NAME: Uri Andrews
STUDENT ID:
INSTRUCTOR: Uri Andrews
TA:

<p>| Grading Table |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Possible Points</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Please read these instructions carefully before beginning.

1. Do not open the exam until 5:30. You will have 90 minutes to complete the exam.

2. Final answers must be written clearly in the proper space provided. No credit will be given for illegible or ambiguous answers. Answers with no justification will not be given credit.

3. No notes, calculators, or electronic devices are permitted.
1. (10 points) Compute the following definite integrals by computing the area of the corresponding region of the plane.

(a) \[ \int_{-2}^{2} (5 - \sqrt{4 - x^2}) \, dx \]

\[ A = 5 \cdot 4 - \frac{1}{2} \pi \cdot 2^2 = 20 - 2\pi \]

(b) \[ \int_{-1}^{1} (3 - |x|) \, dx \]

\[ A = 4 \cdot \frac{1}{2} \]  
\[ B = 2 \cdot \frac{1}{2} = 1 \]

\[ \int_{-1}^{1} (3 - |x|) \, dx = 4 + 1 = 5 \]
2. (15 points) Show that the function \( f(x) = x^3 + \frac{4}{x} + 7 \) has exactly one zero on the interval \((-\infty, 0)\).

Be clear about which theorems you are using (if you use any).

\[
f(-5) = -125 + \frac{4}{-5} + 7 < 0
\]
\[
f(-1) = -1 + \frac{4}{-1} + 7 > 0
\]

By the intermediate value theorem, since \( f \) is continuous on \([-5, -1]\), there is a zero of \( f \) in \((-5, -1)\).

Suppose there were 2 zeros in \((-\infty, 0)\); \( a_1, a_2 \).

Then by Rolle's Theorem (since \( f \) is differentiable on \((a_1, a_2) \) and continuous on \([a_1, a_2]\))

there would be \( c \in (a_1, a_2) \) so that \( f'(c) = 0 \).

But \( f'(c) = 3c^2 - \frac{4}{c^3} \), which is positive for \( c < 0 \).

This contradiction shows that our supposition is false.
3. (15 points) Using Riemann Sums, evaluate the following definite integral

\[ \int_{1}^{3} x^2 \, dx = \lim_{n \to \infty} \sum_{k=0}^{n-1} \frac{3}{n} \left( 1 + \frac{2}{n} \cdot k \right)^2 \]

= \lim_{n \to \infty} \frac{3}{n} \sum_{k=0}^{n-1} \left( 1 + \frac{4}{n} \cdot k + \frac{4}{n^2} k^2 \right)

= \lim_{n \to \infty} \frac{3}{n} \left( n + \frac{4}{n} \cdot \frac{n(n-1)}{2} + \frac{4}{n^2} \cdot \frac{(n-1)(n)(2n-1)}{6} \right)

= \lim_{n \to \infty} \left( 2 + \frac{4(n-1)}{n} + \frac{8}{6} \cdot \frac{(n-1)(2n-1)}{n^2} \right)

= 2 + 4 + \frac{8}{3} = 6 + \frac{8}{3} = \frac{26}{3}.
4. (15 points) What are the dimensions of the rectangle of maximal area which can be inscribed (entirely contained) in the right triangle with side-lengths 3, 4 and 5.

\[ A = xy \]

\[ \frac{4-x}{y} = \frac{4}{3} \]

\[ 12 - 3x = 4y \]

\[ y = 3 - \frac{3}{4}x \]

\[ A = x \left( 3 - \frac{3}{4}x \right) \]

\[ \frac{dA}{dx} = \left( 3 - \frac{3}{4}x \right) + x \left( -\frac{3}{4} \right) \]

\[ = 3 - \frac{6}{4}x \]

\[ \frac{dA}{dx} = 0 \Rightarrow 3 - \frac{6}{4}x = 0 \]

\[ x = \frac{4 \cdot 3}{6} = 2 \]

\[ y = 3 - \frac{3}{4} \cdot 2 = 3 - \frac{3}{2} = \frac{3}{2} \]

First-deriv. test:

<table>
<thead>
<tr>
<th></th>
<th>x&lt;2</th>
<th>x=2</th>
<th>x&gt;2</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \frac{dA}{dx} )</td>
<td>+</td>
<td>-</td>
<td>|</td>
</tr>
</tbody>
</table>

So 2 is a maximum.
5. (15 points) Sketch the curve of the function \( f(x) = 8x^2 - x^4 \), labeling all local maxima, minima, and inflection points. Also, determine on what regions the function is increasing, decreasing, concave up, and concave down.

\[
\begin{align*}
  f'(x) &= 16x - 4x^3 \\
  f''(x) &= 16 - 12x^2 \\

  \text{Finding Critical Pts:} \\
  16x - 4x^3 &= 0 \\
  \Rightarrow x(16 - 4x^2) &= 0 \\
  4x(4 - x^2) &= 0 \\
  -4x(x-2)(x+2) &= 0 \\
  \Rightarrow k = 0, \ 2, -2 \\

  \text{Finding Inflection Pts:} \\
  16 - 12x^2 &= 0 \\
  x^2 &= \frac{16}{12} = \frac{4}{3} \\
  x &= \pm \frac{2}{\sqrt{3}} \\

\begin{array}{c|ccc}
\text{First Deriv. Test} & \text{At} & \text{f'} & \text{f''} & \text{At} \\
\hline
\leq x < -2 & - & - & + & x > 2 \\
-2 < x < 0 & - & + & + & 0 < x < 2 \\
0 < x < 2 & + & - & - & x > 2 \\
\end{array}

\begin{aligned}
  \text{Increasing:} & \quad (-\infty, -2) \cup (0, 2) \\
  \text{Decreasing:} & \quad (-2, 0) \cup (2, \infty) \\
  \text{Conc. Up:} & \quad \left( -\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}} \right) \\
  \text{Conc. Down:} & \quad \left( -\infty, -\frac{2}{\sqrt{3}} \right) \cup \left( \frac{2}{\sqrt{3}}, \infty \right) \\

  a = \frac{8 \cdot \frac{1}{3} \cdot \left( \frac{2}{\sqrt{3}} \right)^3}{9} = \frac{16}{9} - \frac{16}{9} = \frac{0}{9} \\
\end{aligned}

6. (15 points) Determine the following anti-derivatives.

(a) \( \int \sin(4x) \, dx \)

\[ -\frac{\cos(4x)}{4} + C \]

(b) \( \int \left( x^3 + \frac{3}{x^2} + \sqrt{x} \right) \, dx \)

\[ \frac{x^4}{4} - \frac{3}{x} + \frac{2}{3} \sqrt{x} + C \]

(c) \( \int \frac{t \sqrt{t} + \sqrt{t}}{t^2} \, dt \)

\[ = \int \frac{t^{7/2} + t^{1/2}}{t^2} \, dt \]

\[ = \int \left( t^{-1/2} + t^{-3/2} \right) \, dt = 2t^{1/2} + \left( -\frac{1}{2} t^{-1/2} \right) + C \]
7. (15 points) Find the absolute maximum and minimum of \( f(x) = x(x - 4)^2 \) on the closed interval \([2, 5]\).

\[
\begin{align*}
f'(x) &= (x - 4) + x \cdot 2(x - 4) \\
&= (x - 4)(x - 4 + 2x) = (x - 4)(3x - 4)
\end{align*}
\]

**Critical pts:** \( x = 4 \) \& \( \frac{4}{3} \) \( \not\in \text{ interval} \)

**Testing critical pts & endpoints:**

\[
\begin{align*}
f(2) &= 2 \cdot (2)^2 = 8 \leq \text{absolute max} \\
f(4) &= 0 \leq \text{absolute min} \\
f(5) &= 5 \cdot 1 = 5
\end{align*}
\]
Extra Credit (10 points) Prove that proposition $P_n$ is true for every natural number $n$.

$P_n := 3$ divides the number $n^3 + 2n$

By induction:

Base: $P_1$ says $3$ divides $1^3 + 2 = 1 + 2 = 3$ \(\checkmark\)

Step: Assume $P_n$. We have to show $P_{n+1}$.

i.e. We need to show that

$$3 \text{ divides } (n+1)^3 + 2(n+1)$$

i.e. $3$ divides $(n^3 + 2n) + (3n^2 + 3n + 1 + 2)$

$$= (n^3 + 2n) + (3n^2 + 3n + 3)$$

$3$ divides $(n^3 + 2n)$, since $P_n$ is assumed true,

$3$ divides $3n^2 + 3n + 3$,

so $3$ divides the sum

$$(n^3 + 2n) + (3n^2 + 3n + 3) = (n+1)^3 + 2(n+1)$$

Having assumed $P_n$, we showed $P_{n+1}$ to be true.

By induction, we showed $P_n$ for every $n$. 