1. Let the curve α be the boundary of the region $D = \{(x,y) : 0 \leq x \leq \pi, |y| \leq \sin x\}$. Compute the integral
 \[I = \int_{\alpha} x \, dy. \]

2. Let $D \subset \mathbb{R}^2$ be the interior of a simple closed curve α, and let \vec{n} be the outward unit normal on α. If $\vec{f}(x,y) = \left(\frac{x + \sin x}{2y + y\cos x} \right)$ then show that there is an integer k such that
 \[\int_{\alpha} \vec{f} \cdot \vec{n} \, ds = k \cdot \text{area}(D), \]
 and find the value of k.

3. Let $T \subset \mathbb{R}^2$ be the plane triangle with corners $(0,0)$, $(1,1)$ and $(3,1)$. Compute
 \[J = \iint_{T} (x^2 + y^2) \, dxdy. \]

4. Let β be any curve in \mathbb{R}^3 connecting the origin to the point $(3,4,-1)$. Compute
 \[\int_{\beta} x^2 \, dx + ydy - 2zdz. \]