying
projective bundles over a space X, up to those bundles that are projectivizations of
vector bundles. In the étale topology the sequence of sheaves of groups

0→ O∗X → GL(n)→ PGL(n)→ 0,

is exact, hence it yields the exact sequence

H1(X,GL(n))→ H1(X,PGL(n))
δn−→ H2(X,O∗X) = Br′(X).

We read this as saying that the obstruction to lifting a projective bundle (given by
an element p of H1(X,PGL(n))) to a vector bundle (element of H1(X,GL(n))) is the
image of p in the cohomological Brauer group, under the coboundary map δn.

2.2. In fact, we are more interested in a subgroup of Br′(X), namely the image of
the coboundary maps δn for all n. This subgroup is the Brauer group of X, denoted
by Br(X). We list below some of its main properties.

The Brauer group is torsion; this follows from the short exact sequence

0→ Z/nZ→ SL(n)→ PGL(n)→ 0,

by taking the cohomology long exact sequence, and deducing that the image of
PGL(n) in Br′(X) is contained in the image of the map H2(X,Z/nZ)→ H2(X,O∗X),
and hence is n-torsion.

If X is smooth, Br′(X) is torsion as well ([11, II, 1.4]). If X is a smooth curve,
Br(X) = Br′(X) = 0. If X is a smooth surface, Br(X) = Br′(X) ([11, IV, 2.16]).

2.3. Consider the Kummer sequence

0→ Z/nZ→ O∗X
· n−→ O∗X → 0,

which is exact in both the étale and analytic topologies. Taking the associated long
exact sequence yields

Pic(X)
·n
- Pic(X)

c1modn
- H2(X,Z/nZ) - Br′(X)

·n
- Br′(X),
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which implies that the n-torsion part of Br′(X), Br′(X)n, fits in the exact sequence

0→ Pic(X)⊗ Z/nZ→ H2(X,Z/nZ)→ Br′(X)n → 0.

Taking the direct limit over all n, we conclude that on any scheme or analytic space
X we have the exact sequence

0→ Pic(X)⊗Q/Z→ H2(X,Q/Z)→ Br′(X)tors → 0.

If X is a smooth scheme over C, and Xan is the associated analytic space, then we
have

Br′(X) = Br′an(X)tors,

because Pic(X) and H2(X,Q/Z) are the same in the étale and analytic topologies.

2.4. Specializing to the case of a K3 surface X, we have H2(X,Q/Z) ∼= H2(X,Z)⊗
Q/Z (because H3(X,Z) = 0), and hence

Br(X) ∼= (H2(X,Z)/NS(X))⊗Q/Z.

There is a natural isomorphism

H2(X,Z)/NS(X) ∼= T ∨X ,

which maps v ∈ H2(X,Z)/NS(X) to the functional (v, · ) restricted to TX . (To prove
that this map is an isomorphism one needs to use the fact that TX is a primitive
sublattice of the unimodular lattice H2(X,Z).) We conclude that on any K3 surface
X there is a natural isomorphism

Br(X) ∼= T ∨X ⊗Q/Z = HomZ(TX ,Q/Z).

2.5. We now shift our attention to the topic of twisted sheaves. Let X be a scheme or
analytic space, and let α ∈ Br′(X) = H2(X,O∗X) be represented by a Čech 2-cocycle,
given along a fixed open cover {Ui}i∈I by sections

αijk ∈ Γ(Ui ∩ Uj ∩ Uk,O∗X).

An α-twisted sheaf F (along the fixed cover) consists of a pair

({Fi}i∈I , {ϕij}i,j∈I),

where Fi is a sheaf on Ui for all i ∈ I and

ϕij : Fj|Ui∩Uj → Fi|Ui∩Uj
is an isomorphism for all i, j ∈ I, subject to the conditions:

1. ϕii = id;
2. ϕij = ϕ−1

ji ;
3. ϕij ◦ ϕjk ◦ ϕki = αijk · id.
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The class of α-twisted sheaves together with the obvious notion of homomorphism
is an abelian category, denoted by Mod(X,α), the category of α-twisted sheaves. If
one requires all the sheaves Fi to be coherent, one obtains the category of coherent
α-twisted sheaves, denoted by Coh(X,α).

This notation is consistent, since one can prove that these categories are inde-
pendent of the choice of the covering {Ui} ([3, 1.2.3]) or of the particular cocycle
{αijk} ([3, 1.2.8]) (all the resulting categories are equivalent to one another).

2.6. For F an α-twisted sheaf, and G an α′-twisted sheaf, one can define F ⊗ G
(which is an αα′-twisted sheaf), as well as Hom(F ,G ) (which is α−1α′-twisted), by
gluing together the corresponding sheaves. If f : Y → X is any morphism, f ∗F is
an f ∗α-twisted sheaf on Y . Finally, if F ∈Mod(Y, f ∗α), one can define f∗F , which
is α-twisted on X. It is important to note here that one can not define arbitrary
push-forwards of twisted sheaves.

These operations satisfy all the usual relations (adjointness of f∗ and f ∗, relations
between Hom and ⊗, etc.)

The category Mod(X,α) has enough injectives, and enough OX-flats ([3, 2.1.1,
2.1.2]).

2.7. We are mainly interested in Db
coh(Mod(X,α)), the derived category of com-

plexes of α-twisted sheaves onX with coherent cohomology. For brevity, we’ll denoted
it by Db

coh(X,α). Since the category Coh(X,α) does not have locally free sheaves of
finite rank if α 6∈ Br(X), from here on we’ll only consider the case α ∈ Br(X).

The technical details of the inner workings of Db
coh(X,α) can be found in [4] or [3,

Chapter 2]. The important facts are that one can define derived functors for all the
functors considered in (2.6), and they satisfy the same relations as the untwisted ones
(see for example [7, II.5]). One can prove duality for a smooth morphism f : X → Y ,
which provides a right adjoint

f !( · ) = Lf ∗( · )⊗X ωX/Y [dimX Y ]

to Rf∗( · ), as functors between Db
coh(Y, α) and Db

coh(X, f∗α).

2.8. If X and Y are smooth schemes or analytic spaces, α ∈ Br(Y ), and E · ∈
Db

coh(X × Y, π∗Y α−1) (where πX and πY are the projections from X × Y to X and Y ,
respectively), we define the integral functor

ΦE ·

Y→X : Db
coh(Y, α)→ Db

coh(X),

given by

ΦE ·

Y→X( · ) = πX,∗(π
∗
Y ( · )

L
⊗ E ·).

The following criterion for determining when ΦE ·
Y→X is an equivalence (whose proof

can be found in [4] or [3, 3.2.1]) is entirely similar to the corresponding ones for
untwisted derived categories due to Mukai [12], Bondal-Orlov [1] and Bridgeland [2].
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Theorem 2.1. The functor F = ΦE ·
Y→X is fully faithful if and only if for each point

y ∈ Y ,

HomDb
coh(X)(FOy, FOy) = C,

and for each pair of points y1, y2 ∈ Y , and each integer i,

ExtiDb
coh(X)(FOy1 , FOy2) = 0,

unless y1 = y2 and 0 ≤ i ≤ dimY . (Here Oy is the skyscraper sheaf C on y, which is
naturally an α-sheaf.)

Assuming the above conditions satisfied, then F is an equivalence of categories if
and only if for every point y ∈ Y ,

FOy

L
⊗ ωX ∼= FOy.

2.9. Since we want to relate derived categories to cohomology, we’d like to define the
notion of Chern character for twisted sheaves on a space X. We do this as follows:
we fix, once and for all, a locally free α−1-twisted sheaf E , and define the Chern
character of an α-twisted sheaf F to be

chE (F ) =
1

rk(E )
ch(F ⊗ E ),

where the right hand side of the equality is computed as the Chern character of the
usual (untwisted) sheaf F ⊗E . Note that if we define Chern classes in this way, they
will live in the rational cohomology of X, not in the integral cohomology as the usual
ones. The factor 1/ rk(E ) is introduced so that the Chern character of a point is the
expected one.

This definition is dependent on the choice of E , and therefore it is important to
find out how our Chern character changes when using different E ’s. Given any two
locally free α-twisted sheaves E and E ′, there exist locally free, untwisted sheaves
G , G ′ such that E ⊗ G ∼= E ′ ⊗ G ′ (for example, one can take G = E ∨ ⊗ E ′ and
G ′ = E ∨⊗E ), so it is enough to assume that E ′ = E ⊗G ′ for a locally free, untwisted
G ′. Then an easy calculation shows that

chE ′(F ) = chE (F ).
ch(G ′)

rk(G ′)

(see also [13, Proof of Theorem 1.4 and 1.5, p. 385]). We’ll see (3.9) that this implies
that when we define maps on transcendental parts of the cohomology of X using
the above definition of the Chern character for twisted sheaves, the choice of E is
irrelevant.

3. Mukai’s results

In order to fix the notation, we present in this section a few results about K3
surfaces and moduli spaces of stable sheaves on them. Most of these results are either
classical, or are due to Mukai [13], although we present them using the language of
twisted sheaves.



NON-FINE MODULI SPACES OF SHEAVES ON K3 SURFACES 11

3.1. Mukai’s main idea in [13] is to use a universal sheaf (possibly twisted, or a
quasi-universal one) to define a map between sheaves on X and sheaves on M (more
precisely, between the derived categories of X and M). Taking a modified version
of the Chern character yields a map between the algebraic parts of the cohomology
of X and of M , which can be extended to the full cohomology. Since the map on
derived categories was an equivalence, the map on cohomology is an isomorphism,
even after being extended to the total cohomology groups of X and M . Furthermore,
since an equivalence of categories preserves the relative Euler characteristic of two
complexes of sheaves (the alternating sum of the dimensions of the Ext groups), this
gives a bilinear form that is preserved by the map on cohomology. We expand these
ideas in the following few paragraphs.

3.2. Let X be a complex K3 surface, in other words, a compact complex manifold of
complex dimension 2, simply connected and with KX = 0. We have H2(X,Z) = Z22,
and considering this group with the intersection pairing we obtain a lattice which is
isomorphic to

LK3 = E⊕2
8 ⊕ U(1)⊕3.

Inside the H2(X,Z) lattice there are two natural sublattices, the Néron-Severi sub-
lattice of X, NS(X), (consisting of first Chern classes of holomorphic vector bundles),
and its orthogonal complement, the transcendental lattice TX = NS(X)⊥. Both these
lattices are primitive sublattices of H2(X,Z), but may be non-unimodular.

The complex structure of X is reflected in the Hodge decomposition of H2(X,C),

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X),

and these groups are 1-, 20-, and 1-dimensional, respectively. This decomposition
induces in turn a Hodge structure on TX (since H2,0(X) is orthogonal to any algebraic
vector).

Two lattices L,L′, endowed with Hodge structures, will be said to be Hodge iso-
metric if there is an isometry between them, preserving the Hodge structure. As an
application of this concept, the Torelli theorem can be stated by saying that two K3
surfaces X and Y are isomorphic if and only if H2(X,Z) and H2(Y,Z) are Hodge
isometric.

3.3. The Mukai lattice of X is defined to be

H̃(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z),

endowed with the product

((r, l, s).(r′, l′, s′)) =

∫
X

l.l′ − r.s′ − r′.s,

where the dot product on the right hand side is the cup product in H∗(X,Z).
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3.4. The Hodge decomposition on H̃(X,Z) is given by

H̃2,0(X) = H2,0(X)

H̃1,1(X) = H0(X,C)⊕H1,1(X)⊕H4(X,C)

H̃0,2(X) = H0,2(X)

Elements in H̃1,1(X) will be called algebraic.
We’ll sometimes also consider H̃(X,Q) = H̃(X,Z)⊗Q, with intersection product

and Hodge decomposition defined in a similar fashion.

3.5. For a coherent sheaf F (or, more generally, an element of Db
coh(X)), define

v(F ) ∈ H̃(X,Z) by

v(F ) = ch(F ).
√

td(X) = (rk(F ), c1(F ), rk(F )ω +
1

2
c1(F )2 − c2(F )),

(where ω ∈ H4(X,Z) is the fundamental class of X). This element is called the
Mukai vector of E . From Grothendieck-Riemann-Roch it follows that

χ(E ,F ) =
∑

(−1)i dim ExtiX(E ,F ) = −(v(E ).v(F )),

for any E ,F ∈ Db
coh(X).

If F is an α-twisted sheaf on M , we define its Mukai vector using the same formula
as in the untwisted case, but using the definition of the Chern character in (2.9). Since
this definition depends upon the choice of a locally free, α−1-twisted sheaf E on M ,
we’ll denote this type of Mukai vector by vE (F ).

Theorem 3.1 ([13, Theorem 1.4]). Let X be a polarized K3 surface, and let v ∈
H̃(X,Z) be a primitive (indivisible) vector that lies in the algebraic part of H̃(X).
Assume that v is isotropic (i.e. (v.v) = 0), and that the moduli space of stable sheaves
of Mukai vector v, M(v), is non-empty and compact. Then M(v) is a K3 surface.

3.6. Under the assumptions of the previous theorem, let M = M(v). There exists a
unique element α ∈ Br(M), such that a π∗Mα

−1-twisted universal sheaf P exists on
X×M ([3, 3.3.2 and 3.3.4]). The twisting α is called the obstruction to the existence
of a universal sheaf on X ×M . Let E be a fixed α-twisted locally free sheaf of finite
rank on M , (which exists by [3, 1.3.5]), and let P̃ = P ⊗ π∗ME . It is an untwisted
sheaf on X ×M , and any sheaf obtained in this way will be called a quasi-universal
sheaf. It has the property that

P̃|X×[F ]
∼= F⊕n

for some n that only depends on P̃. (Here, F is a stable sheaf on X with Mukai

vector v, and [F ] is the point of M that corresponds to it.) In fact, P̃ satisfies a
certain universal property which is very similar to that enjoyed by a universal sheaf;
see [13, Appendix 2]. Mukai uses a quasi-universal sheaf to define the correspondence
between the cohomology of X and M , however, since it seems more natural, we’ll
avoid using this quasi-universal sheaf and use the twisted universal sheaf P instead.
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3.7. The dual Q of P is defined by

Q = RHomX×M(P,OX×M),

as an element of Db
coh(X ×M,π∗Mα). Using it, we can define the correspondence

ϕE = ϕQ,E
X→M : H̃(X,Q)→ H̃(M,Q),

given by the formula

ϕE ( · ) = πM,∗(π
∗
X( · ).vπ∗ME (Q)),

where

vπ∗ME (Q) = chπ∗ME (Q).
√

td(X ×M),

and chπ∗ME (Q) is the Chern character of the twisted sheaf Q, defined in (2.9), com-

puted using the α−1-twisted locally free sheaf E on M .
The reason one uses Q is the fact that if ΦP

M→X is the integral transform associated
to P (which is an equivalence), then ΦQ

X→M is its inverse. Also, from Grothendieck-
Riemann-Roch it follows that

vE (ΦQ
X→M(F )) = ϕQ,E

X→M(v(F )).

3.8. This is the core of the following result:

Theorem 3.2 ([13, Theorem 1.5]). Under the hypotheses of Theorem 3.1, the map
ϕ is a Hodge isometry between H̃(X,Q) and H̃(M,Q). It maps v ∈ H̃(X,Q) to the
vector (0, 0, ω) ∈ H̃(M,Q), and it therefore induces a Hodge isometry

v⊥/v ∼= H2(M,Q),

the former computed inside H̃(X,Q). Restricted to v⊥, this isometry is independent
of the choice of E , and is integral, i.e., it takes integral vectors to integral vectors. It
therefore induces a Hodge isometry

H2(M,Z) ∼= v⊥/v,

the latter now computed in H̃(X,Z).

Remark 3.3. Using the Torelli theorem, this gives a complete description of the mod-
uli space M .

Theorem 3.4. Let n be the greatest common divisor of the numbers (u.v), where u
runs over all H̃1,1(X)∩ H̃(X,Z) (v is the Mukai vector referred to in Theorem 3.1).
Then the following statements hold:

1. There exist α-twisted locally free sheaves on M of ranks r1, r2, . . . , rk, with
gcd(r1, r2, . . . , rk) = n, and therefore α is n-torsion.

2. Any map ϕE = ϕQ,E
X→M maps TX into TM (viewing TX as a sublattice of H̃(X,Z)

via the inclusion λ 7→ (0, λ, 0)), and the restriction ϕE |TX is independent of the
choice of E .
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3. There exists λ ∈ TX such that v − λ is divisible by n (in H̃(X,Z)); for such a
λ we have ϕ(λ) divisible by n in TM .

4. ϕ|TX is injective, and its cokernel is a finite, cyclic group of order n, generated
by ϕ(λ)/n for any λ satisfying the condition in 3.

Proof. For the first statement, see [13, Remark A.7]. The other statements are [13,
6.4].

3.9. The calculation in (2.9) shows that for any u ∈ H̃(X,Q), changing E will only
change ϕE (u) by an algebraic amount, and therefore [ϕE (u)] (as defined in (1.11)) is
independent of the choice of E .

4. Twisted deformations of vector bundles

In this section we study what happens when we try to deform a vector bundle
from the central fiber of a family, if the first Chern class of the vector bundle fails to
deform to neighboring fibers. We show that if such a deformation exists as a twisted
sheaf, then there is a simple formula for what the twisting needs to be. This will
be used in the proof of Theorem 1.1 to identify the obstruction to the existence of a
universal sheaf by a deformation argument, but the results in this section may be of
independent interest.

4.1. Let’s first set up the context. We start with f : X → S, a proper, smooth
morphism of analytic spaces, and with 0 a closed point of S. The Brauer group we
consider is Br′an(X)tors, which is the natural generalization to the analytic setting of
the étale Brauer group used in the algebraic case. Throughout this section we’ll be
loose in our notation and refer to Br′an(X)tors as the Brauer group of X, or Br′(X).

Let X0 be the fiber of f over 0. We consider an element α ∈ Br′(X), such that
α|X0 is trivial as an element of Br′(X0), and we assume we are given a locally free
α-twisted sheaf E on X. Since α|X0 = 0, we can modify the transition functions of
E |X0 by a coboundary in such a way that we get an untwisted locally free sheaf E0 on
X0. We want to understand what happens to c1(E0) in the neighboring fibers. The
actual value of c1(E0) depends on the choice of coboundary used to trivialize α|X0

(E0 could change by the twist by a line bundle), but the image of c1(E0)/ rk(E0) in
H2(X0,Z)⊗Q/Z is independent of these choices.

Since the morphism f is smooth, by possibly restricting first the base S to a smaller,
simply connected one, the restriction homomorphisms provide identifications

H i(X,Z) ∼= H i(Xt,Z)

for all i ≥ 0 and all t ∈ S.
For any space X we have

H2(X,Q/Z) = H2(X,Z)⊗Q/Z⊕H3(X,Z)tors,

from the universal coefficient theorem. We saw (2.4) that Br′(X) is the quotient
of H2(X,Q/Z) by the image of Pic(X) ⊗Q/Z. But classes in H3(X,Z)tors cannot
become zero in this quotient, so (in view of the fact that cohomology groups of the
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fibers are locally constant over the base) the only way an element of Br′(X) can
become zero in a central fiber X0 without being zero in the neighboring fibers is if
it belongs to H2(X,Z) ⊗ Q/Z, and in the central fiber it is also in the image of
Pic(X0)⊗Q/Z.

4.2. For an element w ∈ H2(X,Q), we’ll denote by [w] the image of w in

(H2(X,Z)/NS(X))⊗Q/Z ⊆ Br′(X).

Because of the considerations in (4.1), we can write α as [c/n], for some class c ∈
H2(X,Z) and n ∈ Z. The fact that α|X0 = 0 means that c|X0 belongs to Pic(X0).
Our goal is to identify c|X0 and n, in terms of the locally free sheaf E0. This is the
content of the following theorem:

Theorem 4.1. Let E be a locally free α-twisted sheaf on X, and let E0 = E |X0.
Assume that S is small enough (say, contractible), so that we have an identification
H i(X,Z) ∼= H i(Xt,Z) for all i and all t ∈ S. We assume that α|X0 = 0, and therefore
we can modify the transition functions of E0 so that it is an usual sheaf on X0. Then
we have

α =

[
− 1

rk(E0)
c1(E0)

]
.

The interpretation of this theorem is the following: if we try to deform a vector
bundle E0, given on the central fiber X0, in a family in which the class c1(E0) is not
algebraic in neighboring fibers Xt, the only hope to be able to do this is to deform
E0 as a twisted sheaf, and then the twisting should be precisely[

− 1

rk(E0)
c1(E0)

]
.

4.3. The idea of the proof is quite straightforward: given a locally free sheaf E
(twisted or not) on a space X, we consider its associated projective bundle. For any
projective bundle we define a topological invariant (the topological twisting charac-
teristic), which is an element of H2(X,Z/nZ) (where n = rk(E )). This topological
invariant behaves well with respect to restriction, and it is related to c1(E )/ rk(E )
when E is not twisted, and to α when E is α-twisted. This enables us to compare α
and c1(E0)/ rk(E0) in the situation we are interested in.

4.4. Consider the two short exact sequences:

0→ O∗X → GL(n)→ PGL(n)→ 0

and

0→ Z/nZ→ SL(n)→ PGL(n)→ 0.

For an element p of H1(X,PGL(n)), let a(p) and t(p) be the images of p under the
two coboundary maps

H1(X,PGL(n))→ H2(X,O∗X)
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and

H1(X,PGL(n))→ H2(X,Z/nZ),

respectively. We’ll call a(p) the analytic twisting class of p and t(p) the topological
twisting class of p. The first one belongs to Br′(X), and as such depends on the
complex structure of X, while the second one is in H2(X,Z/nZ) and depends only
on the topology of X.

If Y → X is a Pn−1-bundle over X, then the analytic and topological twisting
classes of Y/X, t(Y/X) and a(Y/X), are the classes of the element of H1(X,PGL(n))
associated to the bundle Y → X.

Note that if E is an α-twisted locally free sheaf on X, we can consider its associated
projective bundle Y → X (which makes sense even in the twisted case), and then its
analytic twisting class satisfies

a(Y/X) = α.

4.5. The following proposition computes t(Y/X) when Y/X is the projectivization
of a locally free (untwisted) sheaf of rank n on X:

Proposition 4.2. Let X be a scheme or analytic space, E a rank n locally free sheaf
on X, and let Y = Proj(E )→ X be the associated projective bundle. Then

t(Y/X) = −c1(E ) mod n.

(Here, and in the sequel, by reducing mod n we mean applying the natural map
H2(X,Z)→ H2(X,Z/nZ)).

Proof. Consider the commutative diagram with exact rows and diagonals

0 0
Q
Q
Qs �

�
�3

0 - Z/nZ - SL(n) - PGL(n) - 0
Q
Q
Qs �

�
�3

GL(n)

�
�
�3 Q

Q
Q
det
s

0 - Z/nZ

wwwwwwwww
- O∗X

·n
- O∗X - 0

�
�
�3 Q

Q
Qs

0 0.
By an easy exercise in homological algebra we get the anti-commutative diagram

H1(X,PGL(n))
t1 - H2(X,Z/nZ)

�
�
�>

H1(X,GL(n))
Z
Z
Z
det
~
H1(X,O∗X)

c1 mod n
- H2(X,Z/nZ),

wwwwwwwww
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which is precisely what we need.

Proposition 4.3. For any integer n, the following diagram commutes

H2(X,Z)
mod n

- H2(X,Z/nZ)

@
@
@x 7→

[
1
n
x
]
R 	�

�
�

p
Br′(X),

where the map p : H2(X,Z/nZ) → Br′(X) is obtained from the natural inclusion
Z/nZ ↪→ O∗X , and the map H2(X,Z) → Br′(X) is taking x ∈ H2(X,Z) to 1

n
x ∈

H2(X,Z)⊗Q/Z, which then maps to Br′(X).
Furthermore, if Y → X is a Pn−1-bundle over X, we have

p(t(Y/X)) = a(Y/X).

Proof. Trivial chase through the definitions. The last statement follows from the
commutativity of the diagram

H1(X,PGL(n))
t
- H2(X,Z/nZ)

H1(X,PGL(n))

wwwww
a
- Br′(X),

p
?

which is deduced from the map of short exact sequences

0 - Z/nZ - SL(n) - PGL(n) - 0

0 - O∗X

?
- GL(n)

?
- PGL(n)

wwwww
- 0.

Proof of Theorem 4.1. Let n = rk(E ), and consider the projective bundle associated
to E , Y = Proj(E ) → X. Using the naturality of the topological twisting class we
get

α = a(Y/X) = p(t(Y/X)) = p(t(Y0/X0)) = p(−c1(E0) mod n) =

[
− 1

n
c1(E0)

]
,

where the last three equalities are to be understood via the identification

H2(X,Z/nZ) ∼= H2(X0,Z/nZ),

in other words t(Y0/X0) and c1(E0) are considered as classes in H2(X,Z/nZ) and
H2(X,Z), respectively.
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5. The proof of the main theorems

5.1. We consider again the setup of Theorem 3.1: X is a K3 surface, v is a primitive,
isotropic Mukai vector on X, and M is the moduli space of stable sheaves on X whose
Mukai vector is v. We assume that M is computed with respect to a polarization of
X such that M is compact and non-empty, so that M is again a K3. The integer n
is the one defined in (3.4), and ϕ is any of the correspondences defined in (3.7).

Theorem 1.1. Let u ∈ H̃(X,Z) be such that (u.v) = 1 mod n. Then [ϕ(u)] ∈ Br(M)
is the obstruction to the existence of a universal sheaf on X×M , as defined in (3.6).

Remark 5.1. Note that since H̃(X,Z) is unimodular, a vector u with (u.v) = 1 mod n
can always be found.

Proof. First, assume that the moduli problem is fine, so that P and Q are untwisted
and n = 1. We can therefore consider the correspondence

ϕ = ϕQ,OM
X→M : H̃(X,Z)→ H̃(M,Z).

Since ϕ is an isometry, and it maps v to (0, 0, ω), it follows that the degree 0 part of
ϕ(u) is precisely (u.v). Using (2.9) and the projection formula, we get that for any
locally free sheaf E on M we have

ϕQ,E
X→M(u) = ϕ(u).

ch(E )

rk(E )
,

and therefore the H2(M,Q)-component of ϕQ,E
X→M(u) satisfies

ϕQ,E
X→M(u)2 = ϕ(u)0

c1(E )

rk(E )
+ ϕ(u)2

= (u.v)
c1(E )

rk(E )
+ integral part.

Let’s move on now to the case when the moduli problem is not fine. We want to
proceed by deforming X until the problem becomes fine, and this can be done by the
argument in [13, pp. 385-386]. More precisely, we can find a smooth family X → T0

over a small analytic disk T0, with the following properties:

1. There is a distinguished point 1 ∈ T0 such that X1 is isomorphic to X; we’ll
identify X1 with X from here on.

2. The restriction homomorphisms H i(X ,Z) → H i(Xt,Z) are isomorphisms for
all t ∈ T0, and so the cohomology groups of all the fibers are naturally identified.

3. The Mukai vector v from X1 is algebraic in the Mukai lattice of each fiber Xt.
4. The polarization of X1 is algebraic and ample in each fiber Xt, and therefore

all the fibers are naturally polarized.
5. For each fiber Xt, the moduli space M(Xt, v) is compact and non-empty when

computed with respect to this natural polarization, so it is a K3 surface. The
family of relative moduli spaces, M → T0, is smooth over T0.
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6. There is a distinguished point 0 ∈ T0 such that M(X0, v) is a fine moduli space
of sheaves on X0.

7. There exists a twisting α on M , and a π∗Mα−1-twisted sheaf P on X ×T0 M ,
which is flat over M , and which restricts to a twisted universal sheaf on Xt×Mt

for each t ∈ T0.

On M there exists an α−1-twisted locally free sheaf E : one can take, for example,

E = πM ,∗(π
∗
X OX (n)⊗P),

for a sufficiently high multiple OX (n) of a relative polarization of X /T0 (use the
flatness of P over M ). Using E , we can define a global correspondence

ϕQ,E : H̃(X ,Q)→ H̃(M ,Q),

which restricts to the correspondence

ϕQt,Et
Xt→Mt

: H̃(Xt,Q)→ H̃(Mt,Q)

for each t ∈ T0. Note that since the groups in question are discrete, these correspon-
dences are necessarily constant as t varies in T0.

We are now in the situation of Theorem 4.1: E is a locally free α−1-twisted sheaf on
M , and α|M0 = 0 because at t = 0 the moduli problem is fine. Therefore, under the
corresponding identifications, α|M1 is the image of c1(E0)/ rk(E0) in Br(M1), where
E0 is a gluing of E |M0 to a locally free untwisted sheaf. By the calculation in the
beginning of the proof, we have

ϕQ0,E0

X0→M0
(u)2 = (u.v)

c1(E0)

rk(E0)
+ integral part.

But since the correspondences ϕQt,Et
Xt→Mt

are constant as a function of t, we also have

ϕQ1,E1

X1→M1
(u)2 = (u.v)

c1(E0)

rk(E0)
+ integral part.

Mapping to Br(M1), we get

[ϕ(u)] = [ϕQ1,E1

X1→M1
(u)2] =

[
(u.v)

c1(E0)

rk(E0)
+ integral part

]
= (u.v)α,

and since α is n-torsion, the assumption that (u.v) = 1 mod n implies that

[ϕ(u)] = α,

which is what we wanted.
To finish the proof, we only need to prove that the choices that we have made in the

above proof do not matter: the actual proof shows that the choice of u is irrelevant,
and the fact that the choice of E is irrelevant (for example, one may choose an E on
M that does not extend to the full family M ) is (3.9).
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5.2. Now let’s move on to the proof of Theorem 1.2. To prove that α = [ϕ(u)] is in
Kerϕ∨, using (1.11) we need to show that

(ϕ(u).ϕ(t)) ∈ Z for all t ∈ TX .
But since ϕ is an isometry, the above is equivalent to

(u.t) ∈ Z for all t ∈ TX ,
which is obvious.

Let λ ∈ TX be such that v − λ is divisible by n in H̃(X,Z) (Theorem 3.4). Then
(u.λ) = (u.v) = 1 mod n, and hence (ϕ(u).ϕ(λ)) = 1 mod n. But ϕ(λ) is divisible by
n in TM , ϕ(λ) = nλ′, so we conclude that

(ϕ(u).λ′) =
1

n
+ integer.

This implies that α = [ϕ(u)] ∈ Br(M) has order at least n. But by Theorem 3.4, α is
n-torsion, and the kernel of ϕ∨ is cyclic of order n, so we conclude that α generates
Kerϕ∨ which is the first part of Theorem 1.2.

This implies at once the equality Kerα = ϕ(TX) (and not just ϕ(TX) ⊆ Kerα).
Since ϕ is a Hodge isometry H̃(X,Q) → H̃(M,Q), it follows that ϕ restricts to a
Hodge isometry TX ∼= ϕ(TX) = Kerα, which is the second statement of Theorem 1.2.

Finally, let P be a π∗Mα
−1-twisted universal sheaf on X ×M . To show that

ΦP
M→X : Db

coh(M,α)→ Db
coh(X)

is an equivalence of categories, we need to verify the conditions of Theorem 2.1. For
m ∈M , let Pm be the stable sheaf on X that corresponds to m. The condition

HomX(Pm,Pm) = C,

follows from the fact that a stable sheaf is simple. If m1 6= m2, Pm1 6∼= Pm2 , and
they are both stable, so

HomX(Pm1 ,Pm2) = 0.

By Serre duality

Ext2
X(Pm1 ,Pm2) = 0,

and since

χ(Pm1 ,Pm2) = −(v, v) = 0,

it follows that

Ext1
X(Pm1 ,Pm2) = 0.

Since Pm is a sheaf on X for all m ∈ M (and not a complex of sheaves), and
ωX = OX , the remaining conditions of Theorem 2.1 are satisfied, and therefore
ΦP
M→X is an equivalence of categories

Db
coh(M,α) ∼= Db

coh(X).
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5.3. We conclude with a discussion of what the obstacles are to proving Conjec-
ture 1.3. Given X, Y , and α, β as in the statement of the conjecture, assume that
Kerα is Hodge isometric to Ker β. A näıve approach would be to try to find a third
K3 surface Z, with TZ ∼= Kerα ∼= Ker β, and to try to realize X and Y as moduli
spaces of stable sheaves on Z, with obstructions α and β, respectively. This would
yield Db

coh(Z) ∼= Db
coh(X,α) and Db

coh(Z) ∼= Db
coh(Y, β), which by transitivity would

give the desired equivalence Db
coh(X,α) ∼= Db

coh(Y, β). However, this approach is soon
seen to be too simplistic: while any sublattice T of TX such that TX/T is cyclic can
occur as Kerα for some α, not all such T can be primitively embedded in LK3. In
other words not all Kerα can occur as the transcendental lattice TZ of some K3 Z. In
a certain sense, considering only moduli spaces of untwisted sheaves is too restrictive.

The solution to this seems to be the following: one would need to define a notion
of stability for twisted sheaves, and consider moduli spaces of stable sheaves with
arbitrary twisting, instead of just untwisted ones. In this case, the universal sheaf
would be twisted in two directions, one from the space X where the stable sheaves
live, and the other from the moduli space M , as the obstruction to the existence of
a universal sheaf. With the extra flexibility available, one could hope to fully bypass
the extra space Z, and to be able to view Y as a moduli space of stable α-twisted
sheaves on X, with β being the obstruction to the existence of a universal sheaf on
X × Y . This would fully reproduce Orlov’s picture from the untwisted situation.

5.4. The first step thus seems to be to define an appropriate notion of stability for
twisted sheaves. There is a natural way of doing this: given a space X with a chosen
polarization H, and an α-twisted locally free sheaf F on X, we’ll say that F is
µ-stable if and only if for every proper α-twisted subsheaf G of F we have

µ(Hom(G ,F )) > 0,

where the slope of the untwisted sheaf Hom(G ,F ) is computed as in [8, 1.2.11]. Note
that if F and G were untwisted, we’d have

µ(Hom(G ,F )) = µ(F )− µ(G ),

and thus the above definition would agree with the usual one ([8, 1.2.12]). We can
give a similar definition for Gieseker stability of general twisted sheaves.

Another option would be to follow the ideas of Yoshioka [16] for defining stability;
his ideas fit naturally in the context of twisted sheaves. To do that, fix an α−1-twisted
locally free sheaf E . Then we’ll say that an α-twisted sheaf F is E -µ-stable if and
only if for every non-trivial subsheaf G ⊂ F we have

µE (G ) < µE (F ),

where

µE (F ) =
degE (F )

rk(F )
,

degE (F ) being defined as c1,E (F ).Hd−1, with the Chern class defined by means of
E as in (2.9). Note that with this definition we have the extra freedom of the choice
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of the locally free sheaf E . This extra freedom may be what is needed in order to
accommodate all possible choices of α and β in Conjecture 1.3.

As a next step we need to study properties of stable twisted sheaves, construct
moduli spaces, and redo the work of Mukai and Orlov in the twisted context. We
leave this for a future paper.
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