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On the Lie algebroid of a derived self-intersection

Damien Calaque∗, Andrei Căldăraru†, Junwu Tu‡

Abstract. Let i : X →֒ Y be a closed embedding of smooth algebraic varieties. Denote by
N the normal bundle of X in Y. We describe the construction of two Lie-type structures
on the shifted bundle N[−1] which encode the information of the formal neighborhood of
X inside Y. We also present applications of classical Lie theoretic constructions (universal
enveloping algebra, Chevalley-Eilenberg complex) to the understanding of the geometry
of embeddings.
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1. Introduction

The aim of this paper is to study the derived self-intersection of a closed subspace X of an ambi-
ent space Y, when X and Y are smooth algebraic varieties. The word “derived” appears because
self-intersections are badly-behaved, in the sense that they are not transverse and thus their actual
dimension does not coincide with the expected one. If X and Y were differentiable manifolds the
standard approach would be to consider a small perturbation Xǫ of X and to take X ∩ Xǫ as the
self-intersection. However, this approach has several drawbacks:

• it does not preserve the set-theoretical intersection;

∗Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland, e-mail: damien.calaque@math.ethz.ch. On
leave from Institut Camille Jordan, CNRS & Université Lyon 1, France.
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• it does lead to some category theoretic problems (there is no functorial choice for Xǫ);

• we can’t do this with algebraic varieties.

It has long been known that a possible replacement for geometric perturbation is homological per-
turbation. More precisely, if i : X →֒ Y is a closed embedding we will consider a resolution R of OX
by a differential graded (dg) i−1OY-algebra, and equip X with the sheaf of dg-rings OX ⊗L

i−1OY
OX :=

R⊗i−1OY
OX. The pair (X,OX⊗

L

i−1OY
OX) is a dg-scheme that we will denote by X×hY X; it is called the

derived self-intersection of X inside Y (or more generally the homotopy fiber product of X with itself
over Y for a general morphism X→ Y). Different choices of resolution give rise to weakly equivalent
results (in the derived category of dg-schemes), and there exist functorial choices for such resolutions.

In the remainder of this introduction we shall make constant use of an important analogy between
derived algebraic geometry (where objects of study are dg schemes), and homotopy theory (where
one studies topological spaces and homotopy classes of maps between them). In both settings the
notion of homotopy fiber product makes sense, and the two constructions have similar properties1.
The advantage of studying the topological setting is that in this case the role of resolutions is taken
by fibrant replacements, and the homotopy fiber product becomes a familiar space of paths. Since
we can understand the derived self-intersection in more concrete terms, we gain insights into what
results can be expected for the algebro-geometric problem we are studying. This motivates the precise
results which we state and prove in this paper (and which ultimately do not rely on the analogy with
topological spaces).

1.1. The diagonal embedding (after M. Kapranov)

Let us consider the example of the diagonal embedding ∆ : X →֒ X × X. In the topological setting,
one way to compute the homotopy fiber product is to factor ∆ : X→ X×X into an acyclic cofibration
followed by a fibration: X̃X̃։ X× X. This is achieved by taking

X̃ := {γ : [0, 1]→ X× X |γ(0) ∈ ∆(X)}

with γ 7→ γ(1) as the fibration map. Therefore the derived self-intersection of the diagonal is

X̃×X×X X = {γ : [0, 1]→ X× X |γ(0), γ(1) ∈ ∆(X)}.

This space is immediately seen to be weakly equivalent to the loop space of X via the map sending a
path γ in X× X with both ends in the diagonal to the loop γ̃ in X defined by

γ̃(t) =

{
π1

(
γ(2t)

)
if 0 ≤ t ≤ 1/2

π2
(
γ(2 − 2t)

)
if 1/2 ≤ t ≤ 1.

Therefore X×hX×X X fibers over X, and the fibers have the structure of a (homotopy) group.

1This can be made precise using model categories and the advanced technology of homotopical and derived algebraic
geometry, after Toën-Vezzosi [19, 20] and Lurie [15]. Despite the fact that this is certainly the appropriate framework
to work with, we will nevertheless stay within the realm of dg-schemes (after [6]), which are sufficient for our purposes.
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Returning to the world of derived algebraic geometry, the homotopy fiber product X×hX×XX can be
shown to have a similar structure of derived group scheme over X2. We are interested in understanding
what the associated Lie algebra of this group is.

What is the Lie algebra of X×hX×X X ?

The answer to this question is contained in a beautiful paper of Kapranov [13]: informally speaking
this is the Atiyah extension S2(TX)→ TX[1], viewed as a Lie bracket ∧2(TX[−1])→ TX[−1] on the object
TX[−1] of D(X). The existence of this bracket is not so mysterious. Associated to the embedding ∆ is
the dg Lie algebra gX := TX/X×X, the derived relative tangent space. Its Lie structure arises as in the
case of any tangent space, from commutation of derivations. Since TX[−1] is the cohomology of gX,
it is naturally endowed with a (strict) Lie algebra structure, which Kapranov further identifies with
the Atiyah bracket. Moreover, since this Lie structure is obtained by passing to the homology of a dg
Lie algebra, it is natural to expect that homotopy transfer should induce higher (Massey) brackets
on the cohomology TX[−1]. These higher brackets are also constructed by other means in Kapranov’s
paper.

What is the universal enveloping algebra of this Lie algebra ?

The answer to this question was given by Markarian [16]: U(TX[−1]) is the Hochschild cochain complex
HHX := (π1)∗RHomX×X(∆∗OX, ∆∗OX) of X. The PBW theorem then gives an isomorphism in D(X)

S
(
TX[−1]

)
−̃→HHX,

which is nothing but the HKR theorem [11, 21].
Observe moreover that any object E in D(X) is naturally a representation of the Lie algebra TX[−1],

via its own Atiyah class, and that morphisms in D(X) are all TX[−1]-linear. The TX[−1]-invariant
space of an object E is then the space of morphisms from OX, the trivial representation, to E: these
are (derived) global sections. Assuming that the Duflo isomorphism3 is valid in dg or triangulated
categories (which is unknown), we would have an isomorphism of algebras

H∗
(
X, S

(
TX[−1]

))
−̃→HH∗

X := Ext∗X×X(∆∗OX, ∆∗OX) .

This result has been proved using a different approach in [5, 7].

What is the Chevalley-Eilenberg algebra of gX ?

The answer to this question is again in Kapranov’s paper: C∗(gX) is quasi-isomorphic to the structure

ring O
X
(∞)
X×X

of the formal neighborhood X
(∞)
X×X of the diagonal in X× X.

2It is an X-scheme because X×X itself is an X-scheme through one of the projections X×X→ X. Moreover, the choice
of one or the other is “homotopically irrelevant” in our context. Notice nevertheless that it would be a bit more
subtle if we were looking at the 2-groupoid structure on X×

h
X×X X.

3Which states that for a finite dimensional Lie algebra g, S(g)g and U(g)g are isomorphic as algebras.
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1.2. The general case of a closed embedding (this paper)

For a general closed embedding i : X →֒ Y of smooth schemes we start again by taking cues from
topology. If i were an arbitrary embedding of topological spaces, we could use as a fibrant replacement
the path space

X̃ := {γ : [0, 1]→ Y |γ(0) ∈ i(X)}

with γ 7→ γ(1) as the fibration morphism. Therefore a topological model for the derived self-
intersection of X into Y would be

X̃×Y X = {γ : [0, 1]→ Y |γ(0), γ(1) ∈ i(X)},

which this time does not have the structure of a group scheme over X. Nevertheless X ×hY X is the
space of arrows of a homotopy groupoid having X as space of objects.

The same structure is carried over to the algebro-geometric setting: for a closed embedding of
smooth schemes, X ×hY X has the structure of a derived groupoid Y-scheme having X as the space of
objects. One can again pose the problem of determining the Lie algebroid associated to this groupoid.

What is the Lie algebroid of X×hY X ?

The informal answer to this question is that the Lie algebroid of the groupoid scheme X×hY X is the
shifted normal bundle N[−1] of X in Y, with anchor map the Kodaira-Spencer class N[−1]→ TX. As
before, this structure arises as the shadow on cohomology of a richer dg Lie algebroid structure on
the relative derived tangent space TX/Y . From this point of view the anchor map is the map induced
on cohomology from the base change morphism TX/Y → TX/pt. A more precise statement of the above
discussion is given below.

Proposition 1.1. Let X
j
→ X̃

π→ Y be a smooth resolution of the inclusion morphism i : X →֒ Y.

Then the pair (O
X̃
, T
X̃/Y

) is a dg-Lie algebroid over OY and it is the dg-Lie algebroid of the groupoid

in dg-Y-schemes (X̃, X̃×Y X̃).

In order to pass to more familiar objects, note that j∗ : D(X̃)→ D(X) is a triangulated equivalence,
and under this equivalence the object T

X̃/Y
corresponds to the object TX/Y := j∗T

X̃/Y
∼= N[−1] in D(X).

In particular, we get from the above that (i∗OX, i∗N[−1]) is a Lie algebroid in D(Y).

What is the universal enveloping algebra of this Lie algebroid ?

The enveloping algebra of a Lie algebroid with base X is naturally an OX×X-module set-theoretically
supported on the diagonal. This is consistent with the the answer we give to the above question: the
universal enveloping algebra of the Lie algebroid of X×hY X is the kernel K of i∗i! = (i∗i∗)

∨, where the
algebra structure K ◦ K→ K is given by the natural transformation i∗i!i

∗i! =⇒ i∗i!. More precisely
(see §2.5 and Section 3) we have:

Theorem 1.2. Let X
j
→ X̃

π→ Y be a smooth resolution of the inclusion morphism i : X →֒ Y. Then

we have a natural quasi-isomorphism of dg-algebras U(T
X̃/Y

) −→ HomOY
(O
X̃
,O

X̃
). In other words,

U(T
X̃/Y

) represents the monad i∗i!.
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We also prove that the above identification is also “compatible with coproducts”. This can be seen
via the following dual statement:

Theorem 1.3. Let X
j
→ X̃

π→ Y be a smooth resolution of the inclusion morphism i : X →֒ Y. Then

we have a natural quasi-isomorphism of dg-algebras J(T
X̃/Y

) −→ O
X̃×Y X̃

. In other words, J(T
X̃/Y

)

represents the monad i∗i∗.

What is the Chevalley-Eilenberg algebra of this Lie algebroid ?

We answer that this is quasi-isomorphic to the structure ring O
X
(∞)

Y

of the formal neighborhood X
(∞)
Y

of the embedding i : X →֒ Y, generalizing Kapranov’s result in the case diagonal embeddings. See
Theorem 2.4.

The above result uses the full structure of dg Lie algebroid on T
X̃/Y

. One would be interested

in obtaining an ∞-type structure on its cohomology N[−1], by constructing higher operations on
this object. This would be a complete generalization of the construction that Kapranov gave in the
diagonal embedding case.

To achieve this goal we would need to employ a homotopy transfer procedure to get a minimal L∞-
algebroid structure on N[−1] (see Definition 4.2). We are not actually able to do homotopy transfer
for complexes of sheaves (as opposed to complexes of vector spaces), but we are able to prove the
following result (see Proposition 4.4 in Section 4):

Proposition 1.4. There exists a minimal L∞-algebroid structure on N[−1] whose Chevalley-Eilenberg

algebra is quasi-isomorphic to O
X
(∞)

Y

.

As a consequence of this construction we obtain “higher anchor maps” which can be interpreted
as successive obstructions to splitting the embedding of X into its l-th infinitesimal neighborhood

X
(l)
Y . (These obstructions already appeared in problems in complex geometry, see [1].) We also obtain

“higher brackets” which are interpreted as successive obstructions (which also appeared in [1]) to

linearizing X
(l)
Y .

1.3. Plan of the paper

In Section 2 we describe the dg-Lie algebroid associated with a closed embedding. We first recall
quickly some known facts about the (co)tangent complex and about Lie algebroids, with emphasis
on relative derivations. The Lie algebroid structure on the relative tangent complex of a morphism
f : X→ Y then becomes obvious. We finally prove that, in the case of a closed embedding i : X →֒ Y,
the Chevalley-Eilenberg algebra of this Lie algebroid is quasi-isomorphic to the structure sheaf of

X
(∞)
Y , its jet algebra represents i∗i∗ and its universal envelopping algebra represents i∗i!.
In the third section we show that the above identifications are compatible with natural Hopf-like

structures on these objects.
Section 4 is devoted to the construction of an L∞-algebroid structure on the shifted normal bundle

N[−1], which is such that its Chevalley-Eilenberg algebra is also quasi-isomorphic to the structure

sheaf of X
(∞)
Y . We prove that the structure maps of this L∞-algebroid structure provide obstructions
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to splitting the inclusion X → X
(k)
Y and linearizing X

(k)
Y . This allows us to recover similar results of

[1].
We conclude the paper with an appendix about cosimplicial methods and a correspondence betwen

Maurer-Cartan elements and non-abelian 1-cocycles.
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and DMS-1200721.

1.5. Notation

We work over an algebraically closed field k of characteristic zero. Unless otherwise specified all
(dg-)algebras, (dg-)schemes, varieties, etc. are over k.

We often denote by pt the terminal dg-scheme. Namely, pt := Spec(k).

Whenever we have a dg-algebra A we denote by A♯ the underlying graded algebra and by dA its
differential. Then A = (A♯, dA). Similarly, given a dg-scheme X we denote by X♯ the dg-scheme

having the same underlying scheme and structure sheaf OX♯
:= O

♯
X.

For a graded module E and an integer k, we denote by E[k] the graded module whose l-th graded
piece is the k+ l-th graded piece of E.

We freely extend the above notation to sheaves.

By a Lie algebroid we mean a sheaf of Lie-Rinehart algebras (L-R algebras in [18], to which we refer
for more details).

2. The dg-Lie algebroid of a closed embedding

In this section we construct a differential graded Lie algebroid associated to a closed embedding
i : X →֒ Y of smooth algebraic varieties. We show that the Chevalley-Eilenberg algebra of this
differential graded Lie algebroid is quasi-isomorphic to the formal neighborhood algebra of X in Y;
while the dual of its universal enveloping algebra is quasi-isomorphic to the formal neighborhood of
X inside the derived self-intersection X×hY X. We shall work with Ciocan-Fontanine and Kapranov’s
dg-schemes [6, Section 2].

2.1. Short review of the relative (co)tangent complex

Let i : X →֒ Y be a closed embedding of smooth algebraic varieties with normal bundle N. Let us
also assume that Y is quasi-projective to ensure existence of resolutions by locally free sheaves on Y.

6



By the constructions of [6, Theorem 2.7.6] the map i can be factored as

X
j

−→ X̃
π

−→ Y ,

where j is a quasi-isomorphic closed embedding and π is smooth. Moreover since we are assuming Y
is quasi-projective and smooth, the ordinary scheme underlying the dg-scheme X̃ can in fact be taken
to be just Y. Its structure sheaf is of the form

O
X̃
:=

(
SOY

(E[1]),Q
)

for some non-positively graded locally free sheaf E on Y, and Q is a degree one OY-linear derivation
on SOY

(E[1]) that squares to zero. The appearance of a shift on E is to mimic the case when X is a
complete intersection in Y. By construction there is a quasi-isomorphism of dg-OY-algebras

O
X̃
−→ j∗OX .

The relative cotangent complex LX/Y is by definition

LX/Y := j∗L
X̃/Y
, where L

X̃/Y
:=

(
Ω1

O
♯

X̃
/OY
, LQ

)
.

The differential LQ is given by the Lie derivation action on the graded space of 1-forms Ω1

O
♯

X̃
/OY

.

Since Q is an odd derivation that squares to zero, its Lie derivative LQ also squares to zero because
L2Q = 1

2L[Q,Q] = 0. It is well-defined up to quasi-isomorphism (see [6, Proposition 2.7.7] for a precise
statement). Moreover, the restriction morphism L

X̃/Y
−→ j∗j

∗L
X̃/Y

= j∗LX/Y is a quasi-isomorphism.

In particular this implies that the dg-sheaf L
X̃/Y

is isomorphic to j∗N
∨[1] as an object in D(X̃).

Namely, we have two distinguished triangles

i∗Ω1
Y/pt −→ Ω1

X/pt −→ LX/Y
+1
−→ and N∨ −→ i∗Ω1

Y/pt −→ Ω1
X/pt

+1
−→ .

Dually we can define the tangent complex TX/Y as j∗T
X̃/Y

, where T
X̃/Y

:= DerOY
(O
X̃
) is endowed with

the differential [Q,−]. The fact that this differential squares to zero follows from the graded version
of Jacobi identity for vector fields. The dg-sheaf T

X̃/Y
is isomorphic to i∗N[−1] in D(Y)4.

2.2. Recollection on (dg-)Lie algebroids

There is a natural Lie bracket on T
X̃/Y

, being the space of OY-linear derivations of OX̃. More precisely,

the pair (O
X̃
, T
X̃/Y

) is a dg-Lie algebroid. In the next three sections we recall the definitions of three dg-

algebras naturally associated with a dg-Lie algebroid: the Chevalley-Eilenberg algebra, the universal
enveloping algebra, and the jet algebra.

4We are making here a slight abuse of language. Strictly speaking, TX̃/Y
is quasi-isomorphic to j∗N[−1] as an OX̃-

module and thus π∗TX̃/Y
is quasi-isomorphic to i∗N[−1] as an OY-module. But for an OX̃-module F, π∗F is simply

the same sheaf (on Y) viewed as an OY-module in the obvious way. We will therefore allow ourselves to omit π∗ from
the notation when the context is clear enough.
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2.2.1. Chevalley-Eilenberg algebra of a Lie algebroid

Let (A, g) be a dg-Lie algebroid with anchor map ρ and Lie bracket µ. We first consider the dg-

commutative algebra ŜA(g
∨[−1]), which is the adic-completion of the symmetric algebra with respect

to the kernel of the augmentation SA(g
∨[−1])→ A. We then replace the differential d byD := d+dCE,

where dCE is defined on generators a ∈ A and ξ ∈ g∨[−1] as follows5:

• dCE(a) := s ◦ ρ
∨(da), and

• the operator dCE(ξ) ∈ S2Ag
∨[−1] acts on a pair of (v,w) ∈ g2 by formula

dCE(ξ)(v,w) := ρ(v)(ξ(w)) − ρ(w)(ξ(v)) − ξ(µ(v,w)).

Then the Chevalley-Eilenberg algebra C∗(g) is the dg-commutative algebra
(
ŜA(g

∨[−1])♯,D
)
. We

also denote by C(k)(g) its quotient by the k+ 1-th power of the augmentation kernel.

Example 2.1 (Relative De Rham complex). Let B → A be a morphism of (sheaves of) dg-
commutative algebras, and set g := DerB(A). We equip (A, g) with a dg-Lie algebroid structure: g has
[dA,−] as differential, the graded commutator as Lie bracket, and the inclusion DerB(A) →֒ Derk(A)

as anchor map. The Chevalley-Eilenberg algebra is then the completion of the relative De Rham
algebra Ω∗

A/B
. As a graded algebra Ω∗

A/B
is SA♯(Ω1

A♯/B♯ [−1]), and the two commuting differentials

are d = LdB and dCE = dDR.

2.2.2. Universal enveloping algebra of a Lie algebroid

We borrow the notation from the previous subsection. First observe that A being acted on by g one
can consider the semi-direct product dg-Lie algebra A⋊g and take its (ordinary) universal enveloping
algebra U(A ⋊ g), which is k-augmented. We define the universal enveloping algebra U(g) of (A, g)
as the quotient of the augmentation ideal U+(A ⋊ g) by the following relations: for any a ∈ A and
x ∈ A ⊕ g, ax = a · x, where · denotes the A-module structure on A ⊕ g. It is a (non-central)
dg-A-algebra. As such it is naturally endowed with a compatible A-bimodule structure.

Moreover, U(g) is also endowed with the structure of a cocommutative coring in the category of
left A-modules: we have a coproduct ∆ : U(g) → U(g) ⊗A U(g), where we only consider the left

A-module structure on U(g) when taking the tensor product. Notice that U(g) also acts on A. All
these algebraic structures and their compatibilities can be summarized in the following way: U(g) is
a (dg-)bialgebroid (see [3] and references therein for a survey of the equivalent definitions).

Example 2.2 (Relative differential operators). Let B→ A and g be as in Example 2.1. In this case
U(g) coincides with Diff B(A), the sheaf of B-linear differential operators on A endowed with the
differential [dB,−]. We easily see that the A-bimodule structure factors through an action of A⊗BA.
Finally, the coproduct is given by ∆(P)(a, a ′) = P(aa ′).

5We omit (de)suspension maps from the second formula.
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2.2.3. The jet algebra of a Lie algebroid

We still borrow the notation from the above subsection. We define the jet A-bimodule J(g) as the
left A-dual of U(g): J(g) := HomA-mod

(
U(g),A

)
. Therefore J(g) becomes a commutative ring in

the category of left A-modules. The A-bimodule structure on J(g) can then be described by two
dg-algebra morphisms A −→ J(g): a 7−→

(
P 7→ aP(1)

)
and a 7−→

(
P 7→ P(a)

)
.

Observe that U(g) is endowed with an increasing filtration obtained by assiging degree 0, resp. de-
gree 1, to elements of A, resp. g. All the algebraic structures we have seen on U(g) are compat-
ible with the filtration; in particular U(g)≤k is a sub-A-coring in U(g). Therefore the quotient
J(k)(g) := HomA-mod

(
U(g)≤k,A

)
of J(g) inherits from it an A-algebra structure.

Example 2.3 (Relative jets). Let B→ A and g be as in Example 2.1, and denote by J the (dg-)ideal
of the multiplication map A⊗B A→ A. We have a morphism of dg-algebras

A⊗B A −→ J(g) , a⊗ a ′ 7−→
(
P 7→ aP(a ′)

)
.

This induces morphisms A ⊗B A/Jk+1 −→ J(k)(g), which happen to be isomorphisms whenever the
underlying morphism of graded algebra B♯ → A♯ is smooth. This gives an isomorphism between
A⊗̂BA := lim←−A⊗B A/Jk+1 and J(g). This is essentially (a dg-version of) Grothendieck’s description

of differential operators via formal neighborhood of the diagonal map [8, (16.8.4)].

2.3. The Chevalley-Eilenberg algebra is the formal neighborhood of X in Y

Let I := ker(OY → i∗OX) be the ideal sheaf of X into Y, O
(k)
X := OY/I

k+1, and O
(∞)
X := lim←−O

(k)
X . We

also write Ω∗

X̃/Y
:= Ω∗

O
X̃
/OY

, and Ω
(k)

X̃/Y
for its quotient by the (k + 1)-th power of the augmentation

ideal. Recall from Example 2.1 that we have C∗(T
X̃/Y

) = lim←−Ω
(k)

X̃/Y
.

Theorem 2.4. There are quasi-isomorphisms of sheaves of dg-algebras on Y

ϕ(k) : Ω
(k)

X̃/Y
−→ O

(k)
X .

Moreover these maps are compatible with the inverse systems on both sides, and taking inverse limits

induces a quasi-isomorphism of algebras

ϕ : C∗(T
X̃/Y

) −→ O
(∞)
X .

Proof. We define an O
♯

X̃
-linear map ϕ : Ω1

X̃♯/Y
[−1] −→ OY by the composition

Ω1
X̃♯/Y

[−1]
−ιQ
−→ O

♯

X̃
= SOY

(
E[1]

) ǫ
։ OY ,

where the last map is just the canonical OY-augmentation.

Lemma 2.5. The map ϕ constructed above has image inside the ideal sheaf I.

9



Proof. Locally on Y the space of one-forms is generated by elements of the form adDR(e) for local
sections a ∈ O

X̃
and e ∈ E. Then we have

ϕ
(
adDR(e)

)
= ǫ

(
− ιQ

(
adDR(e)

))
= −ǫ

(
aQ(e)

)
= −ǫ(a)ǫ

(
Q(e)

)
.

The composed map O
X̃

ǫ→ OY → i∗OX being a quasi-isomorphism, we have in particular that the
image of Q(e) through it is zero. Therefore ǫ

(
Q(e)

)
∈ I.

By the universal property of symmetric algebras, the map ϕ induces a morphism of O♯

X̃
-algebras

Ω∗

X̃♯/Y
= S

O
♯

X̃

(
Ω1

X̃♯/Y
[−1]

)
−→ OY .

We shall still denote this map by ϕ.

Lemma 2.6. ϕ is a morphism of O
X̃
-algebras. In other words, it is a cochain map.

Proof. Locally on Y, a k-form α can be written as fdDR(e1) · · · dDR(ek) for local sections f ∈ O
X̃
and

ei ∈ E, 1 ≤ i ≤ k. We want to show that ϕ
(
D(α)

)
= 0. This is a direct computation, we have

ϕ
(
D(α)

)
= ϕ

(
LQ

(
fdDR(e1) · · · dDR(ek)

)
+ dDR

(
fdDR(e1) · · · dDR(ei)

))

= ϕ
(
Q(f)dDR(e1) · · · dDR(ek) +

∑

1≤i≤k

(−1)|f|+|e1 |+···+|ei−1|+(i−1)fdDR(e1) · · · LQ
(
dDR(ei)

)
· · ·dDR(ek)

+ dDR(f)dDR(e1) · · · dDR(ek)
)

= ǫ
(
(−1)kQ(f)Q(e1) · · ·Q(ek) + (−1)k+|f|+|e1 |+···+|ei−1 |+(i−1)

∑

1≤i≤k

fQ(e1) · · ·
(
ιQLQdDR(ei)

)
· · ·Q(ek)

+ (−1)k+1Q(f)Q(e1) · · ·Q(ek)
)
.

The first and the last terms in the above sum cancel each other. For the middle term observe that
ιQLQdDR = ιQdDRιQdDR = QQ = 0.

By Lemma 2.5 the map ϕ sends the augmentation ideal (which is generated by Ω1

X̃/Y
[−1]) into the

ideal I. Hence ϕ induces an inverse system of O
X̃
-algebra morphisms

ϕ(k) : Ω
(k)

X̃/Y
−→ O

(k)
X .

We have to show that the maps ϕ(k) defined as above are quasi-isomorphisms. We proceed by
induction. For the case k = 0 this reduces to the fact that O

X̃
is a resolution of i∗OX = OY/I.

Assuming ϕ(k) is a quasi-isomorphism we would like to show it is also the case for ϕ(k+1). For this
we consider the following morphism of short exact sequences

0 −−−−→ SOY
(E[1])⊗OY

Sk+1OY
(E) −−−−→ Ω

(k+1)

X̃/Y
−−−−→ Ω

(k)

X̃/Y
−−−−→ 0

y ϕ(k+1)

y ϕ(k)

y

0 −−−−→ i∗

(
Sk+1OY

(N∨)
)

−−−−→ O
(k+1)
X −−−−→ O

(k)
X −−−−→ 0.

10



The leftmost vertical map is a quasi-isomorphism by the projection formula, and ϕ(k) is so by the
induction hypothesis. Thus ϕ(k+1) is also a quasi-isomorphism. The Theorem is proved.

Remark 2.7. This result means that the dg-Lie algebroid structure on T
X̃/Y

encodes all the formal

neighborhood of X into Y. Moreover our proof of the theorem works for a general closed embedding of
quasi-projective dg-schemes. For a general morphism X→ Y of quasi-projective dg-schemes this gives
a definition of the “derived” formal neighborhood of X in Y: take the Chevalley-Eilenberg algebra of
T
X̃/Y

for a smooth factorization of X→ Y through X̃.

Example 2.8 (The case of a global complete intersection). As an example we now write down an
explicit free resolution for the formal neighborhood algebra of an embedding i : X →֒ Y in the case
when X is a global complete intersection in Y. It turns out that our construction recovers the classical
Eagon-Northcott resolution of formal neighborhood of X in Y (see [4]).

To fix the notation we assume that X is defined as the zero locus of a section s of a vector bundle
E∨ on Y. Then the sheaf i∗OX has a locally free resolution of the form

(SOY
(E[1]), ys) = · · ·

ys
−→ ∧2E

ys
−→ E

ys
−→ OY −→ 0 · · · .

Note that this is a resolution of i∗OX as an OY-algebra. Thus we take X̃ to be the dg-scheme defined
by (SOY

(E[1]), ys) on Y. Let us write down the Chevalley-Eilenberg complex of T
X̃/Y

. This is by

definition the completed De Rham complex of (SOY
(E[1]), ys) which is given by SOY

(E[1])⊗OY
ŜOY

(E)

as a quasi-coherent sheaf on Y, with differential acting on the component SiOY
(E[1]) ⊗OY

S
j
OY

(E) by
the sum of the following two operators:

Lys
(
(e1 · · · ei)⊗ (f1 · · · fj)

)
=

i∑

l=1

(−1)l−1
((
e1 · · · (〈s, el〉) · · · ei

)
⊗ (f1 · · · fj)

)
;

dDR
(
(e1 · · · ei)⊗ (f1 · · · fj)

)
=

i∑

l=1

(−1)l−1
(
(e1 · · · êl · · · ei)⊗ (elf1 · · · fj)

)
.

2.4. The jet algebra represents i∗i∗

Our goal in this subsection is to understand the jet algebra J(T
X̃/Y

) of the dg-Lie algebroid T
X̃/Y

. Our

main result identifies J(T
X̃/Y

) with the formal neighborhood of X̃ inside X̃×Y X̃.

Let us begin with a description of the derived self-intersection X̃ ×Y X̃: by the definition of fiber
product of dg-schemes its underlying scheme is X̃0 ×Y X̃

0 = Y (recall that X̃0 = Y) and its structure
sheaf is O

X̃
⊗OY

O
X̃
. The diagonal map ∆

X̃/Y
: X̃ → X̃ ×Y X̃ is defined by the identity map on the

underlying scheme Y and the multiplication map O
X̃
⊗OY

O
X̃
→ O

X̃
on the structure sheaves. We

denote its kernel by J, and we define O
(k)
∆ := O

X̃×Y X̃
/Jk+1 (k ≥ 0) and O

(∞)
∆ := lim←−O

(k)
∆ . According to

Example 2.3 we have the following description of J(T
X̃/Y

).

Proposition 2.9. There is an isomorphism O
(∞)
∆

∼= J(T
X̃/Y

) of O
X̃×Y X̃

-algebras.

11



This result in fact holds for any morphism of dg-schemes X → Y. The specificity of a closed
embedding i : X →֒ Y of varieties is that the formal neighborhood of the diagonal in X̃ ×Y X̃ is
quasi-equivalent to X̃×Y X̃ itself, as we prove now.

Theorem 2.10. For a closed embedding i : X →֒ Y of smooth schemes assume that Y is quasi-

projective. Then the formal neighborhood algebra O
(∞)
∆ of the embedding X̃ →֒ X̃ ×Y X̃ is quasi-

isomorphic to the structure sheaf O
X̃×Y X̃

.

In paticular, combined with Proposition 2.9, we conclude that J(T
X̃/Y

) is the structure sheaf of X̃×Y X̃.

Proof. There is a natural map of sheaves of algebras O
X̃×Y X̃

→ O
(∞)
∆ induced from the natural quotient

maps O
X̃×Y X̃

→ O
(k)
∆ . Moreover as the derived tensor product the cohomologies of O

X̃×Y X̃
are given

by ToriY(OX,OX) where the cohomological grading is compatible with the filtration degree on O
X̃×Y X̃

.

Since ToriY(OX,OX) vanishes for large i for a smooth space Y and the dg-ideal J of the diagonal map

O
X̃×Y X̃

→ O
X̃
is concentrated on strictly negative degrees, the natural quotient maps O

X̃×Y X̃
→ O

(k)
∆

are quasi-isomorphisms for large k. The theorem follows after taking inverse limit. (Note that taking
inverse limit does not in general commute with taking cohomology. However in our case this is true
since the cohomologies of the inverse system stabilize.)

Proof of Theorem 1.3. We should prove that, for a closed embedding i : X →֒ Y, J(T
X̃/Y

) represents

the functor i∗i∗. This has to be interpreted correctly. Namely we have factored the map i as π ◦ j
for a quasi-equivalence j : X → X̃ and a smooth map π : X̃ → Y. Since the map π is smooth, the
sheaf h∗OX̃×Y X̃

where h is the embedding X̃×Y X̃ →֒ X̃× X̃, gives the kernel for π∗π∗ : D(X̃)→ D(X̃).
Thanks to Proposition 2.9 and Theorem 2.10 we have a quasi-isomorphism

O
X̃×Y X̃

∼= J(T
X̃/Y

) .

Thus we conclude that h∗J(TX̃/Y) ∈ D(X̃× X̃) is the kernel representing the functor π∗π∗. Finally we

observe that the functor π∗π∗ corresponds to i∗i∗ via the equivalence D(X) ∼= D(X̃). Hence the sheaf
(j× j)∗h∗J(TX̃/Y) on X× X represents i∗i∗.

As for the monad structure on π∗π∗, it is the algebra structure on O
X̃×Y X̃

.

Remark 2.11. It is interesting to observe that there is an iterative process arising from an embedding
of algebraic varieties i : X →֒ Y. Namely we have associated to the embedding a natural dg-Lie
algebroid Ti (here we changed the notation for T

X̃/Y
to emphasize the morphism i). But the morphism

i defines another embedding of dg-schemes ∆i : X̃→ X̃×Y X̃. The dg-Lie algebroid associated to this
latter embedding ∆i will be denoted by T∆i

. There is an interesting relationship between Ti and T∆i

in view of Theorem 2.4 and Proposition 2.9:

C∗(T∆i
)
2.4
−→ O

(∞)

X̃/X̃×Y X̃

2.9
−→ J(Ti).

In particular we see that the Lie algebroid T∆i
encodes less information than that of Ti since in the

above isomorphism we do not see the Lie structure on Ti from that of T∆i
. Moreover observe that

12



T∆i
∼= Ti[−1], hence its Chevalley-Eilenberg algebra is of the form Ŝ(T∨

i ) endowed with the Chevalley-
Eilenberg differential. The isomorphism C∗(T∆i

) ∼= J(Ti) then certainly resembles the PBW theorem
for Ti. It is thus natural from this isomorphism to conjecture that the PBW property holds for Ti
if-and-only-if certain Lie structure vanishes on T∆i

. This is in fact the main point of the paper [2]
where the authors study the HKR property for an embedding i : X→ Y. Their result on the derived
level asserts that the vanishing of the Lie structure on N[−2] = T∆i

is equivalent to the HKR property
for N[−1] = Ti.

2.5. The universal enveloping algebra represents i∗i!

Let us sketch a proof of Theorem 1.2. By the universal property of U(T
X̃/Y

) we get a morphism

U(T
X̃/Y

) −→ HomOY
(O
X̃
,O

X̃
) of dg-algebras in O

X̃
-bimodules over OY . One can prove that, in the case

of a closed embedding, it is a quasi-isomorphism (the proof is very similar to the one of Theorem 2.10,
with Tor’s being replaced by Ext’s). In particular we have an algebra isomorphism U(i∗N[−1]) →
ExtOY

(i∗OX, i∗OX) in Db
coh(Y), and thus by seeing U(i∗N[−1]) as an object of Db

coh(X × X) set-
theoretically supported on the diagonal, we get that it is the kernel representing the functor i∗i! :
Db
coh(X) → Db

coh(X). The monad structure on i∗i! coming from the product on ExtOY
(i∗OX, i∗OX)

easily identifies with the one coming from the projection formula i∗i!i
∗i! ⇒ i∗i!.

Let us provide yet another approach. Borrowing the notation from §2.2.2, we have the following

Lemma 2.12. The functor U(g)⊗
A
− : A-mod −→ A-mod is left adjoint to HomA-mod

(
U(g),−). Here

we use that for any left A-moduleM, the right A-module structure on U(g) turns HomA-mod

(
U(g),M

)

into a left A-module.

Proof. Let M,N be A-modules. As usual the one-to-one correspondence

ϕ ∈ HomA-mod

(
U(g)⊗

A
M,N

)
←̃→HomA-mod

(
M,HomA-mod

(
U(g),N

))
∋ ψ

is given by ϕ(P ⊗m) = ψ(m)(P).

Then notice that HomA-mod

(
U(g),−) = J(g)⊗̂

A
−, where the A-bimodule structure on J(g) is the

one described in §2.2.3.

We finally consider the case when A = O
X̃
and g = T

X̃/Y
. It follows from Theorem 1.3 (which we

proved in the previous subsection) that U(T
X̃/Y

) represents the kernel for the left adjoint functor to

i∗i∗, which is i∗i!. This has to be understood as (j× j)∗h∗U(T
X̃/Y

), which is nothing but U(i∗N[−1])

viewed as an object of Db
coh(X× X), being the kernel representing i∗i!.

3. Monads

In the previous ection we have identified U(T
X̃/Y

) with the kernel of i∗i!. Both are equipped with an

associative product (they even carry a Hopf-like structure). Identifying these additional structures is
the subject of the present section.
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3.1. The Hopf monad associated with the universal enveloping algebra

Let (A, g) be a Lie algebroid. We have seen that U(g) is a bialgebroid. It actually has a very
specific feature: source and target maps A → U(g) are the same. Therefore, the forgetful functor
U : U(g)-mod −→ A-mod is strong monoidal (recall that U(g) being a bialgebroid its category of
left modules is monoidal, see e.g. [3] and references therein)6.

Observe that U has a left adjoint: F : U(g)⊗
A
− : A-mod −→ U(g)-mod. Moreover, U being strong

monoidal, then its left adjoint F is colax monoidal and hence the monad T := UF is a Hopf monad

in the sense of [17]: it is a monad in the 2-category OpMon having monoidal categories as objects,
colax monoidal functors as 1-morphisms and natural transformations of those as 2-morphisms.

3.1.1. The dual Hopf comonad associated with the jet algebra

Notice that the strong monoidal functor U also has a right adjoint G := HomA-mod

(
U(g),−), which

is lax monoidal. Going along the same lines as above one sees that S := UG (which is right adjoint
to T ) is a Hopf comonad, meaning that it is a comonad in the 2-category Mon having monoidal
categories as objects, lax monoidal functors as 1-morphisms and natural transformations of those as
2-morphisms.

Finally recall that HomA-mod

(
U(g),−) ∼= J(g)⊗̂

A
−, where the A-bimodule structure on J(g) is the

one described in §2.2.3. Notice that, on the one hand, the lax monoidal structure on S is given by
the coproduct on U(g), and thus by the product on J(g):

(
J(g)⊗̂

A
−
)
⊗A

(
J(g)⊗̂

A
−
)
∼=
(
J(g)⊗A J(g)

)
⊗̂

A⊗A
(− ⊗−) =⇒ J(g)⊗̂

A
(− ⊗A −) .

On the other hand, the comonad structure on S is given by the product on U(g), and hence by the
coproduct on J(g):

J(g)⊗̂
A
− =⇒

(
J(g)⊗̂

A
J(g)

)
⊗̂
A
− ∼= J(g)⊗̂

A

(
J(g)⊗̂

A
−
)
.

3.2. The Hopf (co)monad associated with a closed embedding

Similarly to the above, the left adjoint i!, resp. the right adjoint i∗, to the strong monoidal functor
i∗ is colax monoidal, resp. lax monoidal. Hence i∗i! is a Hopf monad and i∗i∗ is a Hopf comonad.

We already know (see §2.4 and §2.5) that there are isomorphisms of functor i∗i∗ ∼= UG and
i∗i! ∼= UF whenever (A, g) = (O

X̃
, T
X̃/Y

). It remains to be shown that the Hopf (co)monad structures

coincide.

3.2.1. The Hopf comonad associated with a morphism of algebras

In this § functors are not derived. Let B→ A be a morphism of (sheaves of dg-)algebras. The strong
monoidal (dg-)functor A⊗B − : B-mod→ A-mod admits the “forgetful” functor A-mod→ B-mod
as a right adjoint, which is then lax monoidal. Again, this turns A⊗B − : A-mod → A-mod into a

6The forgetful functor usually goes to A-bimodules, but here its essential image is the monoidal subcategory consisting
of those bimodules which have the same underlying left and right module structure. It is isomorphic to the monoidal
category of A-modules.
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(dg-)Hopf comonad. Notice that the lax monoidal structure (A⊗B−)⊗A (A⊗B−)⇒ A⊗B (−⊗A−)

is given by the product of A while the comonad structure A⊗B −⇒ A⊗B (A⊗B −) is given by the
morphism A→ A⊗B A, a 7→ a⊗ 1.

Observe that this Hopf comonad can be seen as the Hopf comonad associated with a Hopf algebroid
in a similar way to what happens with the jet algebra. Namely, the algebra A⊗BA is equipped with
two obvious algebra maps A→ A⊗B A and a coproduct

∆ : A⊗B A −→ (A⊗B A)⊗
A
(A⊗B A) ∼= A⊗B A⊗B A

a⊗ a ′ 7−→ a⊗ 1⊗ a ′

which satisfy (similarly to J(g)) the axioms of a cogroupoid object in (sheaves of dg-)commutative
algebras. This proves the functor (A ⊗B A) ⊗

A
− : A-mod → A-mod with the structure of a Hopf

comonad: as in the case of J(g), the lax monoidal structure comes from the product of A⊗B A while
the comonad structure comes from its coproduct.

Proposition 3.1. There is a natural isomorphism A⊗B −→̃(A⊗B A)⊗
A
− of Hopf comonads.

Proof. Let M be an A-module. One observes that the natural isomorphism A⊗B M→̃(A⊗B A)⊗
A
M

is given by a ⊗ m 7→ a ⊗ 1 ⊗ m and obviously commutes with the comonad and lax monoidal
structures.

3.2.2. Identifying i∗i∗ and UG as Hopf comonads

Proposition 3.2. Let B→ A and g be as in Example 2.1. Then the dg-algebra morphism

A⊗B A −→ J(g)

introduced in Example 2.3 is a dg-Hopf algebroid morphism.

Proof. Straightforward.

Let A = O
X̃
and g = T

X̃/Y
. Then it follows from Theorem 2.10 that A⊗B A → A⊗̂BA ∼= J(g) is a

quasi-isomorphism. Recall that A ⊗B A = O
X̃×Y X̃

and A⊗̂BA = O
(∞)
∆ . The next result then follows

from Propositions 3.1 and 3.2.

Theorem 3.3. There is a natural quasi-isomorphism π∗π∗ ⇒ S of dg-Hopf comonads on O
X̃
-mod.

If one denotes by the same symbols dg-functors and the induces functors on the homotopy category,
one then has

Corollary 3.4. The Hopf comonads i∗i∗ and S on D(X) are natually isomorphic. Therefore their

respective left adjoint Hopf monads i∗i! and T are isomorphic too.
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4. Obstructions

In this section we present the second construction of a certain Lie-type structure on N[−1] associated
to a closed embedding i : X →֒ Y of smooth algebraic varieties. In spirit this construction might be
thought of as obtained from the one of Section 2 by applying homological transfer technique. Indeed
we shall end up with a strong homotopy Lie (or L∞-) algebroid structure on N[−1].

4.1. X
(∞)
Y versus X

(∞)
N

Let k be either a positive integer or ∞, and denote by X
(k)
Y the k-th infinitesimal neighbourhood of

X into Y, where by convention X
(∞)
Y := lim−→X

(k)
Y . We borrow the notation from Subsection 2.3. Notice

in particular that i∗OX = OY/J and i∗N
∨ = J/J2.

Lemma 4.1. The canoncial isomorphism gr
(
O
(1)
X

)
−→ i∗OX ⊕ i∗N

∨ is multiplicative.

Let Ui0 be an affine open subset of Y, and denote by ρi0 : Ui0 →֒ Y the embedding morphism.
There exists a filtered isomorphism of algebras

Φi0 : ρ∗i0

(
O
(∞)
X

)
−→ ρ∗i0

(
Ŝi∗OX

(
i∗N

∨
))

such that gr≤1
(
Φi0

)
is the isomophism appearing in Lemma 4.1. Let Ui0 and Ui1 be two such open

subsets, and denote by Φi0 and Φi1 the associated isomorphisms. On the intersection Ui0i1 , we get
an automorphism

Φi0i1 := Φi1 ◦Φ
−1
i0

: ρ∗i0i1

(
Ŝi∗OX

(
i∗N

∨
))

−→ ρ∗i0i1

(
Ŝi∗OX

(
i∗N

∨
))

where ρi0i1 denotes the embedding morphism Ui0 ∩ Ui1 →֒ Y. It moreover has the property that
gr≤1

(
Φi0i1

)
, which is an automorphism of ρ∗i0i1 (i∗OX ⊕ i∗N

∨), is the identity.

Let U := {Ui0 }i0∈I be an open affine covering of Y, so that we have local trivializations Φi0 (i0 ∈ I).
Then the collection of isomorphisms {Φi0i1 }(i0,i1)∈I2 forms a non-abelian 1-cocycle of the sheaf of groups

Aut+
(
Ŝi∗OX

(i∗N
∨)
)
consisting of those automorphisms Φ of Ŝi∗OX

(i∗N
∨) such that gr≤1

(
Φ
)
= id.

Let us denote by Der+
(
Ŝi∗OX

(i∗N
∨)
)
the sheaf of Lie algebras consisting of those derivations θ of

Ŝi∗OX
(i∗N

∨) satisfying gr≤1
(
θ
)
= 0. The exponential map

exp : Der+
(
Ŝi∗OX

(i∗N
∨)
)
−→ Aut+

(
Ŝi∗OX

(i∗N
∨)
)

is an isomorphism.

4.2. Homotopy Lie algebroid structure on N[−1]

Let X be a topological space, and let U be an open covering of X. For a sheaf of abelian groups F
on X, we denote by C∗

TW(F) the Thom-Whitney resolution of F associated to the covering U. Basic
properties of the functor C∗

TW are recalled in the Appendix A.

16



Definition 4.2. Let E be a finitely generated locally free sheaf on a smooth algebraic variety X. An
L∞-algebroid structure on E[−1] is a k-linear filtered derivation Q of degree one on the differential
graded algebra ŜC∗

TW
(OX)(C

∗
TW(E∨)) such that (dTW +Q)2 = 0, where dTW is the original differential.

It is called minimal if gr≤1(Q) = 0.

In other words, an L∞-algebroid structure is a Maurer-Cartan elementQ in Der
(
ŜC∗

TW
(OX)

(
C∗
TW(E∨)

))
.

In the following we shall only consider minimal L∞-algebroids which are Maurer-Cartan elements in

Der
(
ŜC∗

TW
(OX)

(
C∗
TW(E∨)

))
.

SinceQ is a k-linear derivation, it is uniquely determined by its restriction to the subspaces C∗
TW(OX)

and C∗
TW(E∨). On these subspaces Q is the direct product of the following maps

ak : C
∗
TW(OX)→

(
C∗
TW(E∨)

)k
and

lk : C
∗
TW(E∨)→

(
C∗
TW(E∨)

)k
.

These maps are both of homological degree one. The minimality condition implies that a0 = 0,
l0 = l1 = 0. Thus they induce an actual Lie algebroid structure on the pair (OX, E[−1]) in D

¯
(kX)

7.The
equation (dTW +Q)2 = 0 implies a system of quadratic relations among ak and lk’s. The first few of
them are

[dTW, a1] = 0

[dTW, a2] + l2 ◦ a1 = 0

[dTW, l2] = 0

[dTW, l3] + (l2 ⊗ id+ id⊗l2) ◦ l2 = 0

The first and the third equations imply that both a1 and l2 are cochain morphisms. We also observe
that there are more structure maps due to the fact that Q is a derivation. This gives, for each k ≥ 1,
the equation

[lk, e(f)] = e(ak−1(f))

where e(−) is the operator given by multiplication by −. The following lemma is a direct consequence
of the above identities.

Lemma 4.3. Let E[−1] be a L∞ Lie algebroid over X such that a1 and a2 vanish. Then E[−1] is a

Lie algebra object in the symmetric monoidal category D(X).

Proof. Using the above compatibilities, one sees that the vanishing of a1 implies l2 is OX-linear, and
the vanishing of a2 implies that l3 is OX-linear, which gives the Jacobi identity.

Later we will be able to give a geometric interpretation for the vanishing of a1 and a2 in the case
of N[−1] associated to i : X →֒ Y, see Proposition 4.6.

Proposition 4.4. Let i : X →֒ Y be a closed embedding of smooth algebraic varieties. Then there

is a minimal L∞-algebroid structure on N[−1] such that its Chevalley-Eilenberg algebras is quasi-

isomorphic to O∞

X .

Proof. We apply Theorem A.6 in the case A = ŜOX
N∨, T+A = Der+

(
ŜOX

N∨
)
, B = O∞

X , and the
1-cocycle Φ constructed in the previous subsection.

7It coincides with the one induced from TX̃/Y .
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4.3. Obstructions

The structure maps of the L∞ algebroid N[−1] can be used to describe various cohomology obstruc-

tions when comparing X
(k)
N with X

(k)
Y . Let us set

F :=
(
ŜC∗

TW
(OX)

(
C∗
TW(N∨)

)
, dTW +Q

)

the Chevalley-Eilenberg algebra of N[−1] defined in Proposition 4.4. Observe that since gr(Φi0i1) =

0, the operator Q preserves the augmentation ideal F+ consisting of symmetric tensors of degree
at least 1. Thus F+ is a differential ideal in F. We define a quotient differential graded algebra
F(k) := F/(F+)k+1 for each k ≥ 0. By Theorem A.6 we have a quasi-isomorphism

O
(k)

X/Y
→ F(k).

4.3.1. Splittings of X →֒ X
(k)
Y

Let sk : X
(k)
Y → X be a splitting of the embedding X →֒ X

(k)
Y . We again use sk : OX → O

(k)
X to denote

the corresponding morphism on rings. In this case when forming the cocycle Φ we can further require
that Φi0 to fill the following commutative diagram

O
(k)
X |Ui0

Φ
(k)
i0−−−−→ S

≤k
OX
N∨ |Ui0

sk

x
x

OX |Ui0
OX |Ui0

where the right vertical arrow is the obvious inclusion map. This restriction implies that the corre-
sponding derivations Ti0i1 is contained in the subset of Der+

(
ŜOX

N∨
)
consisting of derivations such

that the component
OX → SiN∨

vanishes for all 0 ≤ i ≤ k. Observe that this is a Lie subalgebra due to the minimality condition. We
shall call such a 1-cocycle Φ compatible with sk.

IfΦ is a 1-cocycle compatible with sk, then we have a corresponding homotopy L∞ algebra structure
on N[−1]. Recall from Lemma A.5 that the operator Q is the image of a Maurer-Cartan element θ
under the morphism

α : C∗
TW

(
Der

(
ŜOX

N∨
))
→ Der

(
C∗
TW(ŜOX

N∨)
)

defined in loc. cit.. Hence the structure maps ak and lk, being the component maps of Q, also lies
in the image of α. If we denote by θ0,k and θ1,k the components of θ such that

θ0,k ∈ C∗
TW

(
Der

(
OX, (N

∨)k
))
, and

θ1,k ∈ C∗
TW

(
HomkX

(
N∨, (N∨)k

))
,

then we have
ak = α(θ

0,k), and lk = α(θ
1,k).
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Lemma 4.5. Let sk : OX → O
(k)
X be a splitting, and let Φ be a 1-cocycle compatible with sk. Let

ai = α(θ
0,i) be the associated structure maps in the L∞ algebroid structure on N[−1]. Then we have

θ0,i = 0 and ai = 0 for 0 ≤ i ≤ k. Moreover both ak+1 and θ0,k+1 are cocycles.

Proof. The vanishing of θ0,i and ai is clear from the definition. Now let us show that θ0,k+1 is a
cocycle. Indeed since θ satisfies the Maurer-Cartan equation, we have

[dTW, θ
0,k+1] +

∑

i+j=k+2

θ1,j ◦ θ0,i = 0.

Due to minimality condition the sum above is over j ≥ 2, which in particular implies that i ≤ k.
Hence the sum

∑
i+j=k+2 θ

1,j ◦ θ0,i vanishes, and so we get

[dTW, θ
0,k+1] = 0.

This proves that θ0,k+1 is a cocycle. Since ak+1 is the image of θ0,k+1 under the cochain map α, it is
also a cocycle.

Thus the element θ0,k+1 is a degree one cocycle in the complex C∗
TW

(
Der

(
OX, (N

∨)k
))

. Its class

[θ0,k+1] is then a class in Ext1(Sk+1N, TX). Similarly the class [ak+1] is in the first cohomology group
H1

(
Hom(C∗

TW(Sk+1OX
N), TC∗

TW
(OX))

)
. It is plausible the two cohomology groups are in fact isomorphic,

but the authors do not know a proof of this claim.

Proposition 4.6. Assume that we are in the same setup as Lemma 4.5, then the following are

equivalent:

(A) there exists a splitting sk+1 : OX → O
(k+1)
X lifting sk;

(B) the cohomology class [θ0,k+1] ∈ Ext1(Sk+1N, TX) vanishes;

(C) the cohomology class [ak+1] ∈ H
1
(
Hom(C∗

TW(Sk+1OX
N), TC∗

TW
(OX))

)
vanishes.

Proof. • (A)⇒ (B): Assuming (A), we can choose another 1-cocycle Φ ′ to be compatible with sk+1,
which in particular implies that it is compatible with sk. Denote by θ ′ the corresponding Maurer-
Cartan element. Since different choices of Φ give rise to gauge equivalent Maurer-Cartan element by
Corollary A.4, there exist a degree zero element η in the differential graded Lie algebra C∗

TW(g) such
that

eη ∗ θ ′ = θ

where g is the Lie subalgebra of Der+(ŜOX
N∨) whose (0, i) components vanishes for 0 ≤ i ≤ k.

Writing out the above equation in the (0, k + 1)-component implies that

[dTW, η
0,k+1] = θ(0,k+1).

This proves (B).
• (B)⇒ (C): It suffices to note that on the chain level we have ak+1 = α(θ

(0,k+1)).
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• (C)⇒ (A): Assume that ak+1 = [dTW, h] for some degree zero h ∈ Hom(C∗
TW(Sk+1OX

N), TC∗
TW

(OX)).
We define a morphism

s̃k+1 : F
(0) → F(k+1)

by sk+1(f) := f + h(f). Recall that F
(k) is the k-truncation of F :=

(
ŜC∗

TW
(OX)

(
C∗
TW(N∨)

)
, dTW +Q

)
.

One checks that s̃k+1 is a morphism of differential graded algebras. Moreover the composition

F(0) s̃k+1→ F(k+1)
։ F(k)

is simply f 7→ f. Thus the induced map on cohomology gives a map of algebras

sk+1 : OX → O
(k+1)
X

that lifts the splitting map sk.

Corollary 4.7. Let i : X → Y be an embedding of smooth algebraic varieties. Assume that there

exists a splitting s2 of the natural morphism X →֒ X(2). Then N[−1] is a Lie algebra object in the

symmetric monoidal category D(X).

Proof. This is a consequence of Proposition 4.6 and Lemma 4.3.

Remark 4.8. The Lie structure on N[−1] depends on the choice of s2.

4.3.2. When is X
(k)
N isomorphic to X

(k)
Y

Let us assume that there is an isomorphism tk−1 : X
(k−1)
N

∼= X
(k−1)
Y . We would like to understand when

tk−1 lifts to an isomorphism between X
(k)
N and X

(k)
Y .

First note that the isomorphism tk−1 induces a splitting sk−1 : X
(k−1)
Y → X. Hence we can use

Proposition 4.6 to analyze the lifting of sk−1 to a splitting sk, which should necessarily exist if tk−1
lifts. Thus in the following we assume that there is a splitting sk : X

(k)
Y → X compatible with tk−1 in

the sense that the induced splitting from tk−1 agrees with that of sk.
Given a compatible pair (tk−1, sk) as above, we can require the isomorphisms Φi0 to be compatible

with (tk−1, sk) in the sense that it is compatible with sk, and that there is a commutative diagram.

O
(k−1)
X |Ui0

Φ
(k−1)
i0−−−−→ S

≤k−1
OX

N∨ |Ui0

tk−1

x
∥∥∥

S
≤k−1
OX

N∨ |Ui0
S
≤k−1
OX

N∨ |Ui0

The corresponding 1-cocycle Φi0i1 is then called compatible with (tk−1, sk).

Lemma 4.9. Let (tk−1, sk) be a compatible pair, and let Φ be a compatible 1-cocycle as described

above. Then we have ai = 0 for all 0 ≤ i ≤ k, and li = 0 for all 0 ≤ i ≤ k − 1. Moreover the

morphism lk is a cocycle.
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Proof. The proof is similar to that of Lemma 4.5. Indeed the vanishing of ai and li follow from
definition while the identity [dTW, lk] = 0 follows from the Maurer-Cartan equation (dTW +Q) = 0

and the vanishing of lower degree ai’s and li’s.

The morphism lk is a degree one cocycle in the complex HomC∗
TW

(OX)

(
C∗
TW(N∨), C∗

TW(SkOX
N∨)

)
.

Since the functor TW is monoidal this complex computes Ext∗X(N
k,N).

Proposition 4.10. Let the setup be the same as in Lemma 4.9. Then the following are equivalent:

(A) the class [lk] ∈ Ext1X(N
k,N) vanishes;

(B) the isomorphism tk−1 lifts to an isomorphism tk : S
≤k
OX
N∨ → O

(k)
X .

Proof. • (A) ⇒ (B): Assume that lk = [dTW, h] for some degree zero morphism h in the morphism
complex HomC∗

TW
(OX)

(
C∗
TW(N∨), C∗

TW(SkOX
N∨)

)
. We can then define a morphism of algebras t̃k :

C∗
TW(SkOX

N∨)→ F(k) by formula id+h. Notice that this is a morphism of algebras since h has image

in Sk. That it also commutes with differential is a computation using Lemma 4.9 and the identity
[dTW, h] = lk. Thus the induced map on cohomology defines a required lifting. Note that it lifts tk−1
since id+h modulo Sk is just id.

• (B)⇒ (A): Assuming that there exists such a lifting, then we can choose a different cocycle Φ ′

such that the corresponding structure maps satisfy ai = 0 and li = 0 for all 0 ≤ i ≤ k. Same as in
the proof of Proposition 4.6, we can use the fact that Φ and Φ ′ are gauge equivalent to show that lk
is exact.

Remark 4.11. Similar obstruction classes as in Proposition 4.6 and Proposition 4.10 were discussed
in [1, Proposition 2.2] and [1, Corollary 3.4 & Corollary 3.6] using complex analytic methods. The
existence of such classes can be formulated using the language of gerbes and stacks, see for example [14,
Section 4]. Its relationship with an L∞-algebroid structure seems to be new.

A. Deformation theory of sheaves of algebras

Let k be a base field which is of characteristic zero. All algebras are k-algebras, and derivations
of algebras are k-linear. In this section we recollect basic facts on the folklore that deformations
of a sheaf of commutative algebras A is governed by a differential graded Lie algebra resolving the
tangent lie algebra TA. To ensure convergence we restrict to a pronilpotent Lie subalgebra T+A of TA,
and assume that the exponential map

exp : T+A → Aut(A)

is well-defined. We denote the image exp(T+A ) by Aut+(A). This is a sheaf of prounipotent groups.

A.1. Flasque resolutions of sheaves of algebras

Let U := {Ui}i∈I be an open cover of a topological space X. For an open subset Ui ⊂ X we denote by
ρi the inclusion Ui →֒ X. For a multi-index I = (i0, · · · , ik) ∈ Ik+1 we denote by UI the intersection
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Ui0 ∩ · · ·Uik , and by ρI the inclusion UI →֒ X. Associated to this data is a simplicial space

U• :=


· · ·

∐

I∈Ik+1

UI · · ·
→→→

∐

(i0,i1)∈I2

Ui0,i1 ⇒

∐

i0∈I

Ui0


 .

Let A be a sheaf of algebras on a topological space X. We get a cosimplicial sheaf of algebras

A•
U :=


∐

i0∈I

(ρi0)∗(ρi0)
∗A ⇒

∐

(i0,i1)∈I2

(ρi0,i1)∗(ρi0,i1)
∗A
→→→ · · · · · ·

∐

I∈Ik+1

(ρI)∗(ρI)
∗A




on X. Its global sections A•
U(X) form a cosimplicial algebra.

The (sheaf version) Čech complex C∗(U,A) := Tot(A•
U) (or simply C∗(A)) of the cosimplicial sheaf

of algebras A•
U gives a flasque resolution of A. We denote by C∗(A) its global sections which form

a differential graded algebra. However if A were commutative, the Čech resolution C∗(A) is not
commutative. For purposes of this paper we need to consider commutative (or Lie) resolution of
sheaves of commutative (Lie respectively) algebras. Since the Čech resolution does not respect the
symmetric monoidal structure, we need to use a better resolution.

A.1.1. Thom-Whitney complex

We now describe a symmetric monoidal functor TW from cosimplicial cochain complexes to cochain
complexes. We refer to the Appendix in [9] for a more detailed discussion. Given a cosimplicial
cochain complex V• = V0 ⇒ V1 →→→ V2 · · · , we define a cochain complex TW(V•) by

TW(V•) := eq



∏

n

Vn ⊗Ω∗
∆n

ϕ∗⊗id

−−−−→
−−−−→
id⊗ϕ∗

∏

ϕ∈∆([k],[l])

Vk ⊗Ω∗
∆l


 .

The cochain complex TW(V•) is quasi-isomorphic to Tot(V•). In fact there is an homotopy retrac-
tion between the two complexes

I : Tot(V•)→ TW(V•)

P : TW(V•)→ Tot(V•)

H : TW(V•)→ TW(V•)

where the maps I, P and H are given by explicit formulas.
The functor TW provides a nice (i.e. functorial) way of describing homotopy limits of cosimplicial

diagrams within the category of cochain complexes. Being symmetric monoidal it sends commuta-
tive, Lie and associative cosimplicial dg-algebras to commutative, Lie and associative dg-algebras,
respectively. It also sends cosimplicial dg-modules (over a cosimplicial dg-algebra) to dg-modules,
and preserves the tensor product of those (because TW commutes with finite colimits, and thus with
push-outs). Observe that TW extends to complete topological cochain complexes, with the completed
tensor product ⊗̂ as monoidal product.
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Given a sheaf of algebras A and an open cover U, we have a cosimplicial sheaf of algebras A•
U

as described above. Applying the Thom-Whitney functor (in the category of sheaves) we get a
quasi-isomorphism of sheaves of differential graded algebras

A −→ C∗(U,A) = Tot(A•
U)

I
−→ TW(A•

U).

This provides a flasque resolution of A as soon as A is flasque on every open subset Ui0 . In the
following we use the notation C∗

TW(U,A) (or simply C∗
TW(A)) to denote the Thom-Whitney resolution.

Its global sections will be denoted by C∗
TW(A). Due to the monoidal properties of the functor TW,

the resolution C∗
TW(A) is commutative (or Lie) whenever A is.

A.1.2. The Totalization functor

We will need to descibe another kind of homotopy limit. Namely, there is a functor Tot 8 from
cosimplicial simplicial sets to simplicial sets defined, on a given cosimplicial simplicial set X•, by

Tot(X•) := eq


∏

n

(Xn)∆
n

ϕ∗

−−→
−−→
ϕ∗

∏

ϕ∈∆([k],[l])

(Xk)∆
l


 .

Notice that (Xk)∆
l
= Xkl , where we put the simplicial degree in the lower index. The functor Tot

provides a nice way of describing homotopy limits of cosimplicial diagrams within the category of
simplicial sets.

A.2. Maurer-Cartan elements versus non-abelian 1-cocycles

We shall define two groupoids naturally associated to a cosimplicial pronilpotent Lie algebra g•.
Recall the Maurer-Cartan set MC(g) of a pronilpotent differential graded Lie algebra is defined by

MC(g) :=
{
θ ∈ g1 | dθ+

1

2
[θ, θ] = 0

}
.

A degree zero element a ∈ g0 acts on the set MC(g) by

θ 7→ ea ∗ θ := ead(a)(θ) −
ead(a) − 1

ad(a)
(da).

The Deligne groupoid Del(g) of g is the action groupoid associated to this action. We define the
Deligne groupoid of a cosimplicial pronilpotent Lie algebra g• to be Del(TW(g•)).

The second groupoid Z1(exp(g•)) associated to g• is defined as follows. We denote by G• := exp(g•)

the cosimplicial prounipotent group associated to g• 9. The set of objects of Z1(exp(g•)) is the set of
nonabelian 1-cocycles, i.e. T ∈ g1 such that e∂0(T)e−∂1(T)e∂2(T) = id. An element a ∈ G0 acts on the
set of nonabelian 1-cocycles by

eT 7→ e−∂1(a)eTe∂0(a).

We define Z1(exp(g•)) to be the groupoid associated to this action.

8We used the same notation Tot when forming total complexes, but this should not cause any confusion.
9As a set G is g and the group structure is given by the Campbell-Hausdorff formula.
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Theorem A.1. Let g• be a cosimplicial pronilpotent Lie algebra and G• := exp(g•) the corresponding

cosimplicial k-prounipotent group. Then there is an equivalence

Del(TW(g•)) ∼= Z1(exp(g•)).

Proof. We start with some recollection of homotopy theory. We temporary forget about sheaves and
let g be a pronilpotent Lie algebra, and G := exp(g). We consider the two following simplicial sets:
the nerve N(G) :=

(
· · ·G2 →→→ G⇒ ∗

)
of the group G and the simplicial set MC•(g) defined by

MC•(g) := MC (Ω∆•⊗̂g) =

{
θ ∈ Ω1

∆•⊗̂g
∣∣∣ddR(θ) +

1

2
[θ, θ] = 0

}
.

Lemma A.2 (Folklore). N(G) is weakly equivalent to MC•(g).

Sketch of proof. We construct an explicit map e : MC•(g) −→ BG. Any θ ∈ MCn(g) determines a
flat connection ∇θ := ddR + θ on the trivial G-bundle over ∆n. We then define an element e(θ) ∈ Gn

as follows: recalling that the vertices of ∆n are labelled by {0, . . . , n}, we define e(θ)i, i ∈ {1, . . . , n},
to be the holonomy of ∇θ along the segment joining i − 1 to i. It turns out that e induces a weak
equivalence MC•(g)→ N(G).

Now let g• be a cosimplicial pronilpotent Lie algebra, so that G• = exp(g•) is a cosimplicial group.

Lemma A.3. There is a natural weak equivalence

Tot (MC•(g
•)) ∼= MC• (TW(g•)) .

Sketch of proof. One knows that this is true for nilpotent Lie algebras after [10, Theorem 4.1]. The
pronilpotent case comes from the fact that the functor MC commutes with limits, as well as small
limits mutually commute.

The above lemma, together with the fact that π≤1
(
Tot

(
N(G•)

))
= Z1(G•), give the result.

A.3. Deformations of sheaves of algebras

Back to the geometric situation, we consider the cosimplicial pronilpotent Lie algebra g• = T+•
A (X).

Its corresponding sosimplicial prounipotent Lie group G• which governs the (positive) deformation
theory of the sheaf A. Indeed objects of Z1(G•) are non-abelian 1-cocycles, i.e. a collection {Φi0i1}

such that Φi0i1 ∈ Aut+(A) |Ui0i1
and on Ui0i1i2 we have

Φi2i0 ◦Φi1i2 ◦Φi0i1 = id .

Two such deformations are equivalent if one can be transformed to the other by an element (Ψi0)i0∈I
of the non-abelian Čech 0-cochains acting on non-abelian 1-cocycles by

(Φi0i1) 7→ (Ψ−1
i1

◦Φi0i1 ◦ Ψi0).

Thus Theorem A.1 implies the following corollary.

Corollary A.4. There is an equivalence of groupoid

Del
(
C∗
TW(T+A )

)
∼= Z1

(
exp(T+•

A (X)
)
.
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A.4. Deformation of flasque resolutions

Let {Φi0i1 = exp(Ti0i1)} be a non-abelian 1-cocycle in G1. Using Φi0i1 ’s to glue local piece A |Ui0
we

get another sheaf of algebras which is locally isomorphic to A, but not globally. We denote this new
sheaf of algebras by B. Since the sheaf C∗

TW(A) is a flasque resolution of A, it is natural to ask how
to deform this flasque resolution to give a flasque resolution of B.

By Corollary A.4, there is a Maurer-Cartan element θ in the differential graded Lie algebra C∗
TW(T+A )

corresponding to the non-abelian 1-cocycle Φ. This element may be considered as an operator Q
acting on C∗

TW(A) thanks to the following Lemma.

Lemma A.5. There is a morphism of differential graded Lie algebras

α : C∗
TW(T+A )→ Der

(
C∗
TW(A), C∗

TW(A)
)
.

Proof. Using that Der(A) acts on A together with the monoidal structure of TW, we get a cochain map
C∗
TW(T+A )⊗C

∗
TW(A)→ C∗

TW(A), which leads to α : C∗
TW(T+A )→ End

(
C∗
TW(A)

)
. It is a straightforward

computation to check that α is a Lie algebra map and that its image lies in derivations.

We denote by Q := α(θ) the operator associated to θ corresponding to the non-abelian 1-cocycle
Φ. Thus Q is a Maurer-Cartan element of the differential graded Lie algebra Der(C∗

TW(A)), which
implies that we can deform the differential d on C∗

TW(A) to d+Q. Similarly, on the level of sheaves,
we get a deformation of C∗

TW(A) whose differential will again be denoted by d+Q.

Theorem A.6. There is a quasi-isomorphism

B→
(
C∗
TW(A), d +Q

)

of sheaves of differential graded algebras.

Proof. For each i ∈ I, we first show that the cohomology of
(
C∗
TW(A), d+Q

)
|Ui

is quasi-isomorphic to
Ai. For this we apply Corollary A.4 on Ui using the covering {Ui ∩Ui0 }i0∈I. Observe that the 1-cocycle
Φ |Ui

is isomorphic to the trivial cocycle by the gauge transformation defined by the degree 0 element
{Φii0}i0∈I. By Corollary A.4 we conclude that the Maurer-Cartan section θ corresponding to Φ, when

restricted to Ui, is gauge equivalent to 0 via a unique element ai ∈ C0TW(T+A )(Ui) (corresponding to
the gauge transformation {Φii0}i0∈I) such that

eai ∗ (0) = θ |Ui
.

Moreover the degree zero Thom-Whitney cochain ai is of the form
(∏

i0∈I
Tii0 , · · ·

)
. This latter

assertion follows from the proof of [10, Theorem 4.1]. Via the representation α we get an isomorphism
of complexes of sheaves

(
C∗
TW(A), d

)
|Ui

α(eai )
−→

(
C∗
TW(A), d +Q

)
|Ui
.

The complex on the left hand side is quasi-isomorphic to Ai via composition

Ai −−−−→ C∗(A) |Ui

I
−−−−→

(
C∗
TW(A), d

)
|Ui
.

Let Ui and Uj be two open subsets in the covering U. we consider the following diagram of maps on
the intersection Uij
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A |Uij
−−−−→ C∗(A) |Uij

I
−−−−→

(
C∗
TW(A), d

)
|Uij

α(eai )
−−−−→

(
C∗
TW(A), d +Q

)
|Uij

id

y

A |Uij
−−−−→ C∗(A) |Uij

P←−−−−
(
C∗
TW(A), d

)
|Uij

α(e
−aj )

←−−−−−
(
C∗
TW(A), d +Q

)
|Uij

.

We can use this diagram to calculate the induced gluing map on the cohomology of the sheaf(
C∗
TW(A), d+Q

)
. Using explicit formulas for I, P, and the fact that ai is of the form

(∏
i0∈I

Tii0 , · · ·
)
,

we conclude that this gluing map is Φij. The proof is complete.
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