MATH 376
Concerning the 2nd midterm

The subjects of this midterm are:

- Line integrals (again). See the review sheet from the 1st midterm.
- The transformation formula for double integrals
- Surface integrals
- Stokes’ Theorem

When studying for this exam you should do the problems from the homework, and those listed below. You should also study a few proofs (to be listed below).

Some sample problems

1 [Transformation formula] Let \(F : \mathbb{R}^2 \to \mathbb{R}^2 \) be the map given by \(F(u, v) = (2uv, u^2 - v^2) \).

(i) Let \(D \) be the image of the rectangle \(R = \{(u, v) \mid a \leq u \leq b, a \leq v \leq b\} \). Draw \(D \).

(ii) Compute the area of \(D \).

(iii) Compute the volume of the solid obtained by rotating the region \(D \) around the \(y \)-axis.

(iv) Find the moments of inertia of \(D \). (Look the formulas up in the book!)

2 [Integral in polar, spherical & cylindrical coordinates] Let \(S \) be the spherical shell \(S_{a,b} = \{(x, y, z) \mid a^2 \leq x^2 + y^2 + z^2 \leq b^2\} \).

(i) Compute the volume and moment of inertia

\[
I = \iiint_S (x^2 + y^2) \, dxdydz.
\]

(ii) Compute the center of mass of the northern half of the shell, i.e. of \(S^+_{a,b} = \{(x, y, z) \in S_{a,b} \mid z \geq 0\} \).

3 [Parametrization of a surface and tangent planes] Consider the parametrization

\[
\vec{r}(u, v) = uv\vec{i} + v^2\vec{j} + (u^2 - v^2)\vec{k}
\]

(i) At which points in the \((u, v)\)-plane is the parametrization \(\vec{r} \) regular (i.e. “smooth” in Apostol’s terminology – look up the definition)?

(ii) Find the tangent plane at any smooth point \(\vec{r}(\bar{u}, \bar{v}) \) on the surface.

(iii) At which point(s) \(\vec{r}(\bar{u}, \bar{v}) \) is the tangent plane parallel to the plane with equation \(2x + y + z = \frac{355}{113} \)?

(iv) At which point(s) \(\vec{r}(\bar{u}, \bar{v}) \) is the tangent plane parallel to the line through \((1, 2, 0)\) and \((0, 0, 1)\)?

(v) At which point(s) \(\vec{r}(\bar{u}, \bar{v}) \) does the tangent plane contain the origin?

4 [Surface integrals] Find the center of mass of the part of the sphere with radius \(a > 0 \) contained in the 1st octant, i.e. of \(S = \{(x, y, z) \mid x, y, z \geq 0, x^2 + y^2 + z^2 = a^2\} \).
Let \(S \) be the triangle with corners \(A = (a, 0, 0) \), \(B = (0, b, 0) \) and \(C = (0, 0, c) \) (assume \(a, b, c > 0 \)). We orient \(S \) so that its normal vector points upwards (has positive \(z \) component).

Let \(T \) be the boundary of \(S \).

(i) Find parametrizations for \(S \) and \(T \).

(ii) Compute the area and center of mass of the triangle (see book for definitions.)

(iii) Compute \(\iint_S \vec{v} \cdot \vec{n} \, dS \) where \(\vec{v}(x, y, z) = i - 2j \).

(iv) Compute \(\int_T \vec{v} \cdot \vec{t} \, ds \) where \(\vec{v}(x, y, z) = y\vec{i} - x\vec{j} + z\vec{k} \) in two different ways: first directly from the definitions, and again using Stokes' Theorem.

Let the surface \(S \) be the graph of a function \(f : \mathbb{R}^2 \to \mathbb{R} \) which is given in polar coordinates by \(z = F(r, \theta) \), \(a \leq r \leq b \), \(\alpha \leq \theta \leq \beta \) (i.e. \(f(x, y) = F(r(x, y), \theta(x, y)) \) where \(r(x, y) = \sqrt{x^2 + y^2} \), \(\tan \theta(x, y) = y/x \)). Derive a formula for the area of \(S \) in terms of an integral over the rectangle \([a, b] \times [\alpha, \beta]\) involving the function \(F \) and its partial derivatives \(F_r, F_\theta \).

Consider the vectorfield \(\vec{v}(x, y, z) = y\vec{i} - x\vec{j} \).

(i) Compute \(\text{curl} \ \vec{v} \).

(ii) Compute \(\oint_C \vec{v} \cdot \vec{t} \, ds \) where \(C \) is the unit circle in the \(xy \) plane, with counterclockwise orientation (seen from “above”).

(iii) If \(T \) is the triangle with corners \(P = (10, 0, 0) \), \(Q = (-5, 10, 0) \) and \((5, 10, 0) \), then what is \(\int_T \vec{v} \cdot \vec{t} \, ds \)?

(iv) If \(T \) is the triangle with corners \(P = (10, 0, 0) \), \(Q = (-5, 10, 1) \) and \((5, 10, -3) \), then what is \(\int_T \vec{v} \cdot \vec{t} \, ds \)?

(i) True or false: If \(\vec{v}(x, y, z) = \nabla f(x, y, z) \) for some function with continuous second derivatives, then \(\text{curl} \ \vec{v} = \vec{0} \).

(ii) True or false: If some continuously differentiable vector field \(\vec{v}(x, y, z) \) defined on a domain \(\mathcal{D} \subset \mathbb{R}^3 \) satisfies \(\text{curl} \ \vec{v} = \vec{0} \), then there is a function \(f : \mathcal{D} \to \mathbb{R} \) such that \(\vec{v}(x, y, z) = \nabla f(x, y, z) \).

Prove Green’s Theorem (in the plane, from the 1st midterm) assuming the domain is a rectangle \([a, b] \times [c, d]\).

State the transformation formula for double integrals. Give a proof when the integrand is \(f(x, y) \equiv 1 \).